mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
809 lines
26 KiB
C
809 lines
26 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#include <stddef.h>
|
|
|
|
#include <bootloader_flash_priv.h>
|
|
#include <esp_log.h>
|
|
#include <esp_flash_encrypt.h>
|
|
#include "sdkconfig.h"
|
|
#include "soc/soc_caps.h"
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
# include "soc/spi_struct.h"
|
|
# include "soc/spi_reg.h"
|
|
/* SPI flash controller */
|
|
# define SPIFLASH SPI1
|
|
#else
|
|
# include "soc/spi_mem_struct.h"
|
|
# include "soc/spi_mem_reg.h"
|
|
/* SPI flash controller */
|
|
# define SPIFLASH SPIMEM1
|
|
#endif
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#include "esp32/rom/spi_flash.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
#include "esp32s2/rom/spi_flash.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
#include "esp32s3/rom/spi_flash.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
#include "esp32c3/rom/spi_flash.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32H2
|
|
#include "esp32h2/rom/spi_flash.h"
|
|
#endif
|
|
|
|
#ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
|
|
#define ENCRYPTION_IS_VIRTUAL 1
|
|
#else
|
|
#define ENCRYPTION_IS_VIRTUAL 0
|
|
#endif
|
|
|
|
#define BYTESHIFT(VAR, IDX) (((VAR) >> ((IDX) * 8)) & 0xFF)
|
|
#define ISSI_ID 0x9D
|
|
#define GD_Q_ID_HIGH 0xC8
|
|
#define GD_Q_ID_MID 0x40
|
|
#define GD_Q_ID_LOW 0x16
|
|
|
|
#define ESP_BOOTLOADER_SPIFLASH_BP_MASK_ISSI (BIT7 | BIT5 | BIT4 | BIT3 | BIT2)
|
|
#define ESP_BOOTLOADER_SPIFLASH_QE_16B BIT9 // QE position when you write 16 bits at one time.
|
|
#define ESP_BOOTLOADER_SPIFLASH_QE_8B BIT1 // QE position when you write 8 bits(for SR2) at one time.
|
|
#define ESP_BOOTLOADER_SPIFLASH_WRITE_8B (8)
|
|
#define ESP_BOOTLOADER_SPIFLASH_WRITE_16B (16)
|
|
|
|
#ifndef BOOTLOADER_BUILD
|
|
/* Normal app version maps to esp_spi_flash.h operations...
|
|
*/
|
|
static const char *TAG = "bootloader_mmap";
|
|
|
|
static spi_flash_mmap_handle_t map;
|
|
|
|
uint32_t bootloader_mmap_get_free_pages(void)
|
|
{
|
|
return spi_flash_mmap_get_free_pages(SPI_FLASH_MMAP_DATA);
|
|
}
|
|
|
|
const void *bootloader_mmap(uint32_t src_addr, uint32_t size)
|
|
{
|
|
if (map) {
|
|
ESP_LOGE(TAG, "tried to bootloader_mmap twice");
|
|
return NULL; /* existing mapping in use... */
|
|
}
|
|
const void *result = NULL;
|
|
uint32_t src_page = src_addr & ~(SPI_FLASH_MMU_PAGE_SIZE - 1);
|
|
size += (src_addr - src_page);
|
|
esp_err_t err = spi_flash_mmap(src_page, size, SPI_FLASH_MMAP_DATA, &result, &map);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "spi_flash_mmap failed: 0x%x", err);
|
|
return NULL;
|
|
}
|
|
return (void *)((intptr_t)result + (src_addr - src_page));
|
|
}
|
|
|
|
void bootloader_munmap(const void *mapping)
|
|
{
|
|
if (mapping && map) {
|
|
spi_flash_munmap(map);
|
|
}
|
|
map = 0;
|
|
}
|
|
|
|
esp_err_t bootloader_flash_read(size_t src, void *dest, size_t size, bool allow_decrypt)
|
|
{
|
|
if (allow_decrypt && esp_flash_encryption_enabled()) {
|
|
return spi_flash_read_encrypted(src, dest, size);
|
|
} else {
|
|
return spi_flash_read(src, dest, size);
|
|
}
|
|
}
|
|
|
|
esp_err_t bootloader_flash_write(size_t dest_addr, void *src, size_t size, bool write_encrypted)
|
|
{
|
|
if (write_encrypted && !ENCRYPTION_IS_VIRTUAL) {
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
return spi_flash_write_encrypted(dest_addr, src, size);
|
|
#else
|
|
return esp_rom_spiflash_write_encrypted(dest_addr, src, size);
|
|
#endif
|
|
} else {
|
|
return spi_flash_write(dest_addr, src, size);
|
|
}
|
|
}
|
|
|
|
esp_err_t bootloader_flash_erase_sector(size_t sector)
|
|
{
|
|
return spi_flash_erase_sector(sector);
|
|
}
|
|
|
|
esp_err_t bootloader_flash_erase_range(uint32_t start_addr, uint32_t size)
|
|
{
|
|
return spi_flash_erase_range(start_addr, size);
|
|
}
|
|
|
|
#else //BOOTLOADER_BUILD
|
|
/* Bootloader version, uses ROM functions only */
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#include "esp32/rom/spi_flash.h"
|
|
#include "esp32/rom/cache.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
#include "esp32s2/rom/spi_flash.h"
|
|
#include "esp32s2/rom/cache.h"
|
|
#include "soc/cache_memory.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
#include "esp32s3/rom/spi_flash.h"
|
|
#include "esp32s3/rom/cache.h"
|
|
#include "soc/cache_memory.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
#include "esp32c3/rom/spi_flash.h"
|
|
#include "esp32c3/rom/cache.h"
|
|
#include "soc/cache_memory.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32H2
|
|
#include "esp32h2/rom/spi_flash.h"
|
|
#include "esp32h2/rom/cache.h"
|
|
#include "soc/cache_memory.h"
|
|
#endif
|
|
static const char *TAG = "bootloader_flash";
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
/* Use first 50 blocks in MMU for bootloader_mmap,
|
|
50th block for bootloader_flash_read
|
|
*/
|
|
#define MMU_BLOCK0_VADDR SOC_DROM_LOW
|
|
#define MMU_SIZE (0x320000)
|
|
#define MMU_BLOCK50_VADDR (MMU_BLOCK0_VADDR + MMU_SIZE)
|
|
#define FLASH_READ_VADDR MMU_BLOCK50_VADDR
|
|
|
|
#else // !CONFIG_IDF_TARGET_ESP32
|
|
|
|
/* Use first 63 blocks in MMU for bootloader_mmap,
|
|
63th block for bootloader_flash_read
|
|
*/
|
|
#define MMU_BLOCK0_VADDR SOC_DROM_LOW
|
|
#define MMU_SIZE (0x3f0000)
|
|
#define MMU_BLOCK63_VADDR (MMU_BLOCK0_VADDR + MMU_SIZE)
|
|
#define FLASH_READ_VADDR MMU_BLOCK63_VADDR
|
|
#endif
|
|
|
|
#define MMU_FREE_PAGES (MMU_SIZE / FLASH_BLOCK_SIZE)
|
|
|
|
static bool mapped;
|
|
|
|
// Current bootloader mapping (ab)used for bootloader_read()
|
|
static uint32_t current_read_mapping = UINT32_MAX;
|
|
|
|
uint32_t bootloader_mmap_get_free_pages(void)
|
|
{
|
|
/**
|
|
* Allow mapping up to 50 of the 51 available MMU blocks (last one used for reads)
|
|
* Since, bootloader_mmap function below assumes it to be 0x320000 (50 pages), we can safely do this.
|
|
*/
|
|
return MMU_FREE_PAGES;
|
|
}
|
|
|
|
const void *bootloader_mmap(uint32_t src_addr, uint32_t size)
|
|
{
|
|
if (mapped) {
|
|
ESP_LOGE(TAG, "tried to bootloader_mmap twice");
|
|
return NULL; /* can't map twice */
|
|
}
|
|
if (size > MMU_SIZE) {
|
|
ESP_LOGE(TAG, "bootloader_mmap excess size %x", size);
|
|
return NULL;
|
|
}
|
|
|
|
uint32_t src_addr_aligned = src_addr & MMU_FLASH_MASK;
|
|
uint32_t count = bootloader_cache_pages_to_map(size, src_addr);
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
Cache_Read_Disable(0);
|
|
Cache_Flush(0);
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
uint32_t autoload = Cache_Suspend_ICache();
|
|
Cache_Invalidate_ICache_All();
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
uint32_t autoload = Cache_Suspend_DCache();
|
|
Cache_Invalidate_DCache_All();
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
uint32_t autoload = Cache_Suspend_ICache();
|
|
Cache_Invalidate_ICache_All();
|
|
#elif CONFIG_IDF_TARGET_ESP32H2
|
|
uint32_t autoload = Cache_Suspend_ICache();
|
|
Cache_Invalidate_ICache_All();
|
|
#endif
|
|
ESP_LOGD(TAG, "mmu set paddr=%08x count=%d size=%x src_addr=%x src_addr_aligned=%x",
|
|
src_addr & MMU_FLASH_MASK, count, size, src_addr, src_addr_aligned );
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
int e = cache_flash_mmu_set(0, 0, MMU_BLOCK0_VADDR, src_addr_aligned, 64, count);
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
int e = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, MMU_BLOCK0_VADDR, src_addr_aligned, 64, count, 0);
|
|
#else // S3, C3, H2
|
|
int e = Cache_Dbus_MMU_Set(MMU_ACCESS_FLASH, MMU_BLOCK0_VADDR, src_addr_aligned, 64, count, 0);
|
|
#endif
|
|
if (e != 0) {
|
|
ESP_LOGE(TAG, "cache_flash_mmu_set failed: %d\n", e);
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
Cache_Read_Enable(0);
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
Cache_Resume_ICache(autoload);
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
Cache_Resume_DCache(autoload);
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
Cache_Resume_ICache(autoload);
|
|
#elif CONFIG_IDF_TARGET_ESP32H2
|
|
Cache_Resume_ICache(autoload);
|
|
#endif
|
|
return NULL;
|
|
}
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
Cache_Read_Enable(0);
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
Cache_Resume_ICache(autoload);
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
Cache_Resume_DCache(autoload);
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
Cache_Resume_ICache(autoload);
|
|
#elif CONFIG_IDF_TARGET_ESP32H2
|
|
Cache_Resume_ICache(autoload);
|
|
#endif
|
|
|
|
mapped = true;
|
|
|
|
return (void *)(MMU_BLOCK0_VADDR + (src_addr - src_addr_aligned));
|
|
}
|
|
|
|
void bootloader_munmap(const void *mapping)
|
|
{
|
|
if (mapped) {
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
/* Full MMU reset */
|
|
Cache_Read_Disable(0);
|
|
Cache_Flush(0);
|
|
mmu_init(0);
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
//TODO, save the autoload value.
|
|
Cache_Suspend_ICache();
|
|
Cache_Invalidate_ICache_All();
|
|
Cache_MMU_Init();
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
Cache_Suspend_DCache();
|
|
Cache_Invalidate_DCache_All();
|
|
Cache_MMU_Init();
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
//TODO, save the autoload value.
|
|
Cache_Suspend_ICache();
|
|
Cache_Invalidate_ICache_All();
|
|
Cache_MMU_Init();
|
|
#elif CONFIG_IDF_TARGET_ESP32H2
|
|
Cache_Suspend_ICache();
|
|
Cache_Invalidate_ICache_All();
|
|
Cache_MMU_Init();
|
|
#endif
|
|
mapped = false;
|
|
current_read_mapping = UINT32_MAX;
|
|
}
|
|
}
|
|
|
|
static esp_err_t spi_to_esp_err(esp_rom_spiflash_result_t r)
|
|
{
|
|
switch (r) {
|
|
case ESP_ROM_SPIFLASH_RESULT_OK:
|
|
return ESP_OK;
|
|
case ESP_ROM_SPIFLASH_RESULT_ERR:
|
|
return ESP_ERR_FLASH_OP_FAIL;
|
|
case ESP_ROM_SPIFLASH_RESULT_TIMEOUT:
|
|
return ESP_ERR_FLASH_OP_TIMEOUT;
|
|
default:
|
|
return ESP_FAIL;
|
|
}
|
|
}
|
|
|
|
static esp_err_t bootloader_flash_read_no_decrypt(size_t src_addr, void *dest, size_t size)
|
|
{
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
Cache_Read_Disable(0);
|
|
Cache_Flush(0);
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
uint32_t autoload = Cache_Suspend_ICache();
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
uint32_t autoload = Cache_Suspend_DCache();
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
uint32_t autoload = Cache_Suspend_ICache();
|
|
#elif CONFIG_IDF_TARGET_ESP32H2
|
|
uint32_t autoload = Cache_Suspend_ICache();
|
|
#endif
|
|
esp_rom_spiflash_result_t r = esp_rom_spiflash_read(src_addr, dest, size);
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
Cache_Read_Enable(0);
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
Cache_Resume_ICache(autoload);
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
Cache_Resume_DCache(autoload);
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
Cache_Resume_ICache(autoload);
|
|
#elif CONFIG_IDF_TARGET_ESP32H2
|
|
Cache_Resume_ICache(autoload);
|
|
#endif
|
|
|
|
return spi_to_esp_err(r);
|
|
}
|
|
|
|
static esp_err_t bootloader_flash_read_allow_decrypt(size_t src_addr, void *dest, size_t size)
|
|
{
|
|
uint32_t *dest_words = (uint32_t *)dest;
|
|
|
|
for (size_t word = 0; word < size / 4; word++) {
|
|
uint32_t word_src = src_addr + word * 4; /* Read this offset from flash */
|
|
uint32_t map_at = word_src & MMU_FLASH_MASK; /* Map this 64KB block from flash */
|
|
uint32_t *map_ptr;
|
|
if (map_at != current_read_mapping) {
|
|
/* Move the 64KB mmu mapping window to fit map_at */
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
Cache_Read_Disable(0);
|
|
Cache_Flush(0);
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
uint32_t autoload = Cache_Suspend_ICache();
|
|
Cache_Invalidate_ICache_All();
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
uint32_t autoload = Cache_Suspend_DCache();
|
|
Cache_Invalidate_DCache_All();
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
uint32_t autoload = Cache_Suspend_ICache();
|
|
Cache_Invalidate_ICache_All();
|
|
#elif CONFIG_IDF_TARGET_ESP32H2
|
|
uint32_t autoload = Cache_Suspend_ICache();
|
|
Cache_Invalidate_ICache_All();
|
|
#endif
|
|
ESP_LOGD(TAG, "mmu set block paddr=0x%08x (was 0x%08x)", map_at, current_read_mapping);
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
int e = cache_flash_mmu_set(0, 0, FLASH_READ_VADDR, map_at, 64, 1);
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
int e = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, MMU_BLOCK63_VADDR, map_at, 64, 1, 0);
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
int e = Cache_Dbus_MMU_Set(MMU_ACCESS_FLASH, MMU_BLOCK63_VADDR, map_at, 64, 1, 0);
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
int e = Cache_Dbus_MMU_Set(MMU_ACCESS_FLASH, MMU_BLOCK63_VADDR, map_at, 64, 1, 0);
|
|
#elif CONFIG_IDF_TARGET_ESP32H2
|
|
int e = Cache_Dbus_MMU_Set(MMU_ACCESS_FLASH, MMU_BLOCK63_VADDR, map_at, 64, 1, 0);
|
|
#endif
|
|
if (e != 0) {
|
|
ESP_LOGE(TAG, "cache_flash_mmu_set failed: %d\n", e);
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
Cache_Read_Enable(0);
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
Cache_Resume_ICache(autoload);
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
Cache_Resume_DCache(autoload);
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
Cache_Resume_ICache(autoload);
|
|
#elif CONFIG_IDF_TARGET_ESP32H2
|
|
Cache_Resume_ICache(autoload);
|
|
#endif
|
|
return ESP_FAIL;
|
|
}
|
|
current_read_mapping = map_at;
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
Cache_Read_Enable(0);
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
Cache_Resume_ICache(autoload);
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
Cache_Resume_DCache(autoload);
|
|
#elif CONFIG_IDF_TARGET_ESP32C3
|
|
Cache_Resume_ICache(autoload);
|
|
#elif CONFIG_IDF_TARGET_ESP32H2
|
|
Cache_Resume_ICache(autoload);
|
|
#endif
|
|
}
|
|
map_ptr = (uint32_t *)(FLASH_READ_VADDR + (word_src - map_at));
|
|
dest_words[word] = *map_ptr;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t bootloader_flash_read(size_t src_addr, void *dest, size_t size, bool allow_decrypt)
|
|
{
|
|
if (src_addr & 3) {
|
|
ESP_LOGE(TAG, "bootloader_flash_read src_addr 0x%x not 4-byte aligned", src_addr);
|
|
return ESP_FAIL;
|
|
}
|
|
if (size & 3) {
|
|
ESP_LOGE(TAG, "bootloader_flash_read size 0x%x not 4-byte aligned", size);
|
|
return ESP_FAIL;
|
|
}
|
|
if ((intptr_t)dest & 3) {
|
|
ESP_LOGE(TAG, "bootloader_flash_read dest 0x%x not 4-byte aligned", (intptr_t)dest);
|
|
return ESP_FAIL;
|
|
}
|
|
|
|
if (allow_decrypt) {
|
|
return bootloader_flash_read_allow_decrypt(src_addr, dest, size);
|
|
} else {
|
|
return bootloader_flash_read_no_decrypt(src_addr, dest, size);
|
|
}
|
|
}
|
|
|
|
esp_err_t bootloader_flash_write(size_t dest_addr, void *src, size_t size, bool write_encrypted)
|
|
{
|
|
esp_err_t err;
|
|
size_t alignment = write_encrypted ? 32 : 4;
|
|
if ((dest_addr % alignment) != 0) {
|
|
ESP_LOGE(TAG, "bootloader_flash_write dest_addr 0x%x not %d-byte aligned", dest_addr, alignment);
|
|
return ESP_FAIL;
|
|
}
|
|
if ((size % alignment) != 0) {
|
|
ESP_LOGE(TAG, "bootloader_flash_write size 0x%x not %d-byte aligned", size, alignment);
|
|
return ESP_FAIL;
|
|
}
|
|
if (((intptr_t)src % 4) != 0) {
|
|
ESP_LOGE(TAG, "bootloader_flash_write src 0x%x not 4 byte aligned", (intptr_t)src);
|
|
return ESP_FAIL;
|
|
}
|
|
|
|
err = bootloader_flash_unlock();
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
if (write_encrypted && !ENCRYPTION_IS_VIRTUAL) {
|
|
return spi_to_esp_err(esp_rom_spiflash_write_encrypted(dest_addr, src, size));
|
|
} else {
|
|
return spi_to_esp_err(esp_rom_spiflash_write(dest_addr, src, size));
|
|
}
|
|
}
|
|
|
|
esp_err_t bootloader_flash_erase_sector(size_t sector)
|
|
{
|
|
return spi_to_esp_err(esp_rom_spiflash_erase_sector(sector));
|
|
}
|
|
|
|
esp_err_t bootloader_flash_erase_range(uint32_t start_addr, uint32_t size)
|
|
{
|
|
if (start_addr % FLASH_SECTOR_SIZE != 0) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
if (size % FLASH_SECTOR_SIZE != 0) {
|
|
return ESP_ERR_INVALID_SIZE;
|
|
}
|
|
size_t start = start_addr / FLASH_SECTOR_SIZE;
|
|
size_t end = start + size / FLASH_SECTOR_SIZE;
|
|
const size_t sectors_per_block = FLASH_BLOCK_SIZE / FLASH_SECTOR_SIZE;
|
|
|
|
esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK;
|
|
for (size_t sector = start; sector != end && rc == ESP_ROM_SPIFLASH_RESULT_OK; ) {
|
|
if (sector % sectors_per_block == 0 && end - sector >= sectors_per_block) {
|
|
rc = esp_rom_spiflash_erase_block(sector / sectors_per_block);
|
|
sector += sectors_per_block;
|
|
} else {
|
|
rc = esp_rom_spiflash_erase_sector(sector);
|
|
++sector;
|
|
}
|
|
}
|
|
return spi_to_esp_err(rc);
|
|
}
|
|
|
|
#endif // BOOTLOADER_BUILD
|
|
|
|
|
|
FORCE_INLINE_ATTR bool is_issi_chip(const esp_rom_spiflash_chip_t* chip)
|
|
{
|
|
return BYTESHIFT(chip->device_id, 2) == ISSI_ID;
|
|
}
|
|
|
|
// For GD25Q32, GD25Q64, GD25Q127C, GD25Q128, which use single command to read/write different SR.
|
|
FORCE_INLINE_ATTR bool is_gd_q_chip(const esp_rom_spiflash_chip_t* chip)
|
|
{
|
|
return BYTESHIFT(chip->device_id, 2) == GD_Q_ID_HIGH && BYTESHIFT(chip->device_id, 1) == GD_Q_ID_MID && BYTESHIFT(chip->device_id, 0) >= GD_Q_ID_LOW;
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR __attribute__((weak)) bootloader_flash_unlock(void)
|
|
{
|
|
uint16_t status = 0; // status for SR1 or SR1+SR2 if writing SR with 01H + 2Bytes.
|
|
uint16_t new_status = 0;
|
|
uint8_t status_sr2 = 0; // status_sr2 for SR2.
|
|
uint8_t new_status_sr2 = 0;
|
|
uint8_t write_sr_bit = 0;
|
|
esp_err_t err = ESP_OK;
|
|
|
|
esp_rom_spiflash_wait_idle(&g_rom_flashchip);
|
|
if (is_issi_chip(&g_rom_flashchip)) {
|
|
write_sr_bit = ESP_BOOTLOADER_SPIFLASH_WRITE_8B;
|
|
// ISSI chips have different QE position
|
|
|
|
status = bootloader_execute_flash_command(CMD_RDSR, 0, 0, 8);
|
|
|
|
/* Clear all bits in the mask.
|
|
(This is different from ROM esp_rom_spiflash_unlock, which keeps all bits as-is.)
|
|
*/
|
|
new_status = status & (~ESP_BOOTLOADER_SPIFLASH_BP_MASK_ISSI);
|
|
// Skip if nothing needs to be cleared. Otherwise will waste time waiting for the flash to clear nothing.
|
|
} else if (is_gd_q_chip(&g_rom_flashchip)) {
|
|
/* The GD chips behaviour is to clear all bits in SR1 and clear bits in SR2 except QE bit.
|
|
Use 01H to write SR1 and 31H to write SR2.
|
|
*/
|
|
write_sr_bit = ESP_BOOTLOADER_SPIFLASH_WRITE_8B;
|
|
|
|
status = bootloader_execute_flash_command(CMD_RDSR, 0, 0, 8);
|
|
new_status = 0;
|
|
|
|
status_sr2 = bootloader_execute_flash_command(CMD_RDSR2, 0, 0, 8);
|
|
new_status_sr2 = status_sr2 & ESP_BOOTLOADER_SPIFLASH_QE_8B;
|
|
} else {
|
|
/* For common behaviour, like XMC chips, Use 01H+2Bytes to write both SR1 and SR2*/
|
|
write_sr_bit = ESP_BOOTLOADER_SPIFLASH_WRITE_16B;
|
|
status = bootloader_execute_flash_command(CMD_RDSR, 0, 0, 8) | (bootloader_execute_flash_command(CMD_RDSR2, 0, 0, 8) << 8);
|
|
|
|
/* Clear all bits except QE, if it is set.
|
|
(This is different from ROM esp_rom_spiflash_unlock, which keeps all bits as-is.)
|
|
*/
|
|
new_status = status & ESP_BOOTLOADER_SPIFLASH_QE_16B;
|
|
}
|
|
|
|
if (status != new_status) {
|
|
/* if the status in SR not equal to the ideal status, the status need to be updated */
|
|
esp_rom_spiflash_wait_idle(&g_rom_flashchip);
|
|
bootloader_execute_flash_command(CMD_WREN, 0, 0, 0);
|
|
esp_rom_spiflash_wait_idle(&g_rom_flashchip);
|
|
bootloader_execute_flash_command(CMD_WRSR, new_status, write_sr_bit, 0);
|
|
esp_rom_spiflash_wait_idle(&g_rom_flashchip);
|
|
}
|
|
|
|
if (status_sr2 != new_status_sr2) {
|
|
/* If the status in SR2 not equal to the ideal status, the status need to be updated.
|
|
It doesn't need to be updated if status in SR2 is 0.
|
|
Note: if we need to update both SR1 and SR2, the `CMD_WREN` needs to be sent again.
|
|
*/
|
|
esp_rom_spiflash_wait_idle(&g_rom_flashchip);
|
|
bootloader_execute_flash_command(CMD_WREN, 0, 0, 0);
|
|
esp_rom_spiflash_wait_idle(&g_rom_flashchip);
|
|
bootloader_execute_flash_command(CMD_WRSR2, new_status_sr2, write_sr_bit, 0);
|
|
esp_rom_spiflash_wait_idle(&g_rom_flashchip);
|
|
}
|
|
|
|
bootloader_execute_flash_command(CMD_WRDI, 0, 0, 0);
|
|
esp_rom_spiflash_wait_idle(&g_rom_flashchip);
|
|
return err;
|
|
}
|
|
|
|
/* dummy_len_plus values defined in ROM for SPI flash configuration */
|
|
#ifndef g_rom_spiflash_dummy_len_plus // ESP32-C3 uses a macro to access ROM data here
|
|
extern uint8_t g_rom_spiflash_dummy_len_plus[];
|
|
#endif
|
|
IRAM_ATTR static uint32_t bootloader_flash_execute_command_common(
|
|
uint8_t command,
|
|
uint32_t addr_len, uint32_t address,
|
|
uint8_t dummy_len,
|
|
uint8_t mosi_len, uint32_t mosi_data,
|
|
uint8_t miso_len)
|
|
{
|
|
assert(mosi_len <= 32);
|
|
assert(miso_len <= 32);
|
|
uint32_t old_ctrl_reg = SPIFLASH.ctrl.val;
|
|
uint32_t old_user_reg = SPIFLASH.user.val;
|
|
uint32_t old_user1_reg = SPIFLASH.user1.val;
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
SPIFLASH.ctrl.val = SPI_WP_REG_M; // keep WP high while idle, otherwise leave DIO mode
|
|
#else
|
|
SPIFLASH.ctrl.val = SPI_MEM_WP_REG_M; // keep WP high while idle, otherwise leave DIO mode
|
|
#endif
|
|
//command phase
|
|
SPIFLASH.user.usr_command = 1;
|
|
SPIFLASH.user2.usr_command_bitlen = 7;
|
|
SPIFLASH.user2.usr_command_value = command;
|
|
//addr phase
|
|
SPIFLASH.user.usr_addr = addr_len > 0;
|
|
SPIFLASH.user1.usr_addr_bitlen = addr_len - 1;
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
SPIFLASH.addr = (addr_len > 0)? (address << (32-addr_len)) : 0;
|
|
#else
|
|
SPIFLASH.addr = address;
|
|
#endif
|
|
//dummy phase
|
|
if (miso_len > 0) {
|
|
uint32_t total_dummy = dummy_len + g_rom_spiflash_dummy_len_plus[1];
|
|
SPIFLASH.user.usr_dummy = total_dummy > 0;
|
|
SPIFLASH.user1.usr_dummy_cyclelen = total_dummy - 1;
|
|
} else {
|
|
SPIFLASH.user.usr_dummy = 0;
|
|
SPIFLASH.user1.usr_dummy_cyclelen = 0;
|
|
}
|
|
//output data
|
|
SPIFLASH.user.usr_mosi = mosi_len > 0;
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
SPIFLASH.mosi_dlen.usr_mosi_dbitlen = mosi_len ? (mosi_len - 1) : 0;
|
|
#else
|
|
SPIFLASH.mosi_dlen.usr_mosi_bit_len = mosi_len ? (mosi_len - 1) : 0;
|
|
#endif
|
|
SPIFLASH.data_buf[0] = mosi_data;
|
|
//input data
|
|
SPIFLASH.user.usr_miso = miso_len > 0;
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
SPIFLASH.miso_dlen.usr_miso_dbitlen = miso_len ? (miso_len - 1) : 0;
|
|
#else
|
|
SPIFLASH.miso_dlen.usr_miso_bit_len = miso_len ? (miso_len - 1) : 0;
|
|
#endif
|
|
|
|
SPIFLASH.cmd.usr = 1;
|
|
while (SPIFLASH.cmd.usr != 0) {
|
|
}
|
|
SPIFLASH.ctrl.val = old_ctrl_reg;
|
|
SPIFLASH.user.val = old_user_reg;
|
|
SPIFLASH.user1.val = old_user1_reg;
|
|
|
|
uint32_t ret = SPIFLASH.data_buf[0];
|
|
if (miso_len < 32) {
|
|
//set unused bits to 0
|
|
ret &= ~(UINT32_MAX << miso_len);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
uint32_t IRAM_ATTR bootloader_execute_flash_command(uint8_t command, uint32_t mosi_data, uint8_t mosi_len, uint8_t miso_len)
|
|
{
|
|
const uint8_t addr_len = 0;
|
|
const uint8_t address = 0;
|
|
const uint8_t dummy_len = 0;
|
|
|
|
return bootloader_flash_execute_command_common(command, addr_len, address,
|
|
dummy_len, mosi_len, mosi_data, miso_len);
|
|
}
|
|
|
|
// cmd(0x5A) + 24bit address + 8 cycles dummy
|
|
uint32_t IRAM_ATTR bootloader_flash_read_sfdp(uint32_t sfdp_addr, unsigned int miso_byte_num)
|
|
{
|
|
assert(miso_byte_num <= 4);
|
|
const uint8_t command = CMD_RDSFDP;
|
|
const uint8_t addr_len = 24;
|
|
const uint8_t dummy_len = 8;
|
|
const uint8_t mosi_len = 0;
|
|
const uint32_t mosi_data = 0;
|
|
const uint8_t miso_len = miso_byte_num * 8;
|
|
|
|
return bootloader_flash_execute_command_common(command, addr_len, sfdp_addr,
|
|
dummy_len, mosi_len, mosi_data, miso_len);
|
|
}
|
|
|
|
void bootloader_enable_wp(void)
|
|
{
|
|
bootloader_execute_flash_command(CMD_WRDI, 0, 0, 0); /* Exit OTP mode */
|
|
}
|
|
|
|
uint32_t IRAM_ATTR bootloader_read_flash_id(void)
|
|
{
|
|
uint32_t id = bootloader_execute_flash_command(CMD_RDID, 0, 0, 24);
|
|
id = ((id & 0xff) << 16) | ((id >> 16) & 0xff) | (id & 0xff00);
|
|
return id;
|
|
}
|
|
|
|
#if SOC_CACHE_SUPPORT_WRAP
|
|
esp_err_t bootloader_flash_wrap_set(spi_flash_wrap_mode_t mode)
|
|
{
|
|
uint32_t reg_bkp_ctrl = SPIFLASH.ctrl.val;
|
|
uint32_t reg_bkp_usr = SPIFLASH.user.val;
|
|
SPIFLASH.user.fwrite_dio = 0;
|
|
SPIFLASH.user.fwrite_dual = 0;
|
|
SPIFLASH.user.fwrite_qio = 1;
|
|
SPIFLASH.user.fwrite_quad = 0;
|
|
SPIFLASH.ctrl.fcmd_dual = 0;
|
|
SPIFLASH.ctrl.fcmd_quad = 0;
|
|
SPIFLASH.user.usr_dummy = 0;
|
|
SPIFLASH.user.usr_addr = 1;
|
|
SPIFLASH.user.usr_command = 1;
|
|
SPIFLASH.user2.usr_command_bitlen = 7;
|
|
SPIFLASH.user2.usr_command_value = CMD_WRAP;
|
|
SPIFLASH.user1.usr_addr_bitlen = 23;
|
|
SPIFLASH.addr = 0;
|
|
SPIFLASH.user.usr_miso = 0;
|
|
SPIFLASH.user.usr_mosi = 1;
|
|
SPIFLASH.mosi_dlen.usr_mosi_bit_len = 7;
|
|
SPIFLASH.data_buf[0] = (uint32_t) mode << 4;;
|
|
SPIFLASH.cmd.usr = 1;
|
|
while(SPIFLASH.cmd.usr != 0)
|
|
{ }
|
|
|
|
SPIFLASH.ctrl.val = reg_bkp_ctrl;
|
|
SPIFLASH.user.val = reg_bkp_usr;
|
|
return ESP_OK;
|
|
}
|
|
#endif //SOC_CACHE_SUPPORT_WRAP
|
|
|
|
/*******************************************************************************
|
|
* XMC startup flow
|
|
******************************************************************************/
|
|
|
|
#define XMC_SUPPORT CONFIG_BOOTLOADER_FLASH_XMC_SUPPORT
|
|
#define XMC_VENDOR_ID 0x20
|
|
|
|
#if BOOTLOADER_BUILD
|
|
#define BOOTLOADER_FLASH_LOG(level, ...) ESP_LOG##level(TAG, ##__VA_ARGS__)
|
|
#else
|
|
static DRAM_ATTR char bootloader_flash_tag[] = "bootloader_flash";
|
|
#define BOOTLOADER_FLASH_LOG(level, ...) ESP_DRAM_LOG##level(bootloader_flash_tag, ##__VA_ARGS__)
|
|
#endif
|
|
|
|
#if XMC_SUPPORT
|
|
//strictly check the model
|
|
static IRAM_ATTR bool is_xmc_chip_strict(uint32_t rdid)
|
|
{
|
|
uint32_t vendor_id = BYTESHIFT(rdid, 2);
|
|
uint32_t mfid = BYTESHIFT(rdid, 1);
|
|
uint32_t cpid = BYTESHIFT(rdid, 0);
|
|
|
|
if (vendor_id != XMC_VENDOR_ID) {
|
|
return false;
|
|
}
|
|
|
|
bool matched = false;
|
|
if (mfid == 0x40) {
|
|
if (cpid >= 0x13 && cpid <= 0x20) {
|
|
matched = true;
|
|
}
|
|
} else if (mfid == 0x41) {
|
|
if (cpid >= 0x17 && cpid <= 0x20) {
|
|
matched = true;
|
|
}
|
|
} else if (mfid == 0x50) {
|
|
if (cpid >= 0x15 && cpid <= 0x16) {
|
|
matched = true;
|
|
}
|
|
}
|
|
return matched;
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR bootloader_flash_xmc_startup(void)
|
|
{
|
|
// If the RDID value is a valid XMC one, may skip the flow
|
|
const bool fast_check = true;
|
|
if (fast_check && is_xmc_chip_strict(g_rom_flashchip.device_id)) {
|
|
BOOTLOADER_FLASH_LOG(D, "XMC chip detected by RDID (%08X), skip.", g_rom_flashchip.device_id);
|
|
return ESP_OK;
|
|
}
|
|
|
|
// Check the Manufacturer ID in SFDP registers (JEDEC standard). If not XMC chip, no need to run the flow
|
|
const int sfdp_mfid_addr = 0x10;
|
|
uint8_t mf_id = (bootloader_flash_read_sfdp(sfdp_mfid_addr, 1) & 0xff);
|
|
if (mf_id != XMC_VENDOR_ID) {
|
|
BOOTLOADER_FLASH_LOG(D, "non-XMC chip detected by SFDP Read (%02X), skip.", mf_id);
|
|
return ESP_OK;
|
|
}
|
|
|
|
BOOTLOADER_FLASH_LOG(I, "XM25QHxxC startup flow");
|
|
// Enter DPD
|
|
bootloader_execute_flash_command(0xB9, 0, 0, 0);
|
|
// Enter UDPD
|
|
bootloader_execute_flash_command(0x79, 0, 0, 0);
|
|
// Exit UDPD
|
|
bootloader_execute_flash_command(0xFF, 0, 0, 0);
|
|
// Delay tXUDPD
|
|
esp_rom_delay_us(2000);
|
|
// Release Power-down
|
|
bootloader_execute_flash_command(0xAB, 0, 0, 0);
|
|
esp_rom_delay_us(20);
|
|
// Read flash ID and check again
|
|
g_rom_flashchip.device_id = bootloader_read_flash_id();
|
|
if (!is_xmc_chip_strict(g_rom_flashchip.device_id)) {
|
|
BOOTLOADER_FLASH_LOG(E, "XMC flash startup fail");
|
|
return ESP_FAIL;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
#else
|
|
//only compare the vendor id
|
|
static IRAM_ATTR bool is_xmc_chip(uint32_t rdid)
|
|
{
|
|
uint32_t vendor_id = (rdid >> 16) & 0xFF;
|
|
return (vendor_id == XMC_VENDOR_ID);
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR bootloader_flash_xmc_startup(void)
|
|
{
|
|
if (is_xmc_chip(g_rom_flashchip.device_id)) {
|
|
BOOTLOADER_FLASH_LOG(E, "XMC chip detected (%08X) while support disabled.", g_rom_flashchip.device_id);
|
|
return ESP_FAIL;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
#endif //XMC_SUPPORT
|