2019-12-24 11:18:31 +08:00

671 lines
26 KiB
C

// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "soc/gpio_periph.h"
#include "soc/rtc.h"
#include "hal/emac.h"
#define ETH_CRC_LENGTH (4)
#if CONFIG_ETH_RMII_CLK_OUTPUT
static void emac_config_apll_clock(void)
{
/* apll_freq = xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536)/((o_div + 2) * 2) */
rtc_xtal_freq_t rtc_xtal_freq = rtc_clk_xtal_freq_get();
switch (rtc_xtal_freq) {
case RTC_XTAL_FREQ_40M: // Recommended
/* 50 MHz = 40MHz * (4 + 6) / (2 * (2 + 2) = 50.000 */
/* sdm0 = 0, sdm1 = 0, sdm2 = 6, o_div = 2 */
rtc_clk_apll_enable(true, 0, 0, 6, 2);
break;
case RTC_XTAL_FREQ_26M:
/* 50 MHz = 26MHz * (4 + 15 + 118 / 256 + 39/65536) / ((3 + 2) * 2) = 49.999992 */
/* sdm0 = 39, sdm1 = 118, sdm2 = 15, o_div = 3 */
rtc_clk_apll_enable(true, 39, 118, 15, 3);
break;
case RTC_XTAL_FREQ_24M:
/* 50 MHz = 24MHz * (4 + 12 + 255 / 256 + 255/65536) / ((2 + 2) * 2) = 49.499977 */
/* sdm0 = 255, sdm1 = 255, sdm2 = 12, o_div = 2 */
rtc_clk_apll_enable(true, 255, 255, 12, 2);
break;
default: // Assume we have a 40M xtal
rtc_clk_apll_enable(true, 0, 0, 6, 2);
break;
}
}
#endif
void emac_hal_init(emac_hal_context_t *hal, void *descriptors,
uint8_t **rx_buf, uint8_t **tx_buf)
{
hal->dma_regs = &EMAC_DMA;
hal->mac_regs = &EMAC_MAC;
hal->ext_regs = &EMAC_EXT;
hal->descriptors = descriptors;
hal->rx_buf = rx_buf;
hal->tx_buf = tx_buf;
}
void emac_hal_lowlevel_init(emac_hal_context_t *hal)
{
/* GPIO configuration */
/* TX_EN to GPIO21 */
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO21_U, FUNC_GPIO21_EMAC_TX_EN);
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[21]);
/* TXD0 to GPIO19 */
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO19_U, FUNC_GPIO19_EMAC_TXD0);
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[19]);
/* TXD1 to GPIO22 */
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO22_U, FUNC_GPIO22_EMAC_TXD1);
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[22]);
/* RXD0 to GPIO25 */
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO25_U, FUNC_GPIO25_EMAC_RXD0);
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[25]);
/* RXD1 to GPIO26 */
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO26_U, FUNC_GPIO26_EMAC_RXD1);
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[26]);
/* CRS_DV to GPIO27 */
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO27_U, FUNC_GPIO27_EMAC_RX_DV);
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[27]);
#if CONFIG_ETH_RMII_CLK_INPUT
#if CONFIG_ETH_RMII_CLK_IN_GPIO == 0
/* RMII clock (50MHz) input to GPIO0 */
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO0_U, FUNC_GPIO0_EMAC_TX_CLK);
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[0]);
#else
#error "ESP32 EMAC only support input RMII clock to GPIO0"
#endif
#endif
#if CONFIG_ETH_RMII_CLK_OUTPUT
#if CONFIG_ETH_RMII_CLK_OUTPUT_GPIO0
/* APLL clock output to GPIO0 (must be configured to 50MHz!) */
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO0_U, FUNC_GPIO0_CLK_OUT1);
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[0]);
#elif CONFIG_ETH_RMII_CLK_OUT_GPIO == 16
/* RMII CLK (50MHz) output to GPIO16 */
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO16_U, FUNC_GPIO16_EMAC_CLK_OUT);
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[16]);
#elif CONFIG_ETH_RMII_CLK_OUT_GPIO == 17
/* RMII CLK (50MHz) output to GPIO17 */
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO17_U, FUNC_GPIO17_EMAC_CLK_OUT_180);
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[17]);
#endif
#endif // CONFIG_ETH_RMII_CLK_OUTPUT
/* Clock configuration */
#if CONFIG_ETH_PHY_INTERFACE_MII
hal->ext_regs->ex_phyinf_conf.phy_intf_sel = 0;
hal->ext_regs->ex_clk_ctrl.mii_clk_rx_en = 1;
hal->ext_regs->ex_clk_ctrl.mii_clk_tx_en = 1;
#elif CONFIG_ETH_PHY_INTERFACE_RMII
hal->ext_regs->ex_phyinf_conf.phy_intf_sel = 4;
#if CONFIG_ETH_RMII_CLK_INPUT
hal->ext_regs->ex_clk_ctrl.ext_en = 1;
hal->ext_regs->ex_clk_ctrl.int_en = 0;
hal->ext_regs->ex_oscclk_conf.clk_sel = 1;
#elif CONFIG_ETH_RMII_CLK_OUTPUT
hal->ext_regs->ex_clk_ctrl.ext_en = 0;
hal->ext_regs->ex_clk_ctrl.int_en = 1;
hal->ext_regs->ex_oscclk_conf.clk_sel = 0;
emac_config_apll_clock();
hal->ext_regs->ex_clkout_conf.div_num = 0;
hal->ext_regs->ex_clkout_conf.h_div_num = 0;
#if CONFIG_ETH_RMII_CLK_OUTPUT_GPIO0
/* Choose the APLL clock to output on GPIO */
REG_WRITE(PIN_CTRL, 6);
#endif // CONFIG_RMII_CLK_OUTPUT_GPIO0
#endif // CONFIG_ETH_RMII_CLK_INPUT
#endif // CONFIG_ETH_PHY_INTERFACE_MII
}
void emac_hal_reset(emac_hal_context_t *hal)
{
hal->dma_regs->dmabusmode.sw_rst = 1;
}
bool emac_hal_is_reset_done(emac_hal_context_t *hal)
{
return hal->dma_regs->dmabusmode.sw_rst ? false : true;
}
void emac_hal_set_csr_clock_range(emac_hal_context_t *hal)
{
/* Tell MAC system clock Frequency, which will determin the frequency range of MDC(1MHz~2.5MHz) */
if (CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ >= 20 && CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ < 35) {
hal->mac_regs->emacgmiiaddr.miicsrclk = 2;
} else if (CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ >= 35 && CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ < 60) {
hal->mac_regs->emacgmiiaddr.miicsrclk = 3;
} else if (CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ >= 60 && CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ < 100) {
hal->mac_regs->emacgmiiaddr.miicsrclk = 0;
} else if (CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ >= 100 && CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ < 150) {
hal->mac_regs->emacgmiiaddr.miicsrclk = 1;
} else if (CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ > 150 && CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ < 250) {
hal->mac_regs->emacgmiiaddr.miicsrclk = 4;
} else {
hal->mac_regs->emacgmiiaddr.miicsrclk = 5;
}
}
void emac_hal_reset_desc_chain(emac_hal_context_t *hal)
{
/* reset DMA descriptors */
hal->rx_desc = (eth_dma_rx_descriptor_t *)(hal->descriptors);
hal->tx_desc = (eth_dma_tx_descriptor_t *)(hal->descriptors +
sizeof(eth_dma_rx_descriptor_t) * CONFIG_ETH_DMA_RX_BUFFER_NUM);
/* init rx chain */
for (int i = 0; i < CONFIG_ETH_DMA_RX_BUFFER_NUM; i++) {
/* Set Own bit of the Rx descriptor Status: DMA */
hal->rx_desc[i].RDES0.Own = 1;
/* Set Buffer1 size and Second Address Chained bit */
hal->rx_desc[i].RDES1.SecondAddressChained = 1;
hal->rx_desc[i].RDES1.ReceiveBuffer1Size = CONFIG_ETH_DMA_BUFFER_SIZE;
/* Enable Ethernet DMA Rx Descriptor interrupt */
hal->rx_desc[i].RDES1.DisableInterruptOnComplete = 0;
/* point to the buffer */
hal->rx_desc[i].Buffer1Addr = (uint32_t)(hal->rx_buf[i]);
/* point to next descriptor */
hal->rx_desc[i].Buffer2NextDescAddr = (uint32_t)(hal->rx_desc + i + 1);
}
/* For last descriptor, set next descriptor address register equal to the first descriptor base address */
hal->rx_desc[CONFIG_ETH_DMA_RX_BUFFER_NUM - 1].Buffer2NextDescAddr = (uint32_t)(hal->rx_desc);
/* init tx chain */
for (int i = 0; i < CONFIG_ETH_DMA_TX_BUFFER_NUM; i++) {
/* Set Second Address Chained bit */
hal->tx_desc[i].TDES0.SecondAddressChained = 1;
hal->tx_desc[i].TDES1.TransmitBuffer1Size = CONFIG_ETH_DMA_BUFFER_SIZE;
/* Enable Ethernet DMA Tx Descriptor interrupt */
hal->tx_desc[1].TDES0.InterruptOnComplete = 1;
/* Enable Transmit Timestamp */
hal->tx_desc[i].TDES0.TransmitTimestampEnable = 1;
/* point to the buffer */
hal->tx_desc[i].Buffer1Addr = (uint32_t)(hal->tx_buf[i]);
/* point to next descriptor */
hal->tx_desc[i].Buffer2NextDescAddr = (uint32_t)(hal->tx_desc + i + 1);
}
/* For last descriptor, set next descriptor address register equal to the first descriptor base address */
hal->tx_desc[CONFIG_ETH_DMA_TX_BUFFER_NUM - 1].Buffer2NextDescAddr = (uint32_t)(hal->tx_desc);
/* set base address of the first descriptor */
hal->dma_regs->dmarxbaseaddr = (uint32_t)hal->rx_desc;
hal->dma_regs->dmatxbaseaddr = (uint32_t)hal->tx_desc;
}
void emac_hal_init_mac_default(emac_hal_context_t *hal)
{
/* MACCR Configuration */
typeof(hal->mac_regs->gmacconfig) maccr = hal->mac_regs->gmacconfig;
/* Enable the watchdog on the receiver, frame longer than 2048 Bytes is not allowed */
maccr.watchdog = EMAC_WATCHDOG_ENABLE;
/* Enable the jabber timer on the transmitter, frame longer than 2048 Bytes is not allowed */
maccr.jabber = EMAC_JABBER_ENABLE;
/* minimum IFG between frames during transmission is 96 bit times */
maccr.interframegap = EMAC_INTERFRAME_GAP_96BIT;
/* Enable Carrier Sense During Transmission */
maccr.disablecrs = EMAC_CARRIERSENSE_ENABLE;
/* Select port: 10/100 Mbps */
maccr.mii = EMAC_PORT_10_100MBPS;
/* Select speed: here set default 100M, afterwards, will reset by auto-negotiation */
maccr.fespeed = EMAC_SPEED_100M;
/* Allow the reception of frames when the TX_EN signal is asserted in Half-Duplex mode */
maccr.rxown = EMAC_RECEIVE_OWN_ENABLE;
/* Disable internal loopback mode */
maccr.loopback = EMAC_LOOPBACK_DISABLE;
/* Select duplex mode: here set default full duplex, afterwards, will reset by auto-negotiation */
maccr.duplex = EMAC_DUPLEX_FULL;
/* Select the checksum mode for received frame payload's TCP/UDP/ICMP headers */
maccr.rxipcoffload = EMAC_CHECKSUM_HW;
/* Enable MAC retry transmission when a colision occurs in half duplex mode */
maccr.retry = EMAC_RETRY_TRANSMISSION_ENABLE;
/* MAC passes all incoming frames to host, without modifying them */
maccr.padcrcstrip = EMAC_AUTO_PAD_CRC_STRIP_DISABLE;
/* Set Back-Off limit time before retry a transmittion after a collision */
maccr.backofflimit = EMAC_BACKOFF_LIMIT_10;
/* Disable deferral check, MAC defers until the CRS signal goes inactive */
maccr.deferralcheck = EMAC_DEFERRAL_CHECK_DISABLE;
/* Set preamble length 7 Bytes */
maccr.pltf = EMAC_PREAMBLE_LENGTH_7;
hal->mac_regs->gmacconfig = maccr;
/* MACFFR Configuration */
typeof(hal->mac_regs->gmacff) macffr = hal->mac_regs->gmacff;
/* Receiver module passes only those frames to the Application that pass the SA or DA address filter */
macffr.receive_all = EMAC_RECEIVE_ALL_DISABLE;
/* Disable source address filter */
macffr.safe = EMAC_SOURCE_ADDR_FILTER_DISABLE;
macffr.saif = 0;
/* MAC blocks all control frames */
macffr.pcf = EMAC_CONTROL_FRAME_BLOCKALL;
/* AFM module passes all received broadcast frames and multicast frames */
macffr.dbf = EMAC_RECEPT_BROADCAST_ENABLE;
macffr.pam = 1;
/* Address Check block operates in normal filtering mode for the DA address */
macffr.daif = EMAC_DEST_ADDR_FILTER_NORMAL;
/* Disable Promiscuous Mode */
macffr.pmode = EMAC_PROMISCUOUS_DISABLE;
hal->mac_regs->gmacff = macffr;
/* MACFCR Configuration */
typeof(hal->mac_regs->gmacfc) macfcr = hal->mac_regs->gmacfc;
/* Pause time */
macfcr.pause_time = EMAC_PAUSE_TIME;
/* Enable generation of Zero-Quanta Pause Control frames */
macfcr.dzpq = EMAC_ZERO_QUANTA_PAUSE_ENABLE;
/* Threshold of the PAUSE to be checked for automatic retransmission of PAUSE Frame */
macfcr.plt = EMAC_PAUSE_LOW_THRESHOLD_MINUS_28;
/* Don't allow MAC detect Pause frames with MAC address0 unicast address and unique multicast address */
macfcr.upfd = EMAC_UNICAST_PAUSE_DETECT_DISABLE;
/* Enable MAC to decode the received Pause frame and disable its transmitter for a specific time */
macfcr.rfce = EMAC_RECEIVE_FLOW_CONTROL_ENABLE;
/* Enable MAC to transmit Pause frames in full duplex mode or the MAC back-pressure operation in half duplex mode */
macfcr.tfce = EMAC_TRANSMIT_FLOW_CONTROL_ENABLE;
hal->mac_regs->gmacfc = macfcr;
}
void emac_hal_init_dma_default(emac_hal_context_t *hal)
{
/* DMAOMR Configuration */
typeof(hal->dma_regs->dmaoperation_mode) dmaomr = hal->dma_regs->dmaoperation_mode;
/* Enable Dropping of TCP/IP Checksum Error Frames */
dmaomr.dis_drop_tcpip_err_fram = EMAC_DROP_TCPIP_CHECKSUM_ERROR_ENABLE;
/* Enable Receive Store Forward */
dmaomr.rx_store_forward = EMAC_RECEIVE_STORE_FORWARD_ENABLE;
/* Enable Flushing of Received Frames because of the unavailability of receive descriptors or buffers */
dmaomr.dis_flush_recv_frames = EMAC_FLUSH_RECEIVED_FRAME_ENABLE;
/* Enable Transmit Store Forward */
dmaomr.tx_str_fwd = EMAC_TRANSMIT_STORE_FORWARD_ENABLE;
/* Flush Transmit FIFO */
dmaomr.flush_tx_fifo = 1;
/* Transmit Threshold Control */
dmaomr.tx_thresh_ctrl = EMAC_TRANSMIT_THRESHOLD_CONTROL_64;
/* Disable Forward Error Frame */
dmaomr.fwd_err_frame = EMAC_FORWARD_ERROR_FRAME_DISABLE;
/* Disable forward undersized good frame */
dmaomr.fwd_under_gf = EMAC_FORWARD_UNDERSIZED_GOOD_FRAME_DISABLE;
/* Receive Threshold Control */
dmaomr.rx_thresh_ctrl = EMAC_RECEIVE_THRESHOLD_CONTROL_64;
/* Allow the DMA to process a second frame of Transmit data even before obtaining the status for the first frame */
dmaomr.opt_second_frame = EMAC_OPERATE_SECOND_FRAME_ENABLE;
hal->dma_regs->dmaoperation_mode = dmaomr;
/* DMABMR Configuration */
typeof(hal->dma_regs->dmabusmode) dmabmr = hal->dma_regs->dmabusmode;
/* Enable Mixed Burst */
dmabmr.dmamixedburst = EMAC_MIXED_BURST_ENABLE;
/* Enable Address Aligned Beates */
dmabmr.dmaaddralibea = EMAC_ADDR_ALIGN_BEATS_ENABLE;
/* Use Separate PBL */
dmabmr.use_sep_pbl = EMAC_USE_SEPARATE_PBL;
/* Set Rx/Tx DMA Burst Length */
dmabmr.rx_dma_pbl = EMAC_DMA_BURST_LENGTH_32BEAT;
dmabmr.prog_burst_len = EMAC_DMA_BURST_LENGTH_32BEAT;
/* Enable Enhanced Descriptor,8 Words(32 Bytes) */
dmabmr.alt_desc_size = EMAC_ENHANCED_DESCRIPTOR_ENABLE;
/* Specifies the number of word to skip between two unchained descriptors (Ring mode) */
dmabmr.desc_skip_len = 0;
/* DMA Arbitration Scheme */
dmabmr.dma_arb_sch = EMAC_DMA_ARBITRATION_SCHEME_ROUNDROBIN;
/* Set priority ratio in the weighted round-robin arbitration between Rx DMA and Tx DMA */
dmabmr.pri_ratio = EMAC_DMA_ARBITRATION_ROUNDROBIN_RXTX_1_1;
hal->dma_regs->dmabusmode = dmabmr;
}
void emac_hal_set_speed(emac_hal_context_t *hal, uint32_t speed)
{
hal->mac_regs->gmacconfig.fespeed = speed;
}
void emac_hal_set_duplex(emac_hal_context_t *hal, uint32_t duplex)
{
hal->mac_regs->gmacconfig.duplex = duplex;
}
void emac_hal_set_promiscuous(emac_hal_context_t *hal, bool enable)
{
if (enable) {
hal->mac_regs->gmacff.pmode = 1;
} else {
hal->mac_regs->gmacff.pmode = 0;
}
}
bool emac_hal_is_mii_busy(emac_hal_context_t *hal)
{
return hal->mac_regs->emacgmiiaddr.miibusy ? true : false;
}
void emac_hal_set_phy_cmd(emac_hal_context_t *hal, uint32_t phy_addr, uint32_t phy_reg, bool write)
{
typeof(hal->mac_regs->emacgmiiaddr) macmiiar = hal->mac_regs->emacgmiiaddr;
macmiiar.miidev = phy_addr;
/* Set the PHY register address */
macmiiar.miireg = phy_reg;
if (write) {
/* Set write mode */
macmiiar.miiwrite = 1;
} else {
/* Set read mode */
macmiiar.miiwrite = 0;
}
/* Set MII busy bit */
macmiiar.miibusy = 1;
/* Write the result value into the MII Address register */
hal->mac_regs->emacgmiiaddr = macmiiar;
}
void emac_hal_set_phy_data(emac_hal_context_t *hal, uint32_t reg_value)
{
hal->mac_regs->emacmiidata.mii_data = reg_value;
}
uint32_t emac_hal_get_phy_data(emac_hal_context_t *hal)
{
return hal->mac_regs->emacmiidata.mii_data;
}
void emac_hal_set_address(emac_hal_context_t *hal, uint8_t *mac_addr)
{
/* Make sure mac address is unicast type */
if (!(mac_addr[0] & 0x01)) {
hal->mac_regs->emacaddr0high.address0_hi = (mac_addr[5] << 8) | mac_addr[4];
hal->mac_regs->emacaddr0low = (mac_addr[3] << 24) | (mac_addr[2] << 16) | (mac_addr[1] << 8) | (mac_addr[0]);
}
}
void emac_hal_start(emac_hal_context_t *hal)
{
typeof(hal->dma_regs->dmaoperation_mode) opm = hal->dma_regs->dmaoperation_mode;
typeof(hal->mac_regs->gmacconfig) cfg = hal->mac_regs->gmacconfig;
/* Enable Ethernet MAC and DMA Interrupt */
hal->dma_regs->dmain_en.val = 0xFFFFFFFF;
/* Flush Transmit FIFO */
opm.flush_tx_fifo = 1;
/* Start DMA transmission */
opm.start_stop_transmission_command = 1;
/* Start DMA reception */
opm.start_stop_rx = 1;
/* Enable transmit state machine of the MAC for transmission on the MII */
cfg.tx = 1;
/* Enable receive state machine of the MAC for reception from the MII */
cfg.rx = 1;
hal->dma_regs->dmaoperation_mode = opm;
hal->mac_regs->gmacconfig = cfg;
/* Clear all pending interrupts */
hal->dma_regs->dmastatus.val = 0xFFFFFFFF;
}
void emac_hal_stop(emac_hal_context_t *hal)
{
typeof(hal->dma_regs->dmaoperation_mode) opm = hal->dma_regs->dmaoperation_mode;
typeof(hal->mac_regs->gmacconfig) cfg = hal->mac_regs->gmacconfig;
/* Flush Transmit FIFO */
opm.flush_tx_fifo = 1;
/* Stop DMA transmission */
opm.start_stop_transmission_command = 0;
/* Stop DMA reception */
opm.start_stop_rx = 0;
/* Disable receive state machine of the MAC for reception from the MII */
cfg.rx = 0;
/* Disable transmit state machine of the MAC for transmission on the MII */
cfg.tx = 0;
hal->dma_regs->dmaoperation_mode = opm;
hal->mac_regs->gmacconfig = cfg;
/* Disable Ethernet MAC and DMA Interrupt */
hal->dma_regs->dmain_en.val = 0x0;
}
uint32_t emac_hal_get_tx_desc_owner(emac_hal_context_t *hal)
{
return hal->tx_desc->TDES0.Own;
}
uint32_t emac_hal_transmit_frame(emac_hal_context_t *hal, uint8_t *buf, uint32_t length)
{
/* Get the number of Tx buffers to use for the frame */
uint32_t bufcount = 0;
uint32_t lastlen = length;
uint32_t sentout = 0;
while (lastlen > CONFIG_ETH_DMA_BUFFER_SIZE) {
lastlen -= CONFIG_ETH_DMA_BUFFER_SIZE;
bufcount++;
}
if (lastlen) {
bufcount++;
}
/* A frame is transmitted in multiple descriptor */
for (uint32_t i = 0; i < bufcount; i++) {
/* Check if the descriptor is owned by the Ethernet DMA (when 1) or CPU (when 0) */
if (hal->tx_desc->TDES0.Own != EMAC_DMADESC_OWNER_CPU) {
goto err;
}
/* Clear FIRST and LAST segment bits */
hal->tx_desc->TDES0.FirstSegment = 0;
hal->tx_desc->TDES0.LastSegment = 0;
if (i == 0) {
/* Setting the first segment bit */
hal->tx_desc->TDES0.FirstSegment = 1;
}
if (i == (bufcount - 1)) {
/* Setting the last segment bit */
hal->tx_desc->TDES0.LastSegment = 1;
/* Enable transmit interrupt */
hal->tx_desc->TDES0.InterruptOnComplete = 1;
/* Program size */
hal->tx_desc->TDES1.TransmitBuffer1Size = lastlen;
/* copy data from uplayer stack buffer */
memcpy((void *)(hal->tx_desc->Buffer1Addr), buf + i * CONFIG_ETH_DMA_BUFFER_SIZE, lastlen);
sentout += lastlen;
} else {
/* Program size */
hal->tx_desc->TDES1.TransmitBuffer1Size = CONFIG_ETH_DMA_BUFFER_SIZE;
/* copy data from uplayer stack buffer */
memcpy((void *)(hal->tx_desc->Buffer1Addr), buf + i * CONFIG_ETH_DMA_BUFFER_SIZE, CONFIG_ETH_DMA_BUFFER_SIZE);
sentout += CONFIG_ETH_DMA_BUFFER_SIZE;
}
/* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */
hal->tx_desc->TDES0.Own = EMAC_DMADESC_OWNER_DMA;
/* Point to next descriptor */
hal->tx_desc = (eth_dma_tx_descriptor_t *)(hal->tx_desc->Buffer2NextDescAddr);
}
err:
hal->dma_regs->dmatxpolldemand = 0;
return sentout;
}
uint32_t emac_hal_receive_frame(emac_hal_context_t *hal, uint8_t *buf, uint32_t size, uint32_t *frames_remain)
{
eth_dma_rx_descriptor_t *desc_iter = NULL;
eth_dma_rx_descriptor_t *first_desc = NULL;
uint32_t iter = 0;
uint32_t seg_count = 0;
uint32_t ret_len = 0;
uint32_t copy_len = 0;
uint32_t write_len = 0;
uint32_t frame_count = 0;
first_desc = hal->rx_desc;
desc_iter = hal->rx_desc;
/* Traverse descriptors owned by CPU */
while ((desc_iter->RDES0.Own != EMAC_DMADESC_OWNER_DMA) && (iter < CONFIG_ETH_DMA_RX_BUFFER_NUM) && !frame_count) {
iter++;
seg_count++;
/* Last segment in frame */
if (desc_iter->RDES0.LastDescriptor) {
/* Get the Frame Length of the received packet: substruct 4 bytes of the CRC */
ret_len = desc_iter->RDES0.FrameLength - ETH_CRC_LENGTH;
/* packets larger than expected will be truncated */
copy_len = ret_len > size ? size : ret_len;
/* update unhandled frame count */
frame_count++;
}
/* First segment in frame */
if (desc_iter->RDES0.FirstDescriptor) {
first_desc = desc_iter;
}
/* point to next descriptor */
desc_iter = (eth_dma_rx_descriptor_t *)(desc_iter->Buffer2NextDescAddr);
}
/* there's at least one frame to process */
if (frame_count) {
/* check how many frames left to handle */
while ((desc_iter->RDES0.Own != EMAC_DMADESC_OWNER_DMA) && (iter < CONFIG_ETH_DMA_RX_BUFFER_NUM)) {
iter++;
if (desc_iter->RDES0.LastDescriptor) {
frame_count++;
}
/* point to next descriptor */
desc_iter = (eth_dma_rx_descriptor_t *)(desc_iter->Buffer2NextDescAddr);
}
desc_iter = first_desc;
for (iter = 0; iter < seg_count - 1; iter++) {
write_len = copy_len < CONFIG_ETH_DMA_BUFFER_SIZE ? copy_len : CONFIG_ETH_DMA_BUFFER_SIZE;
/* copy data to buffer */
memcpy(buf, (void *)(desc_iter->Buffer1Addr), write_len);
buf += write_len;
copy_len -= write_len;
/* Set Own bit in Rx descriptors: gives the buffers back to DMA */
desc_iter->RDES0.Own = EMAC_DMADESC_OWNER_DMA;
desc_iter = (eth_dma_rx_descriptor_t *)(desc_iter->Buffer2NextDescAddr);
}
memcpy(buf, (void *)(desc_iter->Buffer1Addr), copy_len);
desc_iter->RDES0.Own = EMAC_DMADESC_OWNER_DMA;
/* update rxdesc */
hal->rx_desc = (eth_dma_rx_descriptor_t *)(desc_iter->Buffer2NextDescAddr);
/* poll rx demand */
hal->dma_regs->dmarxpolldemand = 0;
frame_count--;
}
*frames_remain = frame_count;
return ret_len;
}
IRAM_ATTR void emac_hal_isr(void *arg)
{
emac_hal_context_t *hal = (emac_hal_context_t *)arg;
typeof(hal->dma_regs->dmastatus) dma_status = hal->dma_regs->dmastatus;
/* DMA Normal Interrupt */
if (dma_status.norm_int_summ) {
/* Transmit Interrupt */
if (dma_status.trans_int) {
emac_hal_tx_complete_cb(arg);
hal->dma_regs->dmastatus.trans_int = 1;
}
/* Transmit Buffer Unavailable */
if (dma_status.trans_buf_unavail) {
emac_hal_tx_unavail_cb(arg);
hal->dma_regs->dmastatus.trans_buf_unavail = 1;
}
/* Receive Interrupt */
if (dma_status.recv_int) {
emac_hal_rx_complete_cb(arg);
hal->dma_regs->dmastatus.recv_int = 1;
}
/* Early Receive Interrupt */
if (dma_status.early_recv_int) {
emac_hal_rx_early_cb(arg);
hal->dma_regs->dmastatus.early_recv_int = 1;
}
hal->dma_regs->dmastatus.norm_int_summ = 1;
}
/* DMA Abnormal Interrupt */
if (dma_status.abn_int_summ) {
/* Transmit Process Stopped */
if (dma_status.trans_proc_stop) {
hal->dma_regs->dmastatus.trans_proc_stop = 1;
}
/* Transmit Jabber Timeout */
if (dma_status.trans_jabber_to) {
hal->dma_regs->dmastatus.trans_jabber_to = 1;
}
/* Receive FIFO Overflow */
if (dma_status.recv_ovflow) {
hal->dma_regs->dmastatus.recv_ovflow = 1;
}
/* Transmit Underflow */
if (dma_status.trans_undflow) {
hal->dma_regs->dmastatus.trans_undflow = 1;
}
/* Receive Buffer Unavailable */
if (dma_status.recv_buf_unavail) {
emac_hal_rx_unavail_cb(arg);
hal->dma_regs->dmastatus.recv_buf_unavail = 1;
}
/* Receive Process Stopped */
if (dma_status.recv_proc_stop) {
hal->dma_regs->dmastatus.recv_proc_stop = 1;
}
/* Receive Watchdog Timeout */
if (dma_status.recv_wdt_to) {
hal->dma_regs->dmastatus.recv_wdt_to = 1;
}
/* Early Transmit Interrupt */
if (dma_status.early_trans_int) {
hal->dma_regs->dmastatus.early_trans_int = 1;
}
/* Fatal Bus Error */
if (dma_status.fatal_bus_err_int) {
hal->dma_regs->dmastatus.fatal_bus_err_int = 1;
}
hal->dma_regs->dmastatus.abn_int_summ = 1;
}
}
IRAM_ATTR __attribute__((weak)) void emac_hal_tx_complete_cb(void *arg)
{
// This is a weak function, do nothing by default
// Upper code can rewrite this function
// Note: you're in the interrupt context
return;
}
IRAM_ATTR __attribute__((weak)) void emac_hal_tx_unavail_cb(void *arg)
{
// This is a weak function, do nothing by default
// Upper code can rewrite this function
// Note: you're in the interrupt context
return;
}
IRAM_ATTR __attribute__((weak)) void emac_hal_rx_complete_cb(void *arg)
{
// This is a weak function, do nothing by default
// Upper code can rewrite this function
// Note: you're in the interrupt context
return;
}
IRAM_ATTR __attribute__((weak)) void emac_hal_rx_early_cb(void *arg)
{
// This is a weak function, do nothing by default
// Upper code can rewrite this function
// Note: you're in the interrupt context
return;
}
IRAM_ATTR __attribute__((weak)) void emac_hal_rx_unavail_cb(void *arg)
{
// This is a weak function, do nothing by default
// Upper code can rewrite this function
// Note: you're in the interrupt context
return;
}