esp-idf/components/bt/controller/esp32s3/bt.c
zhiweijian 9cfffd2915 - update phy lib
- Enable BLE pll track to fix bluetooth disconnection caused by temperature rise or fall on ESP32C3 and ESP32S3
- call pll track in controller task
2022-12-01 18:44:31 +08:00

1555 lines
48 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "sdkconfig.h"
#include "esp_heap_caps.h"
#include "esp_heap_caps_init.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "freertos/xtensa_api.h"
#include "freertos/portmacro.h"
#include "xtensa/core-macros.h"
#include "esp_types.h"
#include "esp_mac.h"
#include "esp_random.h"
#include "esp_task.h"
#include "esp_attr.h"
#include "esp_phy_init.h"
#include "esp_bt.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_pm.h"
#include "esp_ipc.h"
#include "esp_private/periph_ctrl.h"
#include "esp_private/esp_clk.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/soc_memory_layout.h"
#include "esp_coexist_internal.h"
#include "esp_timer.h"
#include "esp_sleep.h"
#include "esp_rom_sys.h"
#if CONFIG_BT_ENABLED
/* Macro definition
************************************************************************
*/
#define BT_LOG_TAG "BT_INIT"
#define BTDM_INIT_PERIOD (5000) /* ms */
/* Low Power Clock Selection */
#define BTDM_LPCLK_SEL_XTAL (0)
#define BTDM_LPCLK_SEL_XTAL32K (1)
#define BTDM_LPCLK_SEL_RTC_SLOW (2)
#define BTDM_LPCLK_SEL_8M (3)
// wakeup request sources
enum {
BTDM_ASYNC_WAKEUP_SRC_VHCI = 0,
BTDM_ASYNC_WAKEUP_SRC_DISA,
BTDM_ASYNC_WAKEUP_SRC_TMR,
BTDM_ASYNC_WAKEUP_SRC_MAX,
};
// low power control struct
typedef union {
struct {
uint32_t enable : 1; // whether low power mode is required
uint32_t lpclk_sel : 2; // low power clock source
uint32_t mac_bb_pd : 1; // whether hardware(MAC, BB) force-power-down is required during sleep
uint32_t wakeup_timer_required : 1; // whether system timer is needed
uint32_t no_light_sleep : 1; // do not allow system to enter light sleep after bluetooth is enabled
uint32_t main_xtal_pu : 1; // power up main XTAL
uint32_t reserved : 25; // reserved
};
uint32_t val;
} btdm_lpcntl_t;
// low power control status
typedef union {
struct {
uint32_t pm_lock_released : 1; // whether power management lock is released
uint32_t mac_bb_pd : 1; // whether hardware(MAC, BB) is powered down
uint32_t phy_enabled : 1; // whether phy is switched on
uint32_t wakeup_timer_started : 1; // whether wakeup timer is started
uint32_t reserved : 28; // reserved
};
uint32_t val;
} btdm_lpstat_t;
/* Sleep and wakeup interval control */
#define BTDM_MIN_SLEEP_DURATION (24) // threshold of interval in half slots to allow to fall into modem sleep
#define BTDM_MODEM_WAKE_UP_DELAY (8) // delay in half slots of modem wake up procedure, including re-enable PHY/RF
#define BT_DEBUG(...)
#define BT_API_CALL_CHECK(info, api_call, ret) \
do{\
esp_err_t __err = (api_call);\
if ((ret) != __err) {\
BT_DEBUG("%s %d %s ret=0x%X\n", __FUNCTION__, __LINE__, (info), __err);\
return __err;\
}\
} while(0)
#define OSI_FUNCS_TIME_BLOCKING 0xffffffff
#define OSI_VERSION 0x00010006
#define OSI_MAGIC_VALUE 0xFADEBEAD
/* Types definition
************************************************************************
*/
/* vendor dependent signals to be posted to controller task */
typedef enum {
BTDM_VND_OL_SIG_WAKEUP_TMR = 0,
BTDM_VND_OL_SIG_NUM,
} btdm_vnd_ol_sig_t;
/* prototype of function to handle vendor dependent signals */
typedef void (* btdm_vnd_ol_task_func_t)(void *param);
/* VHCI function interface */
typedef struct vhci_host_callback {
void (*notify_host_send_available)(void); /*!< callback used to notify that the host can send packet to controller */
int (*notify_host_recv)(uint8_t *data, uint16_t len); /*!< callback used to notify that the controller has a packet to send to the host*/
} vhci_host_callback_t;
/* Dram region */
typedef struct {
esp_bt_mode_t mode;
intptr_t start;
intptr_t end;
} btdm_dram_available_region_t;
typedef struct {
void *handle;
void *storage;
} btdm_queue_item_t;
typedef void (* osi_intr_handler)(void);
/* OSI function */
struct osi_funcs_t {
uint32_t _magic;
uint32_t _version;
void (*_interrupt_set)(int cpu_no, int intr_source, int interrupt_no, int interrpt_prio);
void (*_interrupt_clear)(int interrupt_source, int interrupt_no);
void (*_interrupt_handler_set)(int interrupt_no, void *fn, void *arg);
void (*_interrupt_disable)(void);
void (*_interrupt_restore)(void);
void (*_task_yield)(void);
void (*_task_yield_from_isr)(void);
void *(*_semphr_create)(uint32_t max, uint32_t init);
void (*_semphr_delete)(void *semphr);
int (*_semphr_take_from_isr)(void *semphr, void *hptw);
int (*_semphr_give_from_isr)(void *semphr, void *hptw);
int (*_semphr_take)(void *semphr, uint32_t block_time_ms);
int (*_semphr_give)(void *semphr);
void *(*_mutex_create)(void);
void (*_mutex_delete)(void *mutex);
int (*_mutex_lock)(void *mutex);
int (*_mutex_unlock)(void *mutex);
void *(* _queue_create)(uint32_t queue_len, uint32_t item_size);
void (* _queue_delete)(void *queue);
int (* _queue_send)(void *queue, void *item, uint32_t block_time_ms);
int (* _queue_send_from_isr)(void *queue, void *item, void *hptw);
int (* _queue_recv)(void *queue, void *item, uint32_t block_time_ms);
int (* _queue_recv_from_isr)(void *queue, void *item, void *hptw);
int (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
void (* _task_delete)(void *task_handle);
bool (* _is_in_isr)(void);
int (* _cause_sw_intr_to_core)(int core_id, int intr_no);
void *(* _malloc)(size_t size);
void *(* _malloc_internal)(size_t size);
void (* _free)(void *p);
int (* _read_efuse_mac)(uint8_t mac[6]);
void (* _srand)(unsigned int seed);
int (* _rand)(void);
uint32_t (* _btdm_lpcycles_2_hus)(uint32_t cycles, uint32_t *error_corr);
uint32_t (* _btdm_hus_2_lpcycles)(uint32_t hus);
bool (* _btdm_sleep_check_duration)(int32_t *slot_cnt);
void (* _btdm_sleep_enter_phase1)(uint32_t lpcycles); /* called when interrupt is disabled */
void (* _btdm_sleep_enter_phase2)(void);
void (* _btdm_sleep_exit_phase1)(void); /* called from ISR */
void (* _btdm_sleep_exit_phase2)(void); /* called from ISR */
void (* _btdm_sleep_exit_phase3)(void); /* called from task */
void (* _coex_wifi_sleep_set)(bool sleep);
int (* _coex_core_ble_conn_dyn_prio_get)(bool *low, bool *high);
void (* _coex_schm_status_bit_set)(uint32_t type, uint32_t status);
void (* _coex_schm_status_bit_clear)(uint32_t type, uint32_t status);
void (* _interrupt_on)(int intr_num);
void (* _interrupt_off)(int intr_num);
void (* _esp_hw_power_down)(void);
void (* _esp_hw_power_up)(void);
void (* _ets_backup_dma_copy)(uint32_t reg, uint32_t mem_addr, uint32_t num, bool to_rem);
};
/* External functions or values
************************************************************************
*/
/* not for user call, so don't put to include file */
/* OSI */
extern int btdm_osi_funcs_register(void *osi_funcs);
/* Initialise and De-initialise */
extern int btdm_controller_init(esp_bt_controller_config_t *config_opts);
extern void btdm_controller_deinit(void);
extern int btdm_controller_enable(esp_bt_mode_t mode);
extern void btdm_controller_disable(void);
extern uint8_t btdm_controller_get_mode(void);
extern const char *btdm_controller_get_compile_version(void);
extern void btdm_rf_bb_init_phase2(void); // shall be called after PHY/RF is enabled
/* Sleep */
extern void btdm_controller_enable_sleep(bool enable);
extern uint8_t btdm_controller_get_sleep_mode(void);
extern bool btdm_power_state_active(void);
extern void btdm_wakeup_request(void);
extern void btdm_in_wakeup_requesting_set(bool in_wakeup_requesting);
/* vendor dependent tasks to be posted and handled by controller task*/
extern int btdm_vnd_offload_task_register(btdm_vnd_ol_sig_t sig, btdm_vnd_ol_task_func_t func);
extern int btdm_vnd_offload_task_deregister(btdm_vnd_ol_sig_t sig);
extern int btdm_vnd_offload_post_from_isr(btdm_vnd_ol_sig_t sig, void *param, bool need_yield);
extern int btdm_vnd_offload_post(btdm_vnd_ol_sig_t sig, void *param);
/* Low Power Clock */
extern bool btdm_lpclk_select_src(uint32_t sel);
extern bool btdm_lpclk_set_div(uint32_t div);
extern int btdm_hci_tl_io_event_post(int event);
/* VHCI */
extern bool API_vhci_host_check_send_available(void);
extern void API_vhci_host_send_packet(uint8_t *data, uint16_t len);
extern int API_vhci_host_register_callback(const vhci_host_callback_t *callback);
/* TX power */
extern int ble_txpwr_set(int power_type, int power_level);
extern int ble_txpwr_get(int power_type);
extern uint16_t l2c_ble_link_get_tx_buf_num(void);
extern int coex_core_ble_conn_dyn_prio_get(bool *low, bool *high);
extern void coex_pti_v2(void);
extern bool btdm_deep_sleep_mem_init(void);
extern void btdm_deep_sleep_mem_deinit(void);
extern void btdm_ble_power_down_dma_copy(bool copy);
extern uint8_t btdm_sleep_clock_sync(void);
#if CONFIG_MAC_BB_PD
extern void esp_mac_bb_power_down(void);
extern void esp_mac_bb_power_up(void);
extern void ets_backup_dma_copy(uint32_t reg, uint32_t mem_addr, uint32_t num, bool to_mem);
#endif
extern char _bss_start_btdm;
extern char _bss_end_btdm;
extern char _data_start_btdm;
extern char _data_end_btdm;
extern uint32_t _data_start_btdm_rom;
extern uint32_t _data_end_btdm_rom;
extern uint32_t _bt_bss_start;
extern uint32_t _bt_bss_end;
extern uint32_t _btdm_bss_start;
extern uint32_t _btdm_bss_end;
extern uint32_t _bt_data_start;
extern uint32_t _bt_data_end;
extern uint32_t _btdm_data_start;
extern uint32_t _btdm_data_end;
extern char _bt_tmp_bss_start;
extern char _bt_tmp_bss_end;
/* Local Function Declare
*********************************************************************
*/
static void interrupt_set_wrapper(int cpu_no, int intr_source, int intr_num, int intr_prio);
static void interrupt_clear_wrapper(int intr_source, int intr_num);
static void interrupt_handler_set_wrapper(int n, void *fn, void *arg);
static void interrupt_disable(void);
static void interrupt_restore(void);
static void task_yield_from_isr(void);
static void *semphr_create_wrapper(uint32_t max, uint32_t init);
static void semphr_delete_wrapper(void *semphr);
static int semphr_take_from_isr_wrapper(void *semphr, void *hptw);
static int semphr_give_from_isr_wrapper(void *semphr, void *hptw);
static int semphr_take_wrapper(void *semphr, uint32_t block_time_ms);
static int semphr_give_wrapper(void *semphr);
static void *mutex_create_wrapper(void);
static void mutex_delete_wrapper(void *mutex);
static int mutex_lock_wrapper(void *mutex);
static int mutex_unlock_wrapper(void *mutex);
static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size);
static void queue_delete_wrapper(void *queue);
static int queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms);
static int queue_send_from_isr_wrapper(void *queue, void *item, void *hptw);
static int queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms);
static int queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw);
static int task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
static void task_delete_wrapper(void *task_handle);
static bool is_in_isr_wrapper(void);
static void *malloc_internal_wrapper(size_t size);
static int read_mac_wrapper(uint8_t mac[6]);
static void srand_wrapper(unsigned int seed);
static int rand_wrapper(void);
static uint32_t btdm_lpcycles_2_hus(uint32_t cycles, uint32_t *error_corr);
static uint32_t btdm_hus_2_lpcycles(uint32_t hus);
static bool btdm_sleep_check_duration(int32_t *slot_cnt);
static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles);
static void btdm_sleep_enter_phase2_wrapper(void);
static void btdm_sleep_exit_phase3_wrapper(void);
static void coex_wifi_sleep_set_hook(bool sleep);
static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status);
static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status);
static void interrupt_on_wrapper(int intr_num);
static void interrupt_off_wrapper(int intr_num);
static void btdm_hw_mac_power_up_wrapper(void);
static void btdm_hw_mac_power_down_wrapper(void);
static void btdm_backup_dma_copy_wrapper(uint32_t reg, uint32_t mem_addr, uint32_t num, bool to_mem);
static void btdm_slp_tmr_callback(void *arg);
/* Local variable definition
***************************************************************************
*/
/* OSI funcs */
static const struct osi_funcs_t osi_funcs_ro = {
._magic = OSI_MAGIC_VALUE,
._version = OSI_VERSION,
._interrupt_set = interrupt_set_wrapper,
._interrupt_clear = interrupt_clear_wrapper,
._interrupt_handler_set = interrupt_handler_set_wrapper,
._interrupt_disable = interrupt_disable,
._interrupt_restore = interrupt_restore,
._task_yield = vPortYield,
._task_yield_from_isr = task_yield_from_isr,
._semphr_create = semphr_create_wrapper,
._semphr_delete = semphr_delete_wrapper,
._semphr_take_from_isr = semphr_take_from_isr_wrapper,
._semphr_give_from_isr = semphr_give_from_isr_wrapper,
._semphr_take = semphr_take_wrapper,
._semphr_give = semphr_give_wrapper,
._mutex_create = mutex_create_wrapper,
._mutex_delete = mutex_delete_wrapper,
._mutex_lock = mutex_lock_wrapper,
._mutex_unlock = mutex_unlock_wrapper,
._queue_create = queue_create_wrapper,
._queue_delete = queue_delete_wrapper,
._queue_send = queue_send_wrapper,
._queue_send_from_isr = queue_send_from_isr_wrapper,
._queue_recv = queue_recv_wrapper,
._queue_recv_from_isr = queue_recv_from_isr_wrapper,
._task_create = task_create_wrapper,
._task_delete = task_delete_wrapper,
._is_in_isr = is_in_isr_wrapper,
._cause_sw_intr_to_core = NULL,
._malloc = malloc,
._malloc_internal = malloc_internal_wrapper,
._free = free,
._read_efuse_mac = read_mac_wrapper,
._srand = srand_wrapper,
._rand = rand_wrapper,
._btdm_lpcycles_2_hus = btdm_lpcycles_2_hus,
._btdm_hus_2_lpcycles = btdm_hus_2_lpcycles,
._btdm_sleep_check_duration = btdm_sleep_check_duration,
._btdm_sleep_enter_phase1 = btdm_sleep_enter_phase1_wrapper,
._btdm_sleep_enter_phase2 = btdm_sleep_enter_phase2_wrapper,
._btdm_sleep_exit_phase1 = NULL,
._btdm_sleep_exit_phase2 = NULL,
._btdm_sleep_exit_phase3 = btdm_sleep_exit_phase3_wrapper,
._coex_wifi_sleep_set = coex_wifi_sleep_set_hook,
._coex_core_ble_conn_dyn_prio_get = coex_core_ble_conn_dyn_prio_get,
._coex_schm_status_bit_set = coex_schm_status_bit_set_wrapper,
._coex_schm_status_bit_clear = coex_schm_status_bit_clear_wrapper,
._interrupt_on = interrupt_on_wrapper,
._interrupt_off = interrupt_off_wrapper,
._esp_hw_power_down = btdm_hw_mac_power_down_wrapper,
._esp_hw_power_up = btdm_hw_mac_power_up_wrapper,
._ets_backup_dma_copy = btdm_backup_dma_copy_wrapper,
};
static DRAM_ATTR struct osi_funcs_t *osi_funcs_p;
/* Static variable declare */
static DRAM_ATTR esp_bt_controller_status_t btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
static DRAM_ATTR portMUX_TYPE global_int_mux = portMUX_INITIALIZER_UNLOCKED;
// low power control struct
static DRAM_ATTR btdm_lpcntl_t s_lp_cntl;
// low power status struct
static DRAM_ATTR btdm_lpstat_t s_lp_stat;
// measured average low power clock period in micro seconds
static DRAM_ATTR uint32_t btdm_lpcycle_us = 0;
// number of fractional bit for btdm_lpcycle_us
static DRAM_ATTR uint8_t btdm_lpcycle_us_frac = 0;
// semaphore used for blocking VHCI API to wait for controller to wake up
static DRAM_ATTR QueueHandle_t s_wakeup_req_sem = NULL;
// wakeup timer
static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr;
#ifdef CONFIG_PM_ENABLE
static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock;
// pm_lock to prevent light sleep due to incompatibility currently
static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock;
#endif
void IRAM_ATTR btdm_hw_mac_power_down_wrapper(void)
{
#if CONFIG_MAC_BB_PD
esp_mac_bb_power_down();
#endif
}
void IRAM_ATTR btdm_hw_mac_power_up_wrapper(void)
{
#if CONFIG_MAC_BB_PD
esp_mac_bb_power_up();
#endif
}
void IRAM_ATTR btdm_backup_dma_copy_wrapper(uint32_t reg, uint32_t mem_addr, uint32_t num, bool to_mem)
{
#if CONFIG_MAC_BB_PD
ets_backup_dma_copy(reg, mem_addr, num, to_mem);
#endif
}
static inline void esp_bt_power_domain_on(void)
{
// Bluetooth module power up
esp_wifi_bt_power_domain_on();
}
static inline void esp_bt_power_domain_off(void)
{
// Bluetooth module power down
esp_wifi_bt_power_domain_off();
}
static void interrupt_set_wrapper(int cpu_no, int intr_source, int intr_num, int intr_prio)
{
esp_rom_route_intr_matrix(cpu_no, intr_source, intr_num);
}
static void interrupt_clear_wrapper(int intr_source, int intr_num)
{
}
static void interrupt_handler_set_wrapper(int n, void *fn, void *arg)
{
xt_set_interrupt_handler(n, (xt_handler)fn, arg);
}
static void interrupt_on_wrapper(int intr_num)
{
xt_ints_on(1 << intr_num);
}
static void interrupt_off_wrapper(int intr_num)
{
xt_ints_off(1 << intr_num);
}
static void IRAM_ATTR interrupt_disable(void)
{
if (xPortInIsrContext()) {
portENTER_CRITICAL_ISR(&global_int_mux);
} else {
portENTER_CRITICAL(&global_int_mux);
}
}
static void IRAM_ATTR interrupt_restore(void)
{
if (xPortInIsrContext()) {
portEXIT_CRITICAL_ISR(&global_int_mux);
} else {
portEXIT_CRITICAL(&global_int_mux);
}
}
static void IRAM_ATTR task_yield_from_isr(void)
{
portYIELD_FROM_ISR();
}
static void *semphr_create_wrapper(uint32_t max, uint32_t init)
{
btdm_queue_item_t *semphr = heap_caps_calloc(1, sizeof(btdm_queue_item_t), MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL);
assert(semphr);
#if !CONFIG_SPIRAM_USE_MALLOC
semphr->handle = (void *)xSemaphoreCreateCounting(max, init);
#else
semphr->storage = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
assert(semphr->storage);
semphr->handle = (void *)xSemaphoreCreateCountingStatic(max, init, semphr->storage);
#endif
assert(semphr->handle);
return semphr;
}
static void semphr_delete_wrapper(void *semphr)
{
if (semphr == NULL) {
return;
}
btdm_queue_item_t *semphr_item = (btdm_queue_item_t *)semphr;
if (semphr_item->handle) {
vSemaphoreDelete(semphr_item->handle);
}
#ifdef CONFIG_SPIRAM_USE_MALLOC
if (semphr_item->storage) {
free(semphr_item->storage);
}
#endif
free(semphr);
}
static int IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw)
{
return (int)xSemaphoreTakeFromISR(((btdm_queue_item_t *)semphr)->handle, hptw);
}
static int IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw)
{
return (int)xSemaphoreGiveFromISR(((btdm_queue_item_t *)semphr)->handle, hptw);
}
static int semphr_take_wrapper(void *semphr, uint32_t block_time_ms)
{
if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
return (int)xSemaphoreTake(((btdm_queue_item_t *)semphr)->handle, portMAX_DELAY);
} else {
return (int)xSemaphoreTake(((btdm_queue_item_t *)semphr)->handle, block_time_ms / portTICK_PERIOD_MS);
}
}
static int semphr_give_wrapper(void *semphr)
{
return (int)xSemaphoreGive(((btdm_queue_item_t *)semphr)->handle);
}
static void *mutex_create_wrapper(void)
{
return (void *)xSemaphoreCreateMutex();
}
static void mutex_delete_wrapper(void *mutex)
{
vSemaphoreDelete(mutex);
}
static int mutex_lock_wrapper(void *mutex)
{
return (int)xSemaphoreTake(mutex, portMAX_DELAY);
}
static int mutex_unlock_wrapper(void *mutex)
{
return (int)xSemaphoreGive(mutex);
}
static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size)
{
btdm_queue_item_t *queue = NULL;
queue = (btdm_queue_item_t*)heap_caps_malloc(sizeof(btdm_queue_item_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
assert(queue);
#if CONFIG_SPIRAM_USE_MALLOC
queue->storage = heap_caps_calloc(1, sizeof(StaticQueue_t) + (queue_len*item_size), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
assert(queue->storage);
queue->handle = xQueueCreateStatic( queue_len, item_size, ((uint8_t*)(queue->storage)) + sizeof(StaticQueue_t), (StaticQueue_t*)(queue->storage));
assert(queue->handle);
#else
queue->handle = xQueueCreate( queue_len, item_size);
assert(queue->handle);
#endif
return queue;
}
static void queue_delete_wrapper(void *queue)
{
btdm_queue_item_t *queue_item = (btdm_queue_item_t *)queue;
if (queue_item) {
if(queue_item->handle){
vQueueDelete(queue_item->handle);
}
#if CONFIG_SPIRAM_USE_MALLOC
if (queue_item->storage) {
free(queue_item->storage);
}
#endif
free(queue_item);
}
}
static int queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms)
{
if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
return (int)xQueueSend(((btdm_queue_item_t*)queue)->handle, item, portMAX_DELAY);
} else {
return (int)xQueueSend(((btdm_queue_item_t*)queue)->handle, item, block_time_ms / portTICK_PERIOD_MS);
}
}
static int IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw)
{
return (int)xQueueSendFromISR(((btdm_queue_item_t*)queue)->handle, item, hptw);
}
static int queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms)
{
if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
return (int)xQueueReceive(((btdm_queue_item_t*)queue)->handle, item, portMAX_DELAY);
} else {
return (int)xQueueReceive(((btdm_queue_item_t*)queue)->handle, item, block_time_ms / portTICK_PERIOD_MS);
}
}
static int IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw)
{
return (int)xQueueReceiveFromISR(((btdm_queue_item_t*)queue)->handle, item, hptw);
}
static int task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id)
{
return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY));
}
static void task_delete_wrapper(void *task_handle)
{
vTaskDelete(task_handle);
}
static bool IRAM_ATTR is_in_isr_wrapper(void)
{
return (bool)xPortInIsrContext();
}
static void *malloc_internal_wrapper(size_t size)
{
void *p = heap_caps_malloc(size, MALLOC_CAP_DEFAULT|MALLOC_CAP_INTERNAL|MALLOC_CAP_DMA);
if(p == NULL) {
ESP_LOGE(BT_LOG_TAG, "Malloc failed");
}
return p;
}
static int IRAM_ATTR read_mac_wrapper(uint8_t mac[6])
{
int ret = esp_read_mac(mac, ESP_MAC_BT);
ESP_LOGI(BT_LOG_TAG, "Bluetooth MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
return ret;
}
static void IRAM_ATTR srand_wrapper(unsigned int seed)
{
/* empty function */
}
static int IRAM_ATTR rand_wrapper(void)
{
return (int)esp_random();
}
static uint32_t IRAM_ATTR btdm_lpcycles_2_hus(uint32_t cycles, uint32_t *error_corr)
{
uint64_t local_error_corr = (error_corr == NULL) ? 0 : (uint64_t)(*error_corr);
uint64_t res = (uint64_t)btdm_lpcycle_us * cycles * 2;
local_error_corr += res;
res = (local_error_corr >> btdm_lpcycle_us_frac);
local_error_corr -= (res << btdm_lpcycle_us_frac);
if (error_corr) {
*error_corr = (uint32_t) local_error_corr;
}
return (uint32_t)res;
}
/*
* @brief Converts a duration in half us into a number of low power clock cycles.
*/
static uint32_t IRAM_ATTR btdm_hus_2_lpcycles(uint32_t hus)
{
// The number of sleep duration(us) should not lead to overflow. Thrs: 100s
// Compute the sleep duration in us to low power clock cycles, with calibration result applied
// clock measurement is conducted
uint64_t cycles = ((uint64_t)(hus) << btdm_lpcycle_us_frac) / btdm_lpcycle_us;
cycles >>= 1;
return (uint32_t)cycles;
}
static bool IRAM_ATTR btdm_sleep_check_duration(int32_t *half_slot_cnt)
{
if (*half_slot_cnt < BTDM_MIN_SLEEP_DURATION) {
return false;
}
/* wake up in advance considering the delay in enabling PHY/RF */
*half_slot_cnt -= BTDM_MODEM_WAKE_UP_DELAY;
return true;
}
static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles)
{
if (s_lp_cntl.wakeup_timer_required == 0) {
return;
}
// start a timer to wake up and acquire the pm_lock before modem_sleep awakes
uint32_t us_to_sleep = btdm_lpcycles_2_hus(lpcycles, NULL) >> 1;
#define BTDM_MIN_TIMER_UNCERTAINTY_US (1800)
assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US);
// allow a maximum time uncertainty to be about 488ppm(1/2048) at least as clock drift
// and set the timer in advance
uint32_t uncertainty = (us_to_sleep >> 11);
if (uncertainty < BTDM_MIN_TIMER_UNCERTAINTY_US) {
uncertainty = BTDM_MIN_TIMER_UNCERTAINTY_US;
}
assert (s_lp_stat.wakeup_timer_started == 0);
if (esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - uncertainty) == ESP_OK) {
s_lp_stat.wakeup_timer_started = 1;
} else {
ESP_LOGE(BT_LOG_TAG, "timer start failed");
assert(0);
}
}
static void btdm_sleep_enter_phase2_wrapper(void)
{
if (btdm_controller_get_sleep_mode() == ESP_BT_SLEEP_MODE_1) {
if (s_lp_stat.phy_enabled) {
esp_phy_disable();
s_lp_stat.phy_enabled = 0;
} else {
assert(0);
}
if (s_lp_stat.pm_lock_released == 0) {
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_release(s_pm_lock);
#endif
s_lp_stat.pm_lock_released = 1;
}
}
}
static void btdm_sleep_exit_phase3_wrapper(void)
{
#ifdef CONFIG_PM_ENABLE
// If BT wakeup before esp timer coming due to timer task have no chance to run.
// Then we will not run into `btdm_sleep_exit_phase0` and acquire PM lock,
// Do it again here to fix this issue.
if (s_lp_stat.pm_lock_released) {
esp_pm_lock_acquire(s_pm_lock);
s_lp_stat.pm_lock_released = 0;
}
#endif
if (btdm_controller_get_sleep_mode() == ESP_BT_SLEEP_MODE_1) {
if (s_lp_stat.phy_enabled == 0) {
esp_phy_enable();
s_lp_stat.phy_enabled = 1;
}
}
// If BT wakeup before esp timer coming due to timer task have no chance to run.
// Then we will not run into `btdm_sleep_exit_phase0` and stop esp timer,
// Do it again here to fix this issue.
if (s_lp_cntl.wakeup_timer_required && s_lp_stat.wakeup_timer_started) {
esp_timer_stop(s_btdm_slp_tmr);
s_lp_stat.wakeup_timer_started = 0;
}
// wait for the sleep state to change
// the procedure duration is at micro-second level or less
while (btdm_sleep_clock_sync()) {
;
}
}
static void IRAM_ATTR btdm_sleep_exit_phase0(void *param)
{
assert(s_lp_cntl.enable == 1);
#ifdef CONFIG_PM_ENABLE
if (s_lp_stat.pm_lock_released) {
esp_pm_lock_acquire(s_pm_lock);
s_lp_stat.pm_lock_released = 0;
}
#endif
int event = (int) param;
if (event == BTDM_ASYNC_WAKEUP_SRC_VHCI || event == BTDM_ASYNC_WAKEUP_SRC_DISA) {
btdm_wakeup_request();
}
if (s_lp_cntl.wakeup_timer_required && s_lp_stat.wakeup_timer_started) {
esp_timer_stop(s_btdm_slp_tmr);
s_lp_stat.wakeup_timer_started = 0;
}
if (event == BTDM_ASYNC_WAKEUP_SRC_VHCI || event == BTDM_ASYNC_WAKEUP_SRC_DISA) {
semphr_give_wrapper(s_wakeup_req_sem);
}
}
static void IRAM_ATTR btdm_slp_tmr_callback(void *arg)
{
#ifdef CONFIG_PM_ENABLE
btdm_vnd_offload_post(BTDM_VND_OL_SIG_WAKEUP_TMR, (void *)BTDM_ASYNC_WAKEUP_SRC_TMR);
#endif
}
static bool async_wakeup_request(int event)
{
if (s_lp_cntl.enable == 0) {
return false;
}
bool do_wakeup_request = false;
switch (event) {
case BTDM_ASYNC_WAKEUP_SRC_VHCI:
case BTDM_ASYNC_WAKEUP_SRC_DISA:
btdm_in_wakeup_requesting_set(true);
if (!btdm_power_state_active()) {
btdm_vnd_offload_post(BTDM_VND_OL_SIG_WAKEUP_TMR, (void *)event);
do_wakeup_request = true;
semphr_take_wrapper(s_wakeup_req_sem, OSI_FUNCS_TIME_BLOCKING);
}
break;
default:
break;
}
return do_wakeup_request;
}
static void async_wakeup_request_end(int event)
{
if (s_lp_cntl.enable == 0) {
return;
}
bool allow_to_sleep;
switch (event) {
case BTDM_ASYNC_WAKEUP_SRC_VHCI:
case BTDM_ASYNC_WAKEUP_SRC_DISA:
allow_to_sleep = true;
break;
default:
allow_to_sleep = true;
break;
}
if (allow_to_sleep) {
btdm_in_wakeup_requesting_set(false);
}
return;
}
static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status)
{
#if CONFIG_SW_COEXIST_ENABLE
coex_schm_status_bit_set(type, status);
#endif
}
static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status)
{
#if CONFIG_SW_COEXIST_ENABLE
coex_schm_status_bit_clear(type, status);
#endif
}
bool esp_vhci_host_check_send_available(void)
{
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return false;
}
return API_vhci_host_check_send_available();
}
void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
{
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return;
}
async_wakeup_request(BTDM_ASYNC_WAKEUP_SRC_VHCI);
API_vhci_host_send_packet(data, len);
async_wakeup_request_end(BTDM_ASYNC_WAKEUP_SRC_VHCI);
}
esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
{
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return ESP_FAIL;
}
return API_vhci_host_register_callback((const vhci_host_callback_t *)callback) == 0 ? ESP_OK : ESP_FAIL;
}
static void btdm_controller_mem_init(void)
{
extern void btdm_controller_rom_data_init(void );
btdm_controller_rom_data_init();
}
esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
{
ESP_LOGW(BT_LOG_TAG, "%s not implemented, return OK", __func__);
return ESP_OK;
}
esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
{
ESP_LOGW(BT_LOG_TAG, "%s not implemented, return OK", __func__);
return ESP_OK;
}
#if CONFIG_MAC_BB_PD
static void IRAM_ATTR btdm_mac_bb_power_down_cb(void)
{
if (s_lp_cntl.mac_bb_pd && s_lp_stat.mac_bb_pd == 0) {
btdm_ble_power_down_dma_copy(true);
s_lp_stat.mac_bb_pd = 1;
}
}
static void IRAM_ATTR btdm_mac_bb_power_up_cb(void)
{
if (s_lp_cntl.mac_bb_pd && s_lp_stat.mac_bb_pd) {
btdm_ble_power_down_dma_copy(false);
s_lp_stat.mac_bb_pd = 0;
}
}
#endif
esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)
{
esp_err_t err = ESP_FAIL;
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
return ESP_ERR_INVALID_STATE;
}
if (cfg == NULL) {
return ESP_ERR_INVALID_ARG;
}
if (cfg->controller_task_prio != ESP_TASK_BT_CONTROLLER_PRIO
|| cfg->controller_task_stack_size < ESP_TASK_BT_CONTROLLER_STACK) {
ESP_LOGE(BT_LOG_TAG, "Invalid controller task prioriy or stack size");
return ESP_ERR_INVALID_ARG;
}
if (cfg->bluetooth_mode != ESP_BT_MODE_BLE) {
ESP_LOGE(BT_LOG_TAG, "%s controller only support BLE only mode", __func__);
return ESP_ERR_NOT_SUPPORTED;
}
if (cfg->bluetooth_mode & ESP_BT_MODE_BLE) {
if ((cfg->ble_max_act <= 0) || (cfg->ble_max_act > BT_CTRL_BLE_MAX_ACT_LIMIT)) {
ESP_LOGE(BT_LOG_TAG, "Invalid value of ble_max_act");
return ESP_ERR_INVALID_ARG;
}
}
if (cfg->sleep_mode == ESP_BT_SLEEP_MODE_1) {
if (cfg->sleep_clock == ESP_BT_SLEEP_CLOCK_NONE) {
ESP_LOGE(BT_LOG_TAG, "SLEEP_MODE_1 enabled but sleep clock not configured");
return ESP_ERR_INVALID_ARG;
}
}
// overwrite some parameters
cfg->magic = ESP_BT_CTRL_CONFIG_MAGIC_VAL;
#if CONFIG_MAC_BB_PD
esp_mac_bb_pd_mem_init();
#endif
esp_phy_pd_mem_init();
esp_bt_power_domain_on();
btdm_controller_mem_init();
#if CONFIG_MAC_BB_PD
if (esp_register_mac_bb_pd_callback(btdm_mac_bb_power_down_cb) != 0) {
err = ESP_ERR_INVALID_ARG;
goto error;
}
if (esp_register_mac_bb_pu_callback(btdm_mac_bb_power_up_cb) != 0) {
err = ESP_ERR_INVALID_ARG;
goto error;
}
#endif
osi_funcs_p = (struct osi_funcs_t *)malloc_internal_wrapper(sizeof(struct osi_funcs_t));
if (osi_funcs_p == NULL) {
return ESP_ERR_NO_MEM;
}
memcpy(osi_funcs_p, &osi_funcs_ro, sizeof(struct osi_funcs_t));
if (btdm_osi_funcs_register(osi_funcs_p) != 0) {
return ESP_ERR_INVALID_ARG;
}
ESP_LOGI(BT_LOG_TAG, "BT controller compile version [%s]", btdm_controller_get_compile_version());
// init low-power control resources
do {
// set default values for global states or resources
s_lp_stat.val = 0;
s_lp_cntl.val = 0;
s_lp_cntl.main_xtal_pu = 0;
s_wakeup_req_sem = NULL;
s_btdm_slp_tmr = NULL;
// configure and initialize resources
s_lp_cntl.enable = (cfg->sleep_mode == ESP_BT_SLEEP_MODE_1) ? 1 : 0;
s_lp_cntl.no_light_sleep = 0;
if (s_lp_cntl.enable) {
#if CONFIG_MAC_BB_PD
if (!btdm_deep_sleep_mem_init()) {
err = ESP_ERR_NO_MEM;
goto error;
}
s_lp_cntl.mac_bb_pd = 1;
#endif
#ifdef CONFIG_PM_ENABLE
s_lp_cntl.wakeup_timer_required = 1;
#endif
// async wakeup semaphore for VHCI
s_wakeup_req_sem = semphr_create_wrapper(1, 0);
if (s_wakeup_req_sem == NULL) {
err = ESP_ERR_NO_MEM;
goto error;
}
btdm_vnd_offload_task_register(BTDM_VND_OL_SIG_WAKEUP_TMR, btdm_sleep_exit_phase0);
}
if (s_lp_cntl.wakeup_timer_required) {
esp_timer_create_args_t create_args = {
.callback = btdm_slp_tmr_callback,
.arg = NULL,
.name = "btSlp",
};
if ((err = esp_timer_create(&create_args, &s_btdm_slp_tmr)) != ESP_OK) {
goto error;
}
}
// set default bluetooth sleep clock cycle and its fractional bits
btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
// set default bluetooth sleep clock source
s_lp_cntl.lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
#if CONFIG_BT_CTRL_LPCLK_SEL_EXT_32K_XTAL
// check whether or not EXT_CRYS is working
if (rtc_clk_slow_src_get() == SOC_RTC_SLOW_CLK_SRC_XTAL32K) {
s_lp_cntl.lpclk_sel = BTDM_LPCLK_SEL_XTAL32K; // External 32 kHz XTAL
} else {
ESP_LOGW(BT_LOG_TAG, "32.768kHz XTAL not detected, fall back to main XTAL as Bluetooth sleep clock");
#if !CONFIG_BT_CTRL_MAIN_XTAL_PU_DURING_LIGHT_SLEEP
s_lp_cntl.no_light_sleep = 1;
#endif
}
#elif (CONFIG_BT_CTRL_LPCLK_SEL_MAIN_XTAL)
ESP_LOGI(BT_LOG_TAG, "Bluetooth will use main XTAL as Bluetooth sleep clock.");
#if !CONFIG_BT_CTRL_MAIN_XTAL_PU_DURING_LIGHT_SLEEP
s_lp_cntl.no_light_sleep = 1;
#endif
#elif (CONFIG_BT_CTRL_LPCLK_SEL_RTC_SLOW)
// check whether or not internal 150 kHz RC oscillator is working
if (rtc_clk_slow_src_get() == SOC_RTC_SLOW_CLK_SRC_RC_SLOW) {
s_lp_cntl.lpclk_sel = BTDM_LPCLK_SEL_RTC_SLOW; // Internal 150 kHz RC oscillator
ESP_LOGW(BT_LOG_TAG, "Internal 150kHz RC osciallator. The accuracy of this clock is a lot larger than 500ppm which is "
"required in Bluetooth communication, so don't select this option in scenarios such as BLE connection state.");
} else {
ESP_LOGW(BT_LOG_TAG, "Internal 150kHz RC oscillator not detected.");
assert(0);
}
#endif
bool select_src_ret __attribute__((unused));
bool set_div_ret __attribute__((unused));
if (s_lp_cntl.lpclk_sel == BTDM_LPCLK_SEL_XTAL) {
#ifdef CONFIG_BT_CTRL_MAIN_XTAL_PU_DURING_LIGHT_SLEEP
ESP_ERROR_CHECK(esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL, ESP_PD_OPTION_ON));
s_lp_cntl.main_xtal_pu = 1;
#endif
select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL);
set_div_ret = btdm_lpclk_set_div(esp_clk_xtal_freq() / MHZ);
assert(select_src_ret && set_div_ret);
btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
btdm_lpcycle_us = 1 << (btdm_lpcycle_us_frac);
} else if (s_lp_cntl.lpclk_sel == BTDM_LPCLK_SEL_XTAL32K) {
select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL32K);
set_div_ret = btdm_lpclk_set_div(0);
assert(select_src_ret && set_div_ret);
btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
btdm_lpcycle_us = (RTC_CLK_CAL_FRACT > 15) ? (1000000 << (RTC_CLK_CAL_FRACT - 15)) :
(1000000 >> (15 - RTC_CLK_CAL_FRACT));
assert(btdm_lpcycle_us != 0);
} else if (s_lp_cntl.lpclk_sel == BTDM_LPCLK_SEL_RTC_SLOW) {
select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_RTC_SLOW);
set_div_ret = btdm_lpclk_set_div(0);
assert(select_src_ret && set_div_ret);
btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
btdm_lpcycle_us = esp_clk_slowclk_cal_get();
} else {
err = ESP_ERR_INVALID_ARG;
goto error;
}
#if CONFIG_SW_COEXIST_ENABLE
coex_update_lpclk_interval();
#endif
#ifdef CONFIG_PM_ENABLE
if (s_lp_cntl.no_light_sleep) {
if ((err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btLS", &s_light_sleep_pm_lock)) != ESP_OK) {
err = ESP_ERR_NO_MEM;
goto error;
}
ESP_LOGW(BT_LOG_TAG, "light sleep mode will not be able to apply when bluetooth is enabled.");
}
if ((err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock)) != ESP_OK) {
err = ESP_ERR_NO_MEM;
goto error;
} else {
s_lp_stat.pm_lock_released = 1;
}
#endif
} while (0);
#if CONFIG_SW_COEXIST_ENABLE
coex_init();
#endif
periph_module_enable(PERIPH_BT_MODULE);
periph_module_reset(PERIPH_BT_MODULE);
esp_phy_enable();
s_lp_stat.phy_enabled = 1;
if (btdm_controller_init(cfg) != 0) {
err = ESP_ERR_NO_MEM;
goto error;
}
coex_pti_v2();
btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
return ESP_OK;
error:
if (s_lp_stat.phy_enabled) {
esp_phy_disable();
s_lp_stat.phy_enabled = 0;
}
do {
// deinit low power control resources
#ifdef CONFIG_PM_ENABLE
if (s_lp_cntl.no_light_sleep) {
if (s_light_sleep_pm_lock != NULL) {
esp_pm_lock_delete(s_light_sleep_pm_lock);
s_light_sleep_pm_lock = NULL;
}
}
if (s_pm_lock != NULL) {
esp_pm_lock_delete(s_pm_lock);
s_pm_lock = NULL;
s_lp_stat.pm_lock_released = 0;
}
#endif
if (s_lp_cntl.wakeup_timer_required && s_btdm_slp_tmr != NULL) {
esp_timer_delete(s_btdm_slp_tmr);
s_btdm_slp_tmr = NULL;
}
#if CONFIG_MAC_BB_PD
if (s_lp_cntl.mac_bb_pd) {
btdm_deep_sleep_mem_deinit();
s_lp_cntl.mac_bb_pd = 0;
}
#endif
if (s_lp_cntl.enable) {
btdm_vnd_offload_task_deregister(BTDM_VND_OL_SIG_WAKEUP_TMR);
if (s_wakeup_req_sem != NULL) {
semphr_delete_wrapper(s_wakeup_req_sem);
s_wakeup_req_sem = NULL;
}
}
if (s_lp_cntl.lpclk_sel == BTDM_LPCLK_SEL_XTAL) {
#ifdef CONFIG_BT_CTRL_MAIN_XTAL_PU_DURING_LIGHT_SLEEP
if (s_lp_cntl.main_xtal_pu) {
ESP_ERROR_CHECK(esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL, ESP_PD_OPTION_OFF));
s_lp_cntl.main_xtal_pu = 0;
}
#endif
btdm_lpclk_select_src(BTDM_LPCLK_SEL_RTC_SLOW);
btdm_lpclk_set_div(0);
#if CONFIG_SW_COEXIST_ENABLE
coex_update_lpclk_interval();
#endif
}
btdm_lpcycle_us = 0;
} while (0);
#if CONFIG_MAC_BB_PD
esp_unregister_mac_bb_pd_callback(btdm_mac_bb_power_down_cb);
esp_unregister_mac_bb_pu_callback(btdm_mac_bb_power_up_cb);
#endif
if (osi_funcs_p != NULL) {
free(osi_funcs_p);
osi_funcs_p = NULL;
}
return err;
}
esp_err_t esp_bt_controller_deinit(void)
{
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
return ESP_ERR_INVALID_STATE;
}
btdm_controller_deinit();
periph_module_disable(PERIPH_BT_MODULE);
if (s_lp_stat.phy_enabled) {
esp_phy_disable();
s_lp_stat.phy_enabled = 0;
} else {
assert(0);
}
// deinit low power control resources
do {
#if CONFIG_MAC_BB_PD
btdm_deep_sleep_mem_deinit();
#endif
#ifdef CONFIG_PM_ENABLE
if (s_lp_cntl.no_light_sleep) {
esp_pm_lock_delete(s_light_sleep_pm_lock);
s_light_sleep_pm_lock = NULL;
}
esp_pm_lock_delete(s_pm_lock);
s_pm_lock = NULL;
s_lp_stat.pm_lock_released = 0;
#endif
if (s_lp_cntl.wakeup_timer_required) {
if (s_lp_stat.wakeup_timer_started) {
esp_timer_stop(s_btdm_slp_tmr);
}
s_lp_stat.wakeup_timer_started = 0;
esp_timer_delete(s_btdm_slp_tmr);
s_btdm_slp_tmr = NULL;
}
if (s_lp_cntl.enable) {
btdm_vnd_offload_task_deregister(BTDM_VND_OL_SIG_WAKEUP_TMR);
semphr_delete_wrapper(s_wakeup_req_sem);
s_wakeup_req_sem = NULL;
}
if (s_lp_cntl.lpclk_sel == BTDM_LPCLK_SEL_XTAL) {
#ifdef CONFIG_BT_CTRL_MAIN_XTAL_PU_DURING_LIGHT_SLEEP
if (s_lp_cntl.main_xtal_pu) {
ESP_ERROR_CHECK(esp_sleep_pd_config(ESP_PD_DOMAIN_XTAL, ESP_PD_OPTION_OFF));
s_lp_cntl.main_xtal_pu = 0;
}
#endif
btdm_lpclk_select_src(BTDM_LPCLK_SEL_RTC_SLOW);
btdm_lpclk_set_div(0);
#if CONFIG_SW_COEXIST_ENABLE
coex_update_lpclk_interval();
#endif
}
btdm_lpcycle_us = 0;
} while (0);
#if CONFIG_MAC_BB_PD
esp_unregister_mac_bb_pd_callback(btdm_mac_bb_power_down_cb);
esp_unregister_mac_bb_pu_callback(btdm_mac_bb_power_up_cb);
#endif
esp_bt_power_domain_off();
#if CONFIG_MAC_BB_PD
esp_mac_bb_pd_mem_deinit();
#endif
esp_phy_pd_mem_deinit();
free(osi_funcs_p);
osi_funcs_p = NULL;
btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
return ESP_OK;
}
esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
{
int ret = ESP_OK;
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
return ESP_ERR_INVALID_STATE;
}
//As the history reason, mode should be equal to the mode which set in esp_bt_controller_init()
if (mode != btdm_controller_get_mode()) {
ESP_LOGE(BT_LOG_TAG, "invalid mode %d, controller support mode is %d", mode, btdm_controller_get_mode());
return ESP_ERR_INVALID_ARG;
}
#if CONFIG_SW_COEXIST_ENABLE
coex_enable();
#endif
// enable low power mode
do {
#ifdef CONFIG_PM_ENABLE
if (s_lp_cntl.no_light_sleep) {
esp_pm_lock_acquire(s_light_sleep_pm_lock);
}
esp_pm_lock_acquire(s_pm_lock);
s_lp_stat.pm_lock_released = 0;
#endif
if (s_lp_cntl.enable) {
btdm_controller_enable_sleep(true);
}
} while (0);
if (btdm_controller_enable(mode) != 0) {
ret = ESP_ERR_INVALID_STATE;
goto error;
}
btdm_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED;
return ret;
error:
// disable low power mode
do {
btdm_controller_enable_sleep(false);
#ifdef CONFIG_PM_ENABLE
if (s_lp_cntl.no_light_sleep) {
esp_pm_lock_release(s_light_sleep_pm_lock);
}
if (s_lp_stat.pm_lock_released == 0) {
esp_pm_lock_release(s_pm_lock);
s_lp_stat.pm_lock_released = 1;
}
#endif
} while (0);
return ret;
}
esp_err_t esp_bt_controller_disable(void)
{
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return ESP_ERR_INVALID_STATE;
}
async_wakeup_request(BTDM_ASYNC_WAKEUP_SRC_DISA);
while (!btdm_power_state_active()){}
btdm_controller_disable();
async_wakeup_request_end(BTDM_ASYNC_WAKEUP_SRC_DISA);
#if CONFIG_SW_COEXIST_ENABLE
coex_disable();
#endif
btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
// disable low power mode
do {
#ifdef CONFIG_PM_ENABLE
if (s_lp_cntl.no_light_sleep) {
esp_pm_lock_release(s_light_sleep_pm_lock);
}
if (s_lp_stat.pm_lock_released == 0) {
esp_pm_lock_release(s_pm_lock);
s_lp_stat.pm_lock_released = 1;
} else {
assert(0);
}
#endif
} while (0);
return ESP_OK;
}
esp_bt_controller_status_t esp_bt_controller_get_status(void)
{
return btdm_controller_status;
}
/* extra functions */
esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
{
esp_err_t stat = ESP_FAIL;
switch (power_type) {
case ESP_BLE_PWR_TYPE_ADV:
case ESP_BLE_PWR_TYPE_SCAN:
case ESP_BLE_PWR_TYPE_DEFAULT:
if (ble_txpwr_set(power_type, power_level) == 0) {
stat = ESP_OK;
}
break;
default:
stat = ESP_ERR_NOT_SUPPORTED;
break;
}
return stat;
}
esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
{
esp_power_level_t lvl;
switch (power_type) {
case ESP_BLE_PWR_TYPE_ADV:
case ESP_BLE_PWR_TYPE_SCAN:
lvl = (esp_power_level_t)ble_txpwr_get(power_type);
break;
case ESP_BLE_PWR_TYPE_CONN_HDL0:
case ESP_BLE_PWR_TYPE_CONN_HDL1:
case ESP_BLE_PWR_TYPE_CONN_HDL2:
case ESP_BLE_PWR_TYPE_CONN_HDL3:
case ESP_BLE_PWR_TYPE_CONN_HDL4:
case ESP_BLE_PWR_TYPE_CONN_HDL5:
case ESP_BLE_PWR_TYPE_CONN_HDL6:
case ESP_BLE_PWR_TYPE_CONN_HDL7:
case ESP_BLE_PWR_TYPE_CONN_HDL8:
case ESP_BLE_PWR_TYPE_DEFAULT:
lvl = (esp_power_level_t)ble_txpwr_get(ESP_BLE_PWR_TYPE_DEFAULT);
break;
default:
lvl = ESP_PWR_LVL_INVALID;
break;
}
return lvl;
}
esp_err_t esp_bt_sleep_enable (void)
{
esp_err_t status;
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return ESP_ERR_INVALID_STATE;
}
if (btdm_controller_get_sleep_mode() == ESP_BT_SLEEP_MODE_1) {
btdm_controller_enable_sleep (true);
status = ESP_OK;
} else {
status = ESP_ERR_NOT_SUPPORTED;
}
return status;
}
esp_err_t esp_bt_sleep_disable (void)
{
esp_err_t status;
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return ESP_ERR_INVALID_STATE;
}
if (btdm_controller_get_sleep_mode() == ESP_BT_SLEEP_MODE_1) {
btdm_controller_enable_sleep (false);
status = ESP_OK;
} else {
status = ESP_ERR_NOT_SUPPORTED;
}
return status;
}
bool esp_bt_controller_is_sleeping(void)
{
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED ||
btdm_controller_get_sleep_mode() != ESP_BT_SLEEP_MODE_1) {
return false;
}
return !btdm_power_state_active();
}
void esp_bt_controller_wakeup_request(void)
{
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED ||
btdm_controller_get_sleep_mode() != ESP_BT_SLEEP_MODE_1) {
return;
}
btdm_wakeup_request();
}
int IRAM_ATTR esp_bt_h4tl_eif_io_event_notify(int event)
{
return btdm_hci_tl_io_event_post(event);
}
uint16_t esp_bt_get_tx_buf_num(void)
{
return l2c_ble_link_get_tx_buf_num();
}
static void coex_wifi_sleep_set_hook(bool sleep)
{
}
#endif /* CONFIG_BT_ENABLED */