esp-idf/components/esp_lcd/src/esp_lcd_panel_rgb.c

1180 lines
55 KiB
C

/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <stdarg.h>
#include <sys/cdefs.h>
#include <sys/param.h>
#include <string.h>
#include "sdkconfig.h"
#if CONFIG_LCD_ENABLE_DEBUG_LOG
// The local log level must be defined before including esp_log.h
// Set the maximum log level for this source file
#define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
#endif
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "esp_attr.h"
#include "esp_check.h"
#include "esp_pm.h"
#include "esp_lcd_panel_interface.h"
#include "esp_lcd_panel_rgb.h"
#include "esp_lcd_panel_ops.h"
#include "esp_rom_gpio.h"
#include "soc/soc_caps.h"
#include "esp_private/esp_clk.h"
#include "hal/dma_types.h"
#include "hal/gpio_hal.h"
#include "esp_private/gdma.h"
#include "driver/gpio.h"
#include "esp_bit_defs.h"
#include "esp_private/periph_ctrl.h"
#if CONFIG_SPIRAM
#include "esp_psram.h"
#endif
#include "esp_lcd_common.h"
#include "soc/lcd_periph.h"
#include "hal/lcd_hal.h"
#include "hal/lcd_ll.h"
#include "hal/gdma_ll.h"
#include "rom/cache.h"
#if CONFIG_LCD_RGB_ISR_IRAM_SAFE
#define LCD_RGB_INTR_ALLOC_FLAGS (ESP_INTR_FLAG_IRAM | ESP_INTR_FLAG_INTRDISABLED)
#else
#define LCD_RGB_INTR_ALLOC_FLAGS ESP_INTR_FLAG_INTRDISABLED
#endif
#define RGB_LCD_PANEL_MAX_FB_NUM 3 // maximum supported frame buffer number
#define RGB_LCD_PANEL_BOUNCE_BUF_NUM 2 // bounce buffer number
#define RGB_LCD_PANEL_DMA_LINKS_REPLICA MAX(RGB_LCD_PANEL_MAX_FB_NUM, RGB_LCD_PANEL_BOUNCE_BUF_NUM)
#define RGB_PANEL_SWAP_XY 0
#define RGB_PANEL_MIRROR_Y 1
#define RGB_PANEL_MIRROR_X 2
typedef enum {
ROTATE_MASK_SWAP_XY = BIT(RGB_PANEL_SWAP_XY),
ROTATE_MASK_MIRROR_Y = BIT(RGB_PANEL_MIRROR_Y),
ROTATE_MASK_MIRROR_X = BIT(RGB_PANEL_MIRROR_X),
} panel_rotate_mask_t;
static const char *TAG = "lcd_panel.rgb";
typedef struct esp_rgb_panel_t esp_rgb_panel_t;
static esp_err_t rgb_panel_del(esp_lcd_panel_t *panel);
static esp_err_t rgb_panel_reset(esp_lcd_panel_t *panel);
static esp_err_t rgb_panel_init(esp_lcd_panel_t *panel);
static esp_err_t rgb_panel_draw_bitmap(esp_lcd_panel_t *panel, int x_start, int y_start, int x_end, int y_end, const void *color_data);
static esp_err_t rgb_panel_invert_color(esp_lcd_panel_t *panel, bool invert_color_data);
static esp_err_t rgb_panel_mirror(esp_lcd_panel_t *panel, bool mirror_x, bool mirror_y);
static esp_err_t rgb_panel_swap_xy(esp_lcd_panel_t *panel, bool swap_axes);
static esp_err_t rgb_panel_set_gap(esp_lcd_panel_t *panel, int x_gap, int y_gap);
static esp_err_t rgb_panel_disp_on_off(esp_lcd_panel_t *panel, bool off);
static esp_err_t lcd_rgb_panel_select_clock_src(esp_rgb_panel_t *panel, lcd_clock_source_t clk_src);
static esp_err_t lcd_rgb_panel_create_trans_link(esp_rgb_panel_t *panel);
static esp_err_t lcd_rgb_panel_configure_gpio(esp_rgb_panel_t *panel, const esp_lcd_rgb_panel_config_t *panel_config);
static void lcd_rgb_panel_start_transmission(esp_rgb_panel_t *rgb_panel);
static void lcd_default_isr_handler(void *args);
struct esp_rgb_panel_t {
esp_lcd_panel_t base; // Base class of generic lcd panel
int panel_id; // LCD panel ID
lcd_hal_context_t hal; // Hal layer object
size_t data_width; // Number of data lines
size_t fb_bits_per_pixel; // Frame buffer color depth, in bpp
size_t num_fbs; // Number of frame buffers
size_t output_bits_per_pixel; // Color depth seen from the output data line. Default to fb_bits_per_pixel, but can be changed by YUV-RGB conversion
size_t sram_trans_align; // Alignment for framebuffer that allocated in SRAM
size_t psram_trans_align; // Alignment for framebuffer that allocated in PSRAM
int disp_gpio_num; // Display control GPIO, which is used to perform action like "disp_off"
intr_handle_t intr; // LCD peripheral interrupt handle
esp_pm_lock_handle_t pm_lock; // Power management lock
size_t num_dma_nodes; // Number of DMA descriptors that used to carry the frame buffer
uint8_t *fbs[RGB_LCD_PANEL_MAX_FB_NUM]; // Frame buffers
uint8_t cur_fb_index; // Current frame buffer index
uint8_t bb_fb_index; // Current frame buffer index which used by bounce buffer
size_t fb_size; // Size of frame buffer
int data_gpio_nums[SOC_LCD_RGB_DATA_WIDTH]; // GPIOs used for data lines, we keep these GPIOs for action like "invert_color"
uint32_t src_clk_hz; // Peripheral source clock resolution
esp_lcd_rgb_timing_t timings; // RGB timing parameters (e.g. pclk, sync pulse, porch width)
size_t bb_size; // If not-zero, the driver uses two bounce buffers allocated from internal memory
int bounce_pos_px; // Position in whatever source material is used for the bounce buffer, in pixels
uint8_t *bounce_buffer[RGB_LCD_PANEL_BOUNCE_BUF_NUM]; // Pointer to the bounce buffers
gdma_channel_handle_t dma_chan; // DMA channel handle
esp_lcd_rgb_panel_vsync_cb_t on_vsync; // VSYNC event callback
esp_lcd_rgb_panel_bounce_buf_fill_cb_t on_bounce_empty; // callback used to fill a bounce buffer rather than copying from the frame buffer
void *user_ctx; // Reserved user's data of callback functions
int x_gap; // Extra gap in x coordinate, it's used when calculate the flush window
int y_gap; // Extra gap in y coordinate, it's used when calculate the flush window
portMUX_TYPE spinlock; // to protect panel specific resource from concurrent access (e.g. between task and ISR)
int lcd_clk_flags; // LCD clock calculation flags
int rotate_mask; // panel rotate_mask mask, Or'ed of `panel_rotate_mask_t`
struct {
uint32_t disp_en_level: 1; // The level which can turn on the screen by `disp_gpio_num`
uint32_t stream_mode: 1; // If set, the LCD transfers data continuously, otherwise, it stops refreshing the LCD when transaction done
uint32_t fb_in_psram: 1; // Whether the frame buffer is in PSRAM
uint32_t need_update_pclk: 1; // Whether to update the PCLK before start a new transaction
uint32_t need_restart: 1; // Whether to restart the LCD controller and the DMA
uint32_t bb_invalidate_cache: 1; // Whether to do cache invalidation in bounce buffer mode
} flags;
dma_descriptor_t *dma_links[RGB_LCD_PANEL_DMA_LINKS_REPLICA]; // fbs[0] <-> dma_links[0], fbs[1] <-> dma_links[1], etc
dma_descriptor_t dma_restart_node; // DMA descriptor used to restart the transfer
dma_descriptor_t dma_nodes[]; // DMA descriptors pool
};
static esp_err_t lcd_rgb_panel_alloc_frame_buffers(const esp_lcd_rgb_panel_config_t *rgb_panel_config, esp_rgb_panel_t *rgb_panel)
{
bool fb_in_psram = false;
size_t psram_trans_align = rgb_panel_config->psram_trans_align ? rgb_panel_config->psram_trans_align : 64;
size_t sram_trans_align = rgb_panel_config->sram_trans_align ? rgb_panel_config->sram_trans_align : 4;
rgb_panel->psram_trans_align = psram_trans_align;
rgb_panel->sram_trans_align = sram_trans_align;
// alloc frame buffer
if (rgb_panel->num_fbs > 0) {
// fb_in_psram is only an option, if there's no PSRAM on board, we fallback to alloc from SRAM
if (rgb_panel_config->flags.fb_in_psram) {
#if CONFIG_SPIRAM_USE_MALLOC || CONFIG_SPIRAM_USE_CAPS_ALLOC
if (esp_psram_is_initialized()) {
fb_in_psram = true;
}
#endif
}
for (int i = 0; i < rgb_panel->num_fbs; i++) {
if (fb_in_psram) {
// the low level malloc function will help check the validation of alignment
rgb_panel->fbs[i] = heap_caps_aligned_calloc(psram_trans_align, 1, rgb_panel->fb_size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
} else {
rgb_panel->fbs[i] = heap_caps_aligned_calloc(sram_trans_align, 1, rgb_panel->fb_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
}
ESP_RETURN_ON_FALSE(rgb_panel->fbs[i], ESP_ERR_NO_MEM, TAG, "no mem for frame buffer");
}
}
// alloc bounce buffer
if (rgb_panel->bb_size) {
for (int i = 0; i < RGB_LCD_PANEL_BOUNCE_BUF_NUM; i++) {
// bounce buffer must come from SRAM
rgb_panel->bounce_buffer[i] = heap_caps_aligned_calloc(sram_trans_align, 1, rgb_panel->bb_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
ESP_RETURN_ON_FALSE(rgb_panel->bounce_buffer[i], ESP_ERR_NO_MEM, TAG, "no mem for bounce buffer");
}
}
rgb_panel->cur_fb_index = 0;
rgb_panel->bb_fb_index = 0;
rgb_panel->flags.fb_in_psram = fb_in_psram;
return ESP_OK;
}
static esp_err_t lcd_rgb_panel_destory(esp_rgb_panel_t *rgb_panel)
{
lcd_ll_enable_clock(rgb_panel->hal.dev, false);
if (rgb_panel->panel_id >= 0) {
periph_module_disable(lcd_periph_signals.panels[rgb_panel->panel_id].module);
lcd_com_remove_device(LCD_COM_DEVICE_TYPE_RGB, rgb_panel->panel_id);
}
for (size_t i = 0; i < rgb_panel->num_fbs; i++) {
if (rgb_panel->fbs[i]) {
free(rgb_panel->fbs[i]);
}
}
if (rgb_panel->bounce_buffer[0]) {
free(rgb_panel->bounce_buffer[0]);
}
if (rgb_panel->bounce_buffer[1]) {
free(rgb_panel->bounce_buffer[1]);
}
if (rgb_panel->dma_chan) {
gdma_disconnect(rgb_panel->dma_chan);
gdma_del_channel(rgb_panel->dma_chan);
}
if (rgb_panel->intr) {
esp_intr_free(rgb_panel->intr);
}
if (rgb_panel->pm_lock) {
esp_pm_lock_release(rgb_panel->pm_lock);
esp_pm_lock_delete(rgb_panel->pm_lock);
}
free(rgb_panel);
return ESP_OK;
}
esp_err_t esp_lcd_new_rgb_panel(const esp_lcd_rgb_panel_config_t *rgb_panel_config, esp_lcd_panel_handle_t *ret_panel)
{
#if CONFIG_LCD_ENABLE_DEBUG_LOG
esp_log_level_set(TAG, ESP_LOG_DEBUG);
#endif
esp_err_t ret = ESP_OK;
esp_rgb_panel_t *rgb_panel = NULL;
ESP_GOTO_ON_FALSE(rgb_panel_config && ret_panel, ESP_ERR_INVALID_ARG, err, TAG, "invalid parameter");
ESP_GOTO_ON_FALSE(rgb_panel_config->data_width == 16 || rgb_panel_config->data_width == 8,
ESP_ERR_NOT_SUPPORTED, err, TAG, "unsupported data width %d", rgb_panel_config->data_width);
ESP_GOTO_ON_FALSE(!(rgb_panel_config->flags.double_fb && rgb_panel_config->flags.no_fb),
ESP_ERR_INVALID_ARG, err, TAG, "double_fb conflicts with no_fb");
ESP_GOTO_ON_FALSE(!(rgb_panel_config->num_fbs > 0 && rgb_panel_config->num_fbs != 2 && rgb_panel_config->flags.double_fb),
ESP_ERR_INVALID_ARG, err, TAG, "num_fbs conflicts with double_fb");
ESP_GOTO_ON_FALSE(!(rgb_panel_config->num_fbs > 0 && rgb_panel_config->flags.no_fb),
ESP_ERR_INVALID_ARG, err, TAG, "num_fbs conflicts with no_fb");
ESP_GOTO_ON_FALSE(!(rgb_panel_config->flags.no_fb && rgb_panel_config->bounce_buffer_size_px == 0),
ESP_ERR_INVALID_ARG, err, TAG, "must set bounce buffer if there's no frame buffer");
ESP_GOTO_ON_FALSE(!(rgb_panel_config->flags.refresh_on_demand && rgb_panel_config->bounce_buffer_size_px),
ESP_ERR_INVALID_ARG, err, TAG, "refresh on demand is not supported under bounce buffer mode");
// determine number of framebuffers
size_t num_fbs = 1;
if (rgb_panel_config->flags.no_fb) {
num_fbs = 0;
} else if (rgb_panel_config->flags.double_fb) {
num_fbs = 2;
} else if (rgb_panel_config->num_fbs > 0) {
num_fbs = rgb_panel_config->num_fbs;
}
ESP_GOTO_ON_FALSE(num_fbs <= RGB_LCD_PANEL_MAX_FB_NUM, ESP_ERR_INVALID_ARG, err, TAG, "too many frame buffers");
// bpp defaults to the number of data lines, but for serial RGB interface, they're not equal
// e.g. for serial RGB 8-bit interface, data lines are 8, whereas the bpp is 24 (RGB888)
size_t fb_bits_per_pixel = rgb_panel_config->data_width;
if (rgb_panel_config->bits_per_pixel) { // override bpp if it's set
fb_bits_per_pixel = rgb_panel_config->bits_per_pixel;
}
// calculate buffer size
size_t fb_size = rgb_panel_config->timings.h_res * rgb_panel_config->timings.v_res * fb_bits_per_pixel / 8;
size_t bb_size = rgb_panel_config->bounce_buffer_size_px * fb_bits_per_pixel / 8;
if (bb_size) {
// we want the bounce can always end in the second buffer
ESP_GOTO_ON_FALSE(fb_size % (2 * bb_size) == 0, ESP_ERR_INVALID_ARG, err, TAG,
"fb size must be even multiple of bounce buffer size");
}
// calculate the number of DMA descriptors
size_t num_dma_nodes = 0;
if (bb_size) {
// in bounce buffer mode, DMA is used to convey the bounce buffer, not the frame buffer.
// frame buffer is copied to bounce buffer by CPU
num_dma_nodes = (bb_size + DMA_DESCRIPTOR_BUFFER_MAX_SIZE - 1) / DMA_DESCRIPTOR_BUFFER_MAX_SIZE;
} else {
// Not bounce buffer mode, DMA descriptors need to fit the entire frame buffer
num_dma_nodes = (fb_size + DMA_DESCRIPTOR_BUFFER_MAX_SIZE - 1) / DMA_DESCRIPTOR_BUFFER_MAX_SIZE;
}
// DMA descriptors must be placed in internal SRAM (requested by DMA)
rgb_panel = heap_caps_calloc(1, sizeof(esp_rgb_panel_t) + num_dma_nodes * sizeof(dma_descriptor_t) * RGB_LCD_PANEL_DMA_LINKS_REPLICA,
MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
ESP_GOTO_ON_FALSE(rgb_panel, ESP_ERR_NO_MEM, err, TAG, "no mem for rgb panel");
rgb_panel->num_dma_nodes = num_dma_nodes;
rgb_panel->num_fbs = num_fbs;
rgb_panel->fb_size = fb_size;
rgb_panel->bb_size = bb_size;
rgb_panel->panel_id = -1;
// register to platform
int panel_id = lcd_com_register_device(LCD_COM_DEVICE_TYPE_RGB, rgb_panel);
ESP_GOTO_ON_FALSE(panel_id >= 0, ESP_ERR_NOT_FOUND, err, TAG, "no free rgb panel slot");
rgb_panel->panel_id = panel_id;
// enable APB to access LCD registers
periph_module_enable(lcd_periph_signals.panels[panel_id].module);
periph_module_reset(lcd_periph_signals.panels[panel_id].module);
// allocate frame buffers + bounce buffers
ESP_GOTO_ON_ERROR(lcd_rgb_panel_alloc_frame_buffers(rgb_panel_config, rgb_panel), err, TAG, "alloc frame buffers failed");
// initialize HAL layer, so we can call LL APIs later
lcd_hal_init(&rgb_panel->hal, panel_id);
// enable clock gating
lcd_ll_enable_clock(rgb_panel->hal.dev, true);
// set clock source
ret = lcd_rgb_panel_select_clock_src(rgb_panel, rgb_panel_config->clk_src);
ESP_GOTO_ON_ERROR(ret, err, TAG, "set source clock failed");
// set minimal PCLK divider
// A limitation in the hardware, if the LCD_PCLK == LCD_CLK, then the PCLK polarity can't be adjustable
if (!(rgb_panel_config->timings.flags.pclk_active_neg || rgb_panel_config->timings.flags.pclk_idle_high)) {
rgb_panel->lcd_clk_flags |= LCD_HAL_PCLK_FLAG_ALLOW_EQUAL_SYSCLK;
}
// install interrupt service, (LCD peripheral shares the interrupt source with Camera by different mask)
int isr_flags = LCD_RGB_INTR_ALLOC_FLAGS | ESP_INTR_FLAG_SHARED | ESP_INTR_FLAG_LOWMED;
ret = esp_intr_alloc_intrstatus(lcd_periph_signals.panels[panel_id].irq_id, isr_flags,
(uint32_t)lcd_ll_get_interrupt_status_reg(rgb_panel->hal.dev),
LCD_LL_EVENT_VSYNC_END, lcd_default_isr_handler, rgb_panel, &rgb_panel->intr);
ESP_GOTO_ON_ERROR(ret, err, TAG, "install interrupt failed");
lcd_ll_enable_interrupt(rgb_panel->hal.dev, LCD_LL_EVENT_VSYNC_END, false); // disable all interrupts
lcd_ll_clear_interrupt_status(rgb_panel->hal.dev, UINT32_MAX); // clear pending interrupt
// install DMA service
rgb_panel->flags.stream_mode = !rgb_panel_config->flags.refresh_on_demand;
ret = lcd_rgb_panel_create_trans_link(rgb_panel);
ESP_GOTO_ON_ERROR(ret, err, TAG, "install DMA failed");
// configure GPIO
ret = lcd_rgb_panel_configure_gpio(rgb_panel, rgb_panel_config);
ESP_GOTO_ON_ERROR(ret, err, TAG, "configure GPIO failed");
// fill other rgb panel runtime parameters
memcpy(rgb_panel->data_gpio_nums, rgb_panel_config->data_gpio_nums, SOC_LCD_RGB_DATA_WIDTH);
rgb_panel->timings = rgb_panel_config->timings;
rgb_panel->data_width = rgb_panel_config->data_width;
rgb_panel->fb_bits_per_pixel = fb_bits_per_pixel;
rgb_panel->output_bits_per_pixel = fb_bits_per_pixel; // by default, the output bpp is the same as the frame buffer bpp
rgb_panel->disp_gpio_num = rgb_panel_config->disp_gpio_num;
rgb_panel->flags.disp_en_level = !rgb_panel_config->flags.disp_active_low;
rgb_panel->flags.bb_invalidate_cache = rgb_panel_config->flags.bb_invalidate_cache;
rgb_panel->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
// fill function table
rgb_panel->base.del = rgb_panel_del;
rgb_panel->base.reset = rgb_panel_reset;
rgb_panel->base.init = rgb_panel_init;
rgb_panel->base.draw_bitmap = rgb_panel_draw_bitmap;
rgb_panel->base.disp_on_off = rgb_panel_disp_on_off;
rgb_panel->base.invert_color = rgb_panel_invert_color;
rgb_panel->base.mirror = rgb_panel_mirror;
rgb_panel->base.swap_xy = rgb_panel_swap_xy;
rgb_panel->base.set_gap = rgb_panel_set_gap;
// return base class
*ret_panel = &(rgb_panel->base);
ESP_LOGD(TAG, "new rgb panel(%d) @%p, num_fbs=%zu, fb_size=%zu, bb0 @%p, bb1 @%p, bb_size=%zu",
rgb_panel->panel_id, rgb_panel, rgb_panel->num_fbs, rgb_panel->fb_size,
rgb_panel->bounce_buffer[0], rgb_panel->bounce_buffer[1], rgb_panel->bb_size);
for (size_t i = 0; i < rgb_panel->num_fbs; i++) {
ESP_LOGD(TAG, "fb[%zu] @%p", i, rgb_panel->fbs[i]);
}
return ESP_OK;
err:
if (rgb_panel) {
lcd_rgb_panel_destory(rgb_panel);
}
return ret;
}
esp_err_t esp_lcd_rgb_panel_register_event_callbacks(esp_lcd_panel_handle_t panel, const esp_lcd_rgb_panel_event_callbacks_t *callbacks, void *user_ctx)
{
ESP_RETURN_ON_FALSE(panel && callbacks, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
#if CONFIG_LCD_RGB_ISR_IRAM_SAFE
if (callbacks->on_vsync) {
ESP_RETURN_ON_FALSE(esp_ptr_in_iram(callbacks->on_vsync), ESP_ERR_INVALID_ARG, TAG, "on_vsync callback not in IRAM");
}
if (callbacks->on_bounce_empty) {
ESP_RETURN_ON_FALSE(esp_ptr_in_iram(callbacks->on_bounce_empty), ESP_ERR_INVALID_ARG, TAG, "on_bounce_empty callback not in IRAM");
}
if (user_ctx) {
ESP_RETURN_ON_FALSE(esp_ptr_internal(user_ctx), ESP_ERR_INVALID_ARG, TAG, "user context not in internal RAM");
}
#endif // CONFIG_LCD_RGB_ISR_IRAM_SAFE
rgb_panel->on_vsync = callbacks->on_vsync;
rgb_panel->on_bounce_empty = callbacks->on_bounce_empty;
rgb_panel->user_ctx = user_ctx;
return ESP_OK;
}
esp_err_t esp_lcd_rgb_panel_set_pclk(esp_lcd_panel_handle_t panel, uint32_t freq_hz)
{
ESP_RETURN_ON_FALSE(panel, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
// the pclk frequency will be updated in the `LCD_LL_EVENT_VSYNC_END` event handler
portENTER_CRITICAL(&rgb_panel->spinlock);
rgb_panel->flags.need_update_pclk = true;
rgb_panel->timings.pclk_hz = freq_hz;
portEXIT_CRITICAL(&rgb_panel->spinlock);
return ESP_OK;
}
esp_err_t esp_lcd_rgb_panel_restart(esp_lcd_panel_handle_t panel)
{
ESP_RETURN_ON_FALSE(panel, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
ESP_RETURN_ON_FALSE(rgb_panel->flags.stream_mode, ESP_ERR_INVALID_STATE, TAG, "not in stream mode");
// the underlying restart job will be done in the `LCD_LL_EVENT_VSYNC_END` event handler
portENTER_CRITICAL(&rgb_panel->spinlock);
rgb_panel->flags.need_restart = true;
portEXIT_CRITICAL(&rgb_panel->spinlock);
return ESP_OK;
}
esp_err_t esp_lcd_rgb_panel_get_frame_buffer(esp_lcd_panel_handle_t panel, uint32_t fb_num, void **fb0, ...)
{
ESP_RETURN_ON_FALSE(panel, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
ESP_RETURN_ON_FALSE(fb_num && fb_num <= rgb_panel->num_fbs, ESP_ERR_INVALID_ARG, TAG, "invalid frame buffer number");
void **fb_itor = fb0;
va_list args;
va_start(args, fb0);
for (int i = 0; i < fb_num; i++) {
if (fb_itor) {
*fb_itor = rgb_panel->fbs[i];
fb_itor = va_arg(args, void **);
}
}
va_end(args);
return ESP_OK;
}
esp_err_t esp_lcd_rgb_panel_refresh(esp_lcd_panel_handle_t panel)
{
ESP_RETURN_ON_FALSE(panel, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
ESP_RETURN_ON_FALSE(!rgb_panel->flags.stream_mode, ESP_ERR_INVALID_STATE, TAG, "refresh on demand is not enabled");
lcd_rgb_panel_start_transmission(rgb_panel);
return ESP_OK;
}
esp_err_t esp_lcd_rgb_panel_set_yuv_conversion(esp_lcd_panel_handle_t panel, const esp_lcd_yuv_conv_config_t *config)
{
ESP_RETURN_ON_FALSE(panel, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
lcd_hal_context_t *hal = &rgb_panel->hal;
bool en_conversion = config != NULL;
// bits per pixel for different YUV sample
const uint8_t bpp_yuv[] = {
[LCD_YUV_SAMPLE_422] = 16,
[LCD_YUV_SAMPLE_420] = 12,
[LCD_YUV_SAMPLE_411] = 12,
};
if (en_conversion) {
if (memcmp(&config->src, &config->dst, sizeof(config->src)) == 0) {
ESP_RETURN_ON_FALSE(false, ESP_ERR_INVALID_ARG, TAG, "conversion source and destination are the same");
}
if (config->src.color_space == LCD_COLOR_SPACE_YUV && config->dst.color_space == LCD_COLOR_SPACE_RGB) { // YUV->RGB
lcd_ll_set_convert_mode_yuv_to_rgb(hal->dev, config->src.yuv_sample);
// Note, the RGB->YUV conversion only support RGB565
rgb_panel->output_bits_per_pixel = 16;
} else if (config->src.color_space == LCD_COLOR_SPACE_RGB && config->dst.color_space == LCD_COLOR_SPACE_YUV) { // RGB->YUV
lcd_ll_set_convert_mode_rgb_to_yuv(hal->dev, config->dst.yuv_sample);
rgb_panel->output_bits_per_pixel = bpp_yuv[config->dst.yuv_sample];
} else if (config->src.color_space == LCD_COLOR_SPACE_YUV && config->dst.color_space == LCD_COLOR_SPACE_YUV) { // YUV->YUV
lcd_ll_set_convert_mode_yuv_to_yuv(hal->dev, config->src.yuv_sample, config->dst.yuv_sample);
rgb_panel->output_bits_per_pixel = bpp_yuv[config->dst.yuv_sample];
} else {
ESP_RETURN_ON_FALSE(false, ESP_ERR_NOT_SUPPORTED, TAG, "unsupported conversion mode");
}
// set conversion standard
lcd_ll_set_yuv_convert_std(hal->dev, config->std);
// set conversion data width
lcd_ll_set_convert_data_width(hal->dev, rgb_panel->data_width);
// set color range
lcd_ll_set_input_color_range(hal->dev, config->src.color_range);
lcd_ll_set_output_color_range(hal->dev, config->dst.color_range);
} else {
// output bpp equals to frame buffer bpp
rgb_panel->output_bits_per_pixel = rgb_panel->fb_bits_per_pixel;
}
// enable or disable RGB-YUV conversion
lcd_ll_enable_rgb_yuv_convert(hal->dev, en_conversion);
return ESP_OK;
}
static esp_err_t rgb_panel_del(esp_lcd_panel_t *panel)
{
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
int panel_id = rgb_panel->panel_id;
ESP_RETURN_ON_ERROR(lcd_rgb_panel_destory(rgb_panel), TAG, "destroy rgb panel(%d) failed", panel_id);
ESP_LOGD(TAG, "del rgb panel(%d)", panel_id);
return ESP_OK;
}
static esp_err_t rgb_panel_reset(esp_lcd_panel_t *panel)
{
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
lcd_ll_fifo_reset(rgb_panel->hal.dev);
lcd_ll_reset(rgb_panel->hal.dev);
return ESP_OK;
}
static esp_err_t rgb_panel_init(esp_lcd_panel_t *panel)
{
esp_err_t ret = ESP_OK;
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
// set pixel clock frequency
rgb_panel->timings.pclk_hz = lcd_hal_cal_pclk_freq(&rgb_panel->hal, rgb_panel->src_clk_hz, rgb_panel->timings.pclk_hz, rgb_panel->lcd_clk_flags);
// pixel clock phase and polarity
lcd_ll_set_clock_idle_level(rgb_panel->hal.dev, rgb_panel->timings.flags.pclk_idle_high);
lcd_ll_set_pixel_clock_edge(rgb_panel->hal.dev, rgb_panel->timings.flags.pclk_active_neg);
// enable RGB mode and set data width
lcd_ll_enable_rgb_mode(rgb_panel->hal.dev, true);
lcd_ll_set_data_width(rgb_panel->hal.dev, rgb_panel->data_width);
lcd_ll_set_phase_cycles(rgb_panel->hal.dev, 0, 0, 1); // enable data phase only
// number of data cycles is controlled by DMA buffer size
lcd_ll_enable_output_always_on(rgb_panel->hal.dev, true);
// configure HSYNC, VSYNC, DE signal idle state level
lcd_ll_set_idle_level(rgb_panel->hal.dev, !rgb_panel->timings.flags.hsync_idle_low,
!rgb_panel->timings.flags.vsync_idle_low, rgb_panel->timings.flags.de_idle_high);
// configure blank region timing
lcd_ll_set_blank_cycles(rgb_panel->hal.dev, 1, 1); // RGB panel always has a front and back blank (porch region)
lcd_ll_set_horizontal_timing(rgb_panel->hal.dev, rgb_panel->timings.hsync_pulse_width,
rgb_panel->timings.hsync_back_porch, rgb_panel->timings.h_res * rgb_panel->output_bits_per_pixel / rgb_panel->data_width,
rgb_panel->timings.hsync_front_porch);
lcd_ll_set_vertical_timing(rgb_panel->hal.dev, rgb_panel->timings.vsync_pulse_width,
rgb_panel->timings.vsync_back_porch, rgb_panel->timings.v_res,
rgb_panel->timings.vsync_front_porch);
// output hsync even in porch region
lcd_ll_enable_output_hsync_in_porch_region(rgb_panel->hal.dev, true);
// generate the hsync at the very beginning of line
lcd_ll_set_hsync_position(rgb_panel->hal.dev, 0);
// send next frame automatically in stream mode
lcd_ll_enable_auto_next_frame(rgb_panel->hal.dev, rgb_panel->flags.stream_mode);
// trigger interrupt on the end of frame
lcd_ll_enable_interrupt(rgb_panel->hal.dev, LCD_LL_EVENT_VSYNC_END, true);
// enable intr
esp_intr_enable(rgb_panel->intr);
// start transmission
if (rgb_panel->flags.stream_mode) {
lcd_rgb_panel_start_transmission(rgb_panel);
}
ESP_LOGD(TAG, "rgb panel(%d) start, pclk=%"PRIu32"Hz", rgb_panel->panel_id, rgb_panel->timings.pclk_hz);
return ret;
}
__attribute__((always_inline))
static inline void copy_pixel_16bpp(uint8_t *to, const uint8_t *from)
{
*to++ = *from++;
*to++ = *from++;
}
__attribute__((always_inline))
static inline void copy_pixel_24bpp(uint8_t *to, const uint8_t *from)
{
*to++ = *from++;
*to++ = *from++;
*to++ = *from++;
}
static esp_err_t rgb_panel_draw_bitmap(esp_lcd_panel_t *panel, int x_start, int y_start, int x_end, int y_end, const void *color_data)
{
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
ESP_RETURN_ON_FALSE(rgb_panel->num_fbs > 0, ESP_ERR_NOT_SUPPORTED, TAG, "no frame buffer installed");
assert((x_start < x_end) && (y_start < y_end) && "start position must be smaller than end position");
// check if we need to copy the draw buffer (pointed by the color_data) to the driver's frame buffer
bool do_copy = false;
if (color_data == rgb_panel->fbs[0]) {
rgb_panel->cur_fb_index = 0;
} else if (color_data == rgb_panel->fbs[1]) {
rgb_panel->cur_fb_index = 1;
} else if (color_data == rgb_panel->fbs[2]) {
rgb_panel->cur_fb_index = 2;
} else {
// we do the copy only if the color_data is different from either frame buffer
do_copy = true;
}
// adjust the flush window by adding extra gap
x_start += rgb_panel->x_gap;
y_start += rgb_panel->y_gap;
x_end += rgb_panel->x_gap;
y_end += rgb_panel->y_gap;
// round the boundary
int h_res = rgb_panel->timings.h_res;
int v_res = rgb_panel->timings.v_res;
if (rgb_panel->rotate_mask & ROTATE_MASK_SWAP_XY) {
x_start = MIN(x_start, v_res);
x_end = MIN(x_end, v_res);
y_start = MIN(y_start, h_res);
y_end = MIN(y_end, h_res);
} else {
x_start = MIN(x_start, h_res);
x_end = MIN(x_end, h_res);
y_start = MIN(y_start, v_res);
y_end = MIN(y_end, v_res);
}
int bytes_per_pixel = rgb_panel->fb_bits_per_pixel / 8;
int pixels_per_line = rgb_panel->timings.h_res;
uint32_t bytes_per_line = bytes_per_pixel * pixels_per_line;
uint8_t *fb = rgb_panel->fbs[rgb_panel->cur_fb_index];
uint32_t bytes_to_flush = v_res * h_res * bytes_per_pixel;
uint8_t *flush_ptr = fb;
if (do_copy) {
// copy the UI draw buffer into internal frame buffer
const uint8_t *from = (const uint8_t *)color_data;
uint32_t copy_bytes_per_line = (x_end - x_start) * bytes_per_pixel;
size_t offset = y_start * copy_bytes_per_line + x_start * bytes_per_pixel;
uint8_t *to = fb;
if (2 == bytes_per_pixel) {
switch (rgb_panel->rotate_mask) {
case 0: {
uint8_t *to = fb + (y_start * h_res + x_start) * bytes_per_pixel;
for (int y = y_start; y < y_end; y++) {
memcpy(to, from, copy_bytes_per_line);
to += bytes_per_line;
from += copy_bytes_per_line;
}
bytes_to_flush = (y_end - y_start) * bytes_per_line;
flush_ptr = fb + y_start * bytes_per_line;
}
break;
case ROTATE_MASK_MIRROR_X:
for (int y = y_start; y < y_end; y++) {
uint32_t index = (y * h_res + (h_res - 1 - x_start)) * bytes_per_pixel;
for (size_t x = x_start; x < x_end; x++) {
copy_pixel_16bpp(to + index, from);
index -= bytes_per_pixel;
from += bytes_per_pixel;
}
}
bytes_to_flush = (y_end - y_start) * bytes_per_line;
flush_ptr = fb + y_start * bytes_per_line;
break;
case ROTATE_MASK_MIRROR_Y: {
uint8_t *to = fb + ((v_res - 1 - y_start) * h_res + x_start) * bytes_per_pixel;
for (int y = y_start; y < y_end; y++) {
memcpy(to, from, copy_bytes_per_line);
to -= bytes_per_line;
from += copy_bytes_per_line;
}
bytes_to_flush = (y_end - y_start) * bytes_per_line;
flush_ptr = fb + (v_res - y_end) * bytes_per_line;
}
break;
case ROTATE_MASK_MIRROR_X | ROTATE_MASK_MIRROR_Y:
for (int y = y_start; y < y_end; y++) {
uint32_t index = ((v_res - 1 - y) * h_res + (h_res - 1 - x_start)) * bytes_per_pixel;
for (size_t x = x_start; x < x_end; x++) {
copy_pixel_16bpp(to + index, from);
index -= bytes_per_pixel;
from += bytes_per_pixel;
}
}
bytes_to_flush = (y_end - y_start) * bytes_per_line;
flush_ptr = fb + (v_res - y_end) * bytes_per_line;
break;
case ROTATE_MASK_SWAP_XY:
for (int y = y_start; y < y_end; y++) {
for (int x = x_start; x < x_end; x++) {
uint32_t j = y * copy_bytes_per_line + x * bytes_per_pixel - offset;
uint32_t i = (x * h_res + y) * bytes_per_pixel;
copy_pixel_16bpp(to + i, from + j);
}
}
bytes_to_flush = (x_end - x_start) * bytes_per_line;
flush_ptr = fb + x_start * bytes_per_line;
break;
case ROTATE_MASK_SWAP_XY | ROTATE_MASK_MIRROR_X:
for (int y = y_start; y < y_end; y++) {
for (int x = x_start; x < x_end; x++) {
uint32_t j = y * copy_bytes_per_line + x * bytes_per_pixel - offset;
uint32_t i = (x * h_res + h_res - 1 - y) * bytes_per_pixel;
copy_pixel_16bpp(to + i, from + j);
}
}
bytes_to_flush = (x_end - x_start) * bytes_per_line;
flush_ptr = fb + x_start * bytes_per_line;
break;
case ROTATE_MASK_SWAP_XY | ROTATE_MASK_MIRROR_Y:
for (int y = y_start; y < y_end; y++) {
for (int x = x_start; x < x_end; x++) {
uint32_t j = y * copy_bytes_per_line + x * bytes_per_pixel - offset;
uint32_t i = ((v_res - 1 - x) * h_res + y) * bytes_per_pixel;
copy_pixel_16bpp(to + i, from + j);
}
}
bytes_to_flush = (x_end - x_start) * bytes_per_line;
flush_ptr = fb + (v_res - x_end) * bytes_per_line;
break;
case ROTATE_MASK_SWAP_XY | ROTATE_MASK_MIRROR_X | ROTATE_MASK_MIRROR_Y:
for (int y = y_start; y < y_end; y++) {
for (int x = x_start; x < x_end; x++) {
uint32_t j = y * copy_bytes_per_line + x * bytes_per_pixel - offset;
uint32_t i = ((v_res - 1 - x) * h_res + h_res - 1 - y) * bytes_per_pixel;
copy_pixel_16bpp(to + i, from + j);
}
}
bytes_to_flush = (x_end - x_start) * bytes_per_line;
flush_ptr = fb + (v_res - x_end) * bytes_per_line;
break;
default:
break;
}
} else if (3 == bytes_per_pixel) {
switch (rgb_panel->rotate_mask) {
case 0: {
uint8_t *to = fb + (y_start * h_res + x_start) * bytes_per_pixel;
for (int y = y_start; y < y_end; y++) {
memcpy(to, from, copy_bytes_per_line);
to += bytes_per_line;
from += copy_bytes_per_line;
}
bytes_to_flush = (y_end - y_start) * bytes_per_line;
flush_ptr = fb + y_start * bytes_per_line;
}
break;
case ROTATE_MASK_MIRROR_X:
for (int y = y_start; y < y_end; y++) {
uint32_t index = (y * h_res + (h_res - 1 - x_start)) * bytes_per_pixel;
for (size_t x = x_start; x < x_end; x++) {
copy_pixel_24bpp(to + index, from);
index -= bytes_per_pixel;
from += bytes_per_pixel;
}
}
bytes_to_flush = (y_end - y_start) * bytes_per_line;
flush_ptr = fb + y_start * bytes_per_line;
break;
case ROTATE_MASK_MIRROR_Y: {
uint8_t *to = fb + ((v_res - 1 - y_start) * h_res + x_start) * bytes_per_pixel;
for (int y = y_start; y < y_end; y++) {
memcpy(to, from, copy_bytes_per_line);
to -= bytes_per_line;
from += copy_bytes_per_line;
}
bytes_to_flush = (y_end - y_start) * bytes_per_line;
flush_ptr = fb + (v_res - y_end) * bytes_per_line;
}
break;
case ROTATE_MASK_MIRROR_X | ROTATE_MASK_MIRROR_Y:
for (int y = y_start; y < y_end; y++) {
uint32_t index = ((v_res - 1 - y) * h_res + (h_res - 1 - x_start)) * bytes_per_pixel;
for (size_t x = x_start; x < x_end; x++) {
copy_pixel_24bpp(to + index, from);
index -= bytes_per_pixel;
from += bytes_per_pixel;
}
}
bytes_to_flush = (y_end - y_start) * bytes_per_line;
flush_ptr = fb + (v_res - y_end) * bytes_per_line;
break;
case ROTATE_MASK_SWAP_XY:
for (int y = y_start; y < y_end; y++) {
for (int x = x_start; x < x_end; x++) {
uint32_t j = y * copy_bytes_per_line + x * bytes_per_pixel - offset;
uint32_t i = (x * h_res + y) * bytes_per_pixel;
copy_pixel_24bpp(to + i, from + j);
}
}
bytes_to_flush = (x_end - x_start) * bytes_per_line;
flush_ptr = fb + x_start * bytes_per_line;
break;
case ROTATE_MASK_SWAP_XY | ROTATE_MASK_MIRROR_X:
for (int y = y_start; y < y_end; y++) {
for (int x = x_start; x < x_end; x++) {
uint32_t j = y * copy_bytes_per_line + x * bytes_per_pixel - offset;
uint32_t i = (x * h_res + h_res - 1 - y) * bytes_per_pixel;
copy_pixel_24bpp(to + i, from + j);
}
}
bytes_to_flush = (x_end - x_start) * bytes_per_line;
flush_ptr = fb + x_start * bytes_per_line;
break;
case ROTATE_MASK_SWAP_XY | ROTATE_MASK_MIRROR_Y:
for (int y = y_start; y < y_end; y++) {
for (int x = x_start; x < x_end; x++) {
uint32_t j = y * copy_bytes_per_line + x * bytes_per_pixel - offset;
uint32_t i = ((v_res - 1 - x) * h_res + y) * bytes_per_pixel;
copy_pixel_24bpp(to + i, from + j);
}
}
bytes_to_flush = (x_end - x_start) * bytes_per_line;
flush_ptr = fb + (v_res - x_end) * bytes_per_line;
break;
case ROTATE_MASK_SWAP_XY | ROTATE_MASK_MIRROR_X | ROTATE_MASK_MIRROR_Y:
for (int y = y_start; y < y_end; y++) {
for (int x = x_start; x < x_end; x++) {
uint32_t j = y * copy_bytes_per_line + x * bytes_per_pixel - offset;
uint32_t i = ((v_res - 1 - x) * h_res + h_res - 1 - y) * bytes_per_pixel;
copy_pixel_24bpp(to + i, from + j);
}
}
bytes_to_flush = (x_end - x_start) * bytes_per_line;
flush_ptr = fb + (v_res - x_end) * bytes_per_line;
break;
default:
break;
}
}
}
if (rgb_panel->flags.fb_in_psram && !rgb_panel->bb_size) {
// CPU writes data to PSRAM through DCache, data in PSRAM might not get updated, so write back
// Note that if we use a bounce buffer, the data gets read by the CPU as well so no need to write back
Cache_WriteBack_Addr((uint32_t)(flush_ptr), bytes_to_flush);
}
if (!rgb_panel->bb_size) {
if (rgb_panel->flags.stream_mode) {
// the DMA will convey the new frame buffer next time
for (int i = 0; i < RGB_LCD_PANEL_DMA_LINKS_REPLICA; i++) {
rgb_panel->dma_nodes[rgb_panel->num_dma_nodes * (i + 1) - 1].next = rgb_panel->dma_links[rgb_panel->cur_fb_index];
}
}
}
return ESP_OK;
}
static esp_err_t rgb_panel_invert_color(esp_lcd_panel_t *panel, bool invert_color_data)
{
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
int panel_id = rgb_panel->panel_id;
// inverting the data line by GPIO matrix
for (int i = 0; i < rgb_panel->data_width; i++) {
esp_rom_gpio_connect_out_signal(rgb_panel->data_gpio_nums[i], lcd_periph_signals.panels[panel_id].data_sigs[i],
invert_color_data, false);
}
return ESP_OK;
}
static esp_err_t rgb_panel_mirror(esp_lcd_panel_t *panel, bool mirror_x, bool mirror_y)
{
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
rgb_panel->rotate_mask &= ~(ROTATE_MASK_MIRROR_X | ROTATE_MASK_MIRROR_Y);
rgb_panel->rotate_mask |= (mirror_x << RGB_PANEL_MIRROR_X | mirror_y << RGB_PANEL_MIRROR_Y);
return ESP_OK;
}
static esp_err_t rgb_panel_swap_xy(esp_lcd_panel_t *panel, bool swap_axes)
{
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
rgb_panel->rotate_mask &= ~(ROTATE_MASK_SWAP_XY);
rgb_panel->rotate_mask |= swap_axes << RGB_PANEL_SWAP_XY;
return ESP_OK;
}
static esp_err_t rgb_panel_set_gap(esp_lcd_panel_t *panel, int x_gap, int y_gap)
{
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
rgb_panel->x_gap = x_gap;
rgb_panel->y_gap = y_gap;
return ESP_OK;
}
static esp_err_t rgb_panel_disp_on_off(esp_lcd_panel_t *panel, bool on_off)
{
esp_rgb_panel_t *rgb_panel = __containerof(panel, esp_rgb_panel_t, base);
if (rgb_panel->disp_gpio_num < 0) {
return ESP_ERR_NOT_SUPPORTED;
}
if (!on_off) { // turn off screen
gpio_set_level(rgb_panel->disp_gpio_num, !rgb_panel->flags.disp_en_level);
} else { // turn on screen
gpio_set_level(rgb_panel->disp_gpio_num, rgb_panel->flags.disp_en_level);
}
return ESP_OK;
}
static esp_err_t lcd_rgb_panel_configure_gpio(esp_rgb_panel_t *panel, const esp_lcd_rgb_panel_config_t *panel_config)
{
int panel_id = panel->panel_id;
// check validation of GPIO number
bool valid_gpio = (panel_config->pclk_gpio_num >= 0);
if (panel_config->de_gpio_num < 0) {
// Hsync and Vsync are required in HV mode
valid_gpio = valid_gpio && (panel_config->hsync_gpio_num >= 0) && (panel_config->vsync_gpio_num >= 0);
}
for (size_t i = 0; i < panel_config->data_width; i++) {
valid_gpio = valid_gpio && (panel_config->data_gpio_nums[i] >= 0);
}
if (!valid_gpio) {
return ESP_ERR_INVALID_ARG;
}
// connect peripheral signals via GPIO matrix
for (size_t i = 0; i < panel_config->data_width; i++) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[panel_config->data_gpio_nums[i]], PIN_FUNC_GPIO);
gpio_set_direction(panel_config->data_gpio_nums[i], GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(panel_config->data_gpio_nums[i],
lcd_periph_signals.panels[panel_id].data_sigs[i], false, false);
}
if (panel_config->hsync_gpio_num >= 0) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[panel_config->hsync_gpio_num], PIN_FUNC_GPIO);
gpio_set_direction(panel_config->hsync_gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(panel_config->hsync_gpio_num,
lcd_periph_signals.panels[panel_id].hsync_sig, false, false);
}
if (panel_config->vsync_gpio_num >= 0) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[panel_config->vsync_gpio_num], PIN_FUNC_GPIO);
gpio_set_direction(panel_config->vsync_gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(panel_config->vsync_gpio_num,
lcd_periph_signals.panels[panel_id].vsync_sig, false, false);
}
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[panel_config->pclk_gpio_num], PIN_FUNC_GPIO);
gpio_set_direction(panel_config->pclk_gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(panel_config->pclk_gpio_num,
lcd_periph_signals.panels[panel_id].pclk_sig, false, false);
// DE signal might not be necessary for some RGB LCD
if (panel_config->de_gpio_num >= 0) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[panel_config->de_gpio_num], PIN_FUNC_GPIO);
gpio_set_direction(panel_config->de_gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(panel_config->de_gpio_num,
lcd_periph_signals.panels[panel_id].de_sig, false, false);
}
// disp enable GPIO is optional
if (panel_config->disp_gpio_num >= 0) {
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[panel_config->disp_gpio_num], PIN_FUNC_GPIO);
gpio_set_direction(panel_config->disp_gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(panel_config->disp_gpio_num, SIG_GPIO_OUT_IDX, false, false);
}
return ESP_OK;
}
static esp_err_t lcd_rgb_panel_select_clock_src(esp_rgb_panel_t *panel, lcd_clock_source_t clk_src)
{
esp_err_t ret = ESP_OK;
switch (clk_src) {
case LCD_CLK_SRC_PLL240M:
panel->src_clk_hz = 240000000;
break;
case LCD_CLK_SRC_PLL160M:
panel->src_clk_hz = 160000000;
break;
case LCD_CLK_SRC_XTAL:
panel->src_clk_hz = esp_clk_xtal_freq();
break;
default:
ESP_RETURN_ON_FALSE(false, ESP_ERR_NOT_SUPPORTED, TAG, "unsupported clock source: %d", clk_src);
break;
}
lcd_ll_select_clk_src(panel->hal.dev, clk_src);
if (clk_src == LCD_CLK_SRC_PLL240M || clk_src == LCD_CLK_SRC_PLL160M) {
#if CONFIG_PM_ENABLE
ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "rgb_panel", &panel->pm_lock);
ESP_RETURN_ON_ERROR(ret, TAG, "create ESP_PM_APB_FREQ_MAX lock failed");
// hold the lock during the whole lifecycle of RGB panel
esp_pm_lock_acquire(panel->pm_lock);
ESP_LOGD(TAG, "installed ESP_PM_APB_FREQ_MAX lock and hold the lock during the whole panel lifecycle");
#endif
}
return ret;
}
static IRAM_ATTR bool lcd_rgb_panel_fill_bounce_buffer(esp_rgb_panel_t *panel, uint8_t *buffer)
{
bool need_yield = false;
int bytes_per_pixel = panel->fb_bits_per_pixel / 8;
if (panel->num_fbs == 0) {
if (panel->on_bounce_empty) {
// We don't have a frame buffer here; we need to call a callback to refill the bounce buffer
need_yield = panel->on_bounce_empty(&panel->base, buffer, panel->bounce_pos_px, panel->bb_size, panel->user_ctx);
}
} else {
// We do have frame buffer; copy from there.
// Note: if the cache is diabled, and accessing the PSRAM by DCACHE will crash.
memcpy(buffer, &panel->fbs[panel->bb_fb_index][panel->bounce_pos_px * bytes_per_pixel], panel->bb_size);
if (panel->flags.bb_invalidate_cache) {
// We don't need the bytes we copied from the psram anymore
// Make sure that if anything happened to have changed (because the line already was in cache) we write the data back.
Cache_WriteBack_Addr((uint32_t)&panel->fbs[panel->bb_fb_index][panel->bounce_pos_px * bytes_per_pixel], panel->bb_size);
// Invalidate the data.
// Note: possible race: perhaps something on the other core can squeeze a write between this and the writeback,
// in which case that data gets discarded.
Cache_Invalidate_Addr((uint32_t)&panel->fbs[panel->bb_fb_index][panel->bounce_pos_px * bytes_per_pixel], panel->bb_size);
}
}
panel->bounce_pos_px += panel->bb_size / bytes_per_pixel;
// If the bounce pos is larger than the frame buffer size, wrap around so the next isr starts pre-loading the next frame.
if (panel->bounce_pos_px >= panel->fb_size / bytes_per_pixel) {
panel->bounce_pos_px = 0;
panel->bb_fb_index = panel->cur_fb_index;
}
if (panel->num_fbs > 0) {
// Preload the next bit of buffer from psram
Cache_Start_DCache_Preload((uint32_t)&panel->fbs[panel->bb_fb_index][panel->bounce_pos_px * bytes_per_pixel],
panel->bb_size, 0);
}
return need_yield;
}
// This is called in bounce buffer mode, when one bounce buffer has been fully sent to the LCD peripheral.
static IRAM_ATTR bool lcd_rgb_panel_eof_handler(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
{
esp_rgb_panel_t *panel = (esp_rgb_panel_t *)user_data;
dma_descriptor_t *desc = (dma_descriptor_t *)event_data->tx_eof_desc_addr;
// Figure out which bounce buffer to write to.
// Note: what we receive is the *last* descriptor of this bounce buffer.
int bb = (desc == &panel->dma_nodes[panel->num_dma_nodes - 1]) ? 0 : 1;
return lcd_rgb_panel_fill_bounce_buffer(panel, panel->bounce_buffer[bb]);
}
// If we restart GDMA, many pixels already have been transferred to the LCD peripheral.
// Looks like that has 16 pixels of FIFO plus one holding register.
#define LCD_FIFO_PRESERVE_SIZE_PX (GDMA_LL_L2FIFO_BASE_SIZE + 1)
static esp_err_t lcd_rgb_panel_create_trans_link(esp_rgb_panel_t *panel)
{
for (int i = 0; i < RGB_LCD_PANEL_DMA_LINKS_REPLICA; i++) {
panel->dma_links[i] = &panel->dma_nodes[panel->num_dma_nodes * i];
}
// chain DMA descriptors
for (int i = 0; i < panel->num_dma_nodes * RGB_LCD_PANEL_DMA_LINKS_REPLICA; i++) {
panel->dma_nodes[i].dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_CPU;
panel->dma_nodes[i].next = &panel->dma_nodes[i + 1];
}
if (panel->bb_size) {
// loop end back to start
panel->dma_nodes[panel->num_dma_nodes * RGB_LCD_PANEL_BOUNCE_BUF_NUM - 1].next = &panel->dma_nodes[0];
// mount the bounce buffers to the DMA descriptors
lcd_com_mount_dma_data(panel->dma_links[0], panel->bounce_buffer[0], panel->bb_size);
lcd_com_mount_dma_data(panel->dma_links[1], panel->bounce_buffer[1], panel->bb_size);
} else {
if (panel->flags.stream_mode) {
// circle DMA descriptors chain for each frame buffer
for (int i = 0; i < RGB_LCD_PANEL_DMA_LINKS_REPLICA; i++) {
panel->dma_nodes[panel->num_dma_nodes * (i + 1) - 1].next = &panel->dma_nodes[panel->num_dma_nodes * i];
}
} else {
// one-off DMA descriptors chain
for (int i = 0; i < RGB_LCD_PANEL_DMA_LINKS_REPLICA; i++) {
panel->dma_nodes[panel->num_dma_nodes * (i + 1) - 1].next = NULL;
}
}
// mount the frame buffer to the DMA descriptors
for (size_t i = 0; i < panel->num_fbs; i++) {
lcd_com_mount_dma_data(panel->dma_links[i], panel->fbs[i], panel->fb_size);
}
}
// On restart, the data sent to the LCD peripheral needs to start LCD_FIFO_PRESERVE_SIZE_PX pixels after the FB start
// so we use a dedicated DMA node to restart the DMA transaction
// see also `lcd_rgb_panel_try_restart_transmission`
memcpy(&panel->dma_restart_node, &panel->dma_nodes[0], sizeof(panel->dma_restart_node));
int restart_skip_bytes = LCD_FIFO_PRESERVE_SIZE_PX * sizeof(uint16_t);
uint8_t *p = (uint8_t *)panel->dma_restart_node.buffer;
panel->dma_restart_node.buffer = &p[restart_skip_bytes];
panel->dma_restart_node.dw0.length -= restart_skip_bytes;
panel->dma_restart_node.dw0.size -= restart_skip_bytes;
// alloc DMA channel and connect to LCD peripheral
gdma_channel_alloc_config_t dma_chan_config = {
.direction = GDMA_CHANNEL_DIRECTION_TX,
};
ESP_RETURN_ON_ERROR(gdma_new_channel(&dma_chan_config, &panel->dma_chan), TAG, "alloc DMA channel failed");
gdma_connect(panel->dma_chan, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_LCD, 0));
gdma_transfer_ability_t ability = {
.psram_trans_align = panel->psram_trans_align,
.sram_trans_align = panel->sram_trans_align,
};
gdma_set_transfer_ability(panel->dma_chan, &ability);
// we need to refill the bounce buffer in the DMA EOF interrupt, so only register the callback for bounce buffer mode
if (panel->bb_size) {
gdma_tx_event_callbacks_t cbs = {
.on_trans_eof = lcd_rgb_panel_eof_handler,
};
gdma_register_tx_event_callbacks(panel->dma_chan, &cbs, panel);
}
return ESP_OK;
}
// reset the GDMA channel every VBlank to stop permanent desyncs from happening.
// Note that this fix can lead to single-frame desyncs itself, as in: if this interrupt
// is late enough, the display will shift as the LCD controller already read out the
// first data bytes, and resetting DMA will re-send those. However, the single-frame
// desync this leads to is preferable to the permanent desync that could otherwise
// happen. It's also not super-likely as this interrupt has the entirety of the VBlank
// time to reset DMA.
static IRAM_ATTR void lcd_rgb_panel_try_restart_transmission(esp_rgb_panel_t *panel)
{
bool do_restart = false;
#if CONFIG_LCD_RGB_RESTART_IN_VSYNC
do_restart = true;
#else
portENTER_CRITICAL_ISR(&panel->spinlock);
if (panel->flags.need_restart) {
panel->flags.need_restart = false;
do_restart = true;
}
portEXIT_CRITICAL_ISR(&panel->spinlock);
#endif // CONFIG_LCD_RGB_RESTART_IN_VSYNC
if (!do_restart) {
return;
}
if (panel->bb_size) {
// Catch de-synced frame buffer and reset if needed.
if (panel->bounce_pos_px > panel->bb_size) {
panel->bounce_pos_px = 0;
}
// Pre-fill bounce buffer 0, if the EOF ISR didn't do that already
if (panel->bounce_pos_px < panel->bb_size / 2) {
lcd_rgb_panel_fill_bounce_buffer(panel, panel->bounce_buffer[0]);
}
}
gdma_reset(panel->dma_chan);
// restart the DMA by a special DMA node
gdma_start(panel->dma_chan, (intptr_t)&panel->dma_restart_node);
if (panel->bb_size) {
// Fill 2nd bounce buffer while 1st is being sent out, if needed.
if (panel->bounce_pos_px < panel->bb_size) {
lcd_rgb_panel_fill_bounce_buffer(panel, panel->bounce_buffer[0]);
}
}
}
static void lcd_rgb_panel_start_transmission(esp_rgb_panel_t *rgb_panel)
{
// reset FIFO of DMA and LCD, incase there remains old frame data
gdma_reset(rgb_panel->dma_chan);
lcd_ll_stop(rgb_panel->hal.dev);
lcd_ll_fifo_reset(rgb_panel->hal.dev);
// pre-fill bounce buffers if needed
if (rgb_panel->bb_size) {
rgb_panel->bounce_pos_px = 0;
lcd_rgb_panel_fill_bounce_buffer(rgb_panel, rgb_panel->bounce_buffer[0]);
lcd_rgb_panel_fill_bounce_buffer(rgb_panel, rgb_panel->bounce_buffer[1]);
}
// the start of DMA should be prior to the start of LCD engine
gdma_start(rgb_panel->dma_chan, (intptr_t)rgb_panel->dma_links[rgb_panel->cur_fb_index]);
// delay 1us is sufficient for DMA to pass data to LCD FIFO
// in fact, this is only needed when LCD pixel clock is set too high
esp_rom_delay_us(1);
// start LCD engine
lcd_ll_start(rgb_panel->hal.dev);
}
IRAM_ATTR static void lcd_rgb_panel_try_update_pclk(esp_rgb_panel_t *rgb_panel)
{
portENTER_CRITICAL_ISR(&rgb_panel->spinlock);
if (unlikely(rgb_panel->flags.need_update_pclk)) {
rgb_panel->flags.need_update_pclk = false;
rgb_panel->timings.pclk_hz = lcd_hal_cal_pclk_freq(&rgb_panel->hal, rgb_panel->src_clk_hz, rgb_panel->timings.pclk_hz, rgb_panel->lcd_clk_flags);
}
portEXIT_CRITICAL_ISR(&rgb_panel->spinlock);
}
IRAM_ATTR static void lcd_default_isr_handler(void *args)
{
esp_rgb_panel_t *rgb_panel = (esp_rgb_panel_t *)args;
bool need_yield = false;
uint32_t intr_status = lcd_ll_get_interrupt_status(rgb_panel->hal.dev);
lcd_ll_clear_interrupt_status(rgb_panel->hal.dev, intr_status);
if (intr_status & LCD_LL_EVENT_VSYNC_END) {
// call user registered callback
if (rgb_panel->on_vsync) {
if (rgb_panel->on_vsync(&rgb_panel->base, NULL, rgb_panel->user_ctx)) {
need_yield = true;
}
}
// check whether to update the PCLK frequency, it should be safe to update the PCLK frequency in the VSYNC interrupt
lcd_rgb_panel_try_update_pclk(rgb_panel);
if (rgb_panel->flags.stream_mode) {
// check whether to restart the transmission
lcd_rgb_panel_try_restart_transmission(rgb_panel);
}
}
if (need_yield) {
portYIELD_FROM_ISR();
}
}