esp-idf/components/driver/spi_common.c
Omar Chebib 84dc42c4b0 gpio: Disable USB JTAG when setting pins 18 and 19 as GPIOs on ESP32C3
When `DIS_USB_JTAG` eFuse is NOT burned (`False`), it is not possible
to set pins 18 and 19 as GPIOs. This commit solves this by manually
disabling USB JTAG when using pins 18 or 19.
The functions shall use `gpio_hal_iomux_func_sel` instead of
`PIN_FUNC_SELELECT`.
2021-04-12 17:45:06 +08:00

843 lines
30 KiB
C

// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "sdkconfig.h"
#include "driver/spi_master.h"
#include "soc/spi_periph.h"
#include "esp_types.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_err.h"
#include "soc/soc.h"
#include "soc/soc_caps.h"
#include "soc/lldesc.h"
#include "driver/gpio.h"
#include "driver/periph_ctrl.h"
#include "esp_heap_caps.h"
#include "driver/spi_common_internal.h"
#include "stdatomic.h"
#include "hal/spi_hal.h"
#include "hal/gpio_hal.h"
#include "esp_rom_gpio.h"
#if CONFIG_IDF_TARGET_ESP32
#include "soc/dport_reg.h"
#endif
#if SOC_GDMA_SUPPORTED
#include "esp_private/gdma.h"
#endif
static const char *SPI_TAG = "spi";
#define SPI_CHECK(a, str, ret_val) do { \
if (!(a)) { \
ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
return (ret_val); \
} \
} while(0)
#define SPI_CHECK_PIN(pin_num, pin_name, check_output) if (check_output) { \
SPI_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \
} else { \
SPI_CHECK(GPIO_IS_VALID_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \
}
#define SPI_MAIN_BUS_DEFAULT() { \
.host_id = 0, \
.bus_attr = { \
.tx_dma_chan = 0, \
.rx_dma_chan = 0, \
.max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE, \
.dma_desc_num= 0, \
}, \
}
#define FUNC_GPIO PIN_FUNC_GPIO
typedef struct {
int host_id;
spi_destroy_func_t destroy_func;
void* destroy_arg;
spi_bus_attr_t bus_attr;
#if SOC_GDMA_SUPPORTED
gdma_channel_handle_t tx_channel;
gdma_channel_handle_t rx_channel;
#endif
} spicommon_bus_context_t;
//Periph 1 is 'claimed' by SPI flash code.
static atomic_bool spi_periph_claimed[SOC_SPI_PERIPH_NUM] = { ATOMIC_VAR_INIT(true), ATOMIC_VAR_INIT(false),
#if (SOC_SPI_PERIPH_NUM >= 3)
ATOMIC_VAR_INIT(false),
#endif
#if (SOC_SPI_PERIPH_NUM >= 4)
ATOMIC_VAR_INIT(false),
#endif
};
static const char* spi_claiming_func[3] = {NULL, NULL, NULL};
static spicommon_bus_context_t s_mainbus = SPI_MAIN_BUS_DEFAULT();
static spicommon_bus_context_t* bus_ctx[SOC_SPI_PERIPH_NUM] = {&s_mainbus};
#if !SOC_GDMA_SUPPORTED
//Each bit stands for 1 dma channel, BIT(0) should be used for SPI1
static uint8_t spi_dma_chan_enabled = 0;
static portMUX_TYPE spi_dma_spinlock = portMUX_INITIALIZER_UNLOCKED;
#endif //#if !SOC_GDMA_SUPPORTED
static inline bool is_valid_host(spi_host_device_t host)
{
#if (SOC_SPI_PERIPH_NUM == 2)
return host >= SPI1_HOST && host <= SPI2_HOST;
#elif (SOC_SPI_PERIPH_NUM == 3)
return host >= SPI1_HOST && host <= SPI3_HOST;
#endif
}
//----------------------------------------------------------alloc spi periph-------------------------------------------------------//
//Returns true if this peripheral is successfully claimed, false if otherwise.
bool spicommon_periph_claim(spi_host_device_t host, const char* source)
{
bool false_var = false;
bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &false_var, true);
if (ret) {
spi_claiming_func[host] = source;
periph_module_enable(spi_periph_signal[host].module);
} else {
ESP_EARLY_LOGE(SPI_TAG, "SPI%d already claimed by %s.", host+1, spi_claiming_func[host]);
}
return ret;
}
bool spicommon_periph_in_use(spi_host_device_t host)
{
return atomic_load(&spi_periph_claimed[host]);
}
//Returns true if this peripheral is successfully freed, false if otherwise.
bool spicommon_periph_free(spi_host_device_t host)
{
bool true_var = true;
bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &true_var, false);
if (ret) periph_module_disable(spi_periph_signal[host].module);
return ret;
}
int spicommon_irqsource_for_host(spi_host_device_t host)
{
return spi_periph_signal[host].irq;
}
int spicommon_irqdma_source_for_host(spi_host_device_t host)
{
return spi_periph_signal[host].irq_dma;
}
//----------------------------------------------------------alloc dma periph-------------------------------------------------------//
#if !SOC_GDMA_SUPPORTED
static inline periph_module_t get_dma_periph(int dma_chan)
{
assert(dma_chan >= 1 && dma_chan <= SOC_SPI_DMA_CHAN_NUM);
#if CONFIG_IDF_TARGET_ESP32S2
if (dma_chan == 1) {
return PERIPH_SPI2_DMA_MODULE;
} else if (dma_chan == 2) {
return PERIPH_SPI3_DMA_MODULE;
} else {
abort();
}
#elif CONFIG_IDF_TARGET_ESP32
return PERIPH_SPI_DMA_MODULE;
#endif
}
static bool spicommon_dma_chan_claim(int dma_chan, uint32_t *out_actual_dma_chan)
{
bool ret = false;
portENTER_CRITICAL(&spi_dma_spinlock);
bool is_used = (BIT(dma_chan) & spi_dma_chan_enabled);
if (!is_used) {
spi_dma_chan_enabled |= BIT(dma_chan);
periph_module_enable(get_dma_periph(dma_chan));
*out_actual_dma_chan = dma_chan;
ret = true;
}
portEXIT_CRITICAL(&spi_dma_spinlock);
return ret;
}
static void spicommon_connect_spi_and_dma(spi_host_device_t host, int dma_chan)
{
#if CONFIG_IDF_TARGET_ESP32
DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, dma_chan, (host * 2));
#elif CONFIG_IDF_TARGET_ESP32S2
//On ESP32S2, each SPI controller has its own DMA channel. So there is no need to connect them.
#endif
}
static esp_err_t spicommon_dma_chan_alloc(spi_host_device_t host_id, spi_dma_chan_t dma_chan, uint32_t *out_actual_tx_dma_chan, uint32_t *out_actual_rx_dma_chan)
{
assert(is_valid_host(host_id));
#if CONFIG_IDF_TARGET_ESP32
assert(dma_chan > SPI_DMA_DISABLED && dma_chan <= SPI_DMA_CH_AUTO);
#elif CONFIG_IDF_TARGET_ESP32S2
assert(dma_chan == (int)host_id || dma_chan == SPI_DMA_CH_AUTO);
#endif
esp_err_t ret = ESP_OK;
bool success = false;
uint32_t actual_dma_chan = 0;
if (dma_chan == SPI_DMA_CH_AUTO) {
#if CONFIG_IDF_TARGET_ESP32
for (int i = 1; i < SOC_SPI_DMA_CHAN_NUM+1; i++) {
success = spicommon_dma_chan_claim(i, &actual_dma_chan);
if (success) {
break;
}
}
#elif CONFIG_IDF_TARGET_ESP32S2
//On ESP32S2, each SPI controller has its own DMA channel
success = spicommon_dma_chan_claim(host_id, &actual_dma_chan);
#endif //#if CONFIG_IDF_TARGET_XXX
} else {
success = spicommon_dma_chan_claim((int)dma_chan, &actual_dma_chan);
}
//On ESP32 and ESP32S2, actual_tx_dma_chan and actual_rx_dma_chan are always same
*out_actual_tx_dma_chan = actual_dma_chan;
*out_actual_rx_dma_chan = actual_dma_chan;
if (!success) {
SPI_CHECK(false, "no available dma channel", ESP_ERR_NOT_FOUND);
}
spicommon_connect_spi_and_dma(host_id, *out_actual_tx_dma_chan);
return ret;
}
#else //SOC_GDMA_SUPPORTED
static esp_err_t spicommon_dma_chan_alloc(spi_host_device_t host_id, spi_dma_chan_t dma_chan, uint32_t *out_actual_tx_dma_chan, uint32_t *out_actual_rx_dma_chan)
{
assert(is_valid_host(host_id));
assert(dma_chan == SPI_DMA_CH_AUTO);
esp_err_t ret = ESP_OK;
spicommon_bus_context_t *ctx = bus_ctx[host_id];
if (dma_chan == SPI_DMA_CH_AUTO) {
gdma_channel_alloc_config_t tx_alloc_config = {
.flags.reserve_sibling = 1,
.direction = GDMA_CHANNEL_DIRECTION_TX,
};
ret = gdma_new_channel(&tx_alloc_config, &ctx->tx_channel);
if (ret != ESP_OK) {
return ret;
}
gdma_channel_alloc_config_t rx_alloc_config = {
.direction = GDMA_CHANNEL_DIRECTION_RX,
.sibling_chan = ctx->tx_channel,
};
ret = gdma_new_channel(&rx_alloc_config, &ctx->rx_channel);
if (ret != ESP_OK) {
return ret;
}
if (host_id == SPI2_HOST) {
gdma_connect(ctx->rx_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 2));
gdma_connect(ctx->tx_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 2));
}
#if (SOC_SPI_PERIPH_NUM >= 3)
else if (host_id == SPI3_HOST) {
gdma_connect(ctx->rx_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 3));
gdma_connect(ctx->tx_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 3));
}
#endif
gdma_get_channel_id(ctx->tx_channel, (int *)out_actual_tx_dma_chan);
gdma_get_channel_id(ctx->rx_channel, (int *)out_actual_rx_dma_chan);
}
return ret;
}
#endif //#if !SOC_GDMA_SUPPORTED
esp_err_t spicommon_slave_dma_chan_alloc(spi_host_device_t host_id, spi_dma_chan_t dma_chan, uint32_t *out_actual_tx_dma_chan, uint32_t *out_actual_rx_dma_chan)
{
assert(is_valid_host(host_id));
#if CONFIG_IDF_TARGET_ESP32
assert(dma_chan > SPI_DMA_DISABLED && dma_chan <= SPI_DMA_CH_AUTO);
#elif CONFIG_IDF_TARGET_ESP32S2
assert(dma_chan == (int)host_id || dma_chan == SPI_DMA_CH_AUTO);
#endif
esp_err_t ret = ESP_OK;
uint32_t actual_tx_dma_chan = 0;
uint32_t actual_rx_dma_chan = 0;
spicommon_bus_context_t *ctx = (spicommon_bus_context_t *)calloc(1, sizeof(spicommon_bus_context_t));
if (!ctx) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
bus_ctx[host_id] = ctx;
ctx->host_id = host_id;
ret = spicommon_dma_chan_alloc(host_id, dma_chan, &actual_tx_dma_chan, &actual_rx_dma_chan);
if (ret != ESP_OK) {
goto cleanup;
}
ctx->bus_attr.tx_dma_chan = actual_tx_dma_chan;
ctx->bus_attr.rx_dma_chan = actual_rx_dma_chan;
*out_actual_tx_dma_chan = actual_tx_dma_chan;
*out_actual_rx_dma_chan = actual_rx_dma_chan;
return ret;
cleanup:
free(ctx);
ctx = NULL;
return ret;
}
//----------------------------------------------------------free dma periph-------------------------------------------------------//
static esp_err_t spicommon_dma_chan_free(spi_host_device_t host_id)
{
assert(is_valid_host(host_id));
spicommon_bus_context_t *ctx = bus_ctx[host_id];
#if !SOC_GDMA_SUPPORTED
//On ESP32S2, each SPI controller has its own DMA channel
int dma_chan = ctx->bus_attr.tx_dma_chan;
assert(spi_dma_chan_enabled & BIT(dma_chan));
portENTER_CRITICAL(&spi_dma_spinlock);
spi_dma_chan_enabled &= ~BIT(dma_chan);
periph_module_disable(get_dma_periph(dma_chan));
portEXIT_CRITICAL(&spi_dma_spinlock);
#else //SOC_GDMA_SUPPORTED
if (ctx->rx_channel) {
gdma_disconnect(ctx->rx_channel);
gdma_del_channel(ctx->rx_channel);
}
if (ctx->tx_channel) {
gdma_disconnect(ctx->tx_channel);
gdma_del_channel(ctx->tx_channel);
}
#endif
return ESP_OK;
}
esp_err_t spicommon_slave_free_dma(spi_host_device_t host_id)
{
assert(is_valid_host(host_id));
esp_err_t ret = spicommon_dma_chan_free(host_id);
free(bus_ctx[host_id]);
bus_ctx[host_id] = NULL;
return ret;
}
//----------------------------------------------------------IO general-------------------------------------------------------//
static bool bus_uses_iomux_pins(spi_host_device_t host, const spi_bus_config_t* bus_config)
{
if (bus_config->sclk_io_num>=0 &&
bus_config->sclk_io_num != spi_periph_signal[host].spiclk_iomux_pin) {
return false;
}
if (bus_config->quadwp_io_num>=0 &&
bus_config->quadwp_io_num != spi_periph_signal[host].spiwp_iomux_pin) {
return false;
}
if (bus_config->quadhd_io_num>=0 &&
bus_config->quadhd_io_num != spi_periph_signal[host].spihd_iomux_pin) {
return false;
}
if (bus_config->mosi_io_num >= 0 &&
bus_config->mosi_io_num != spi_periph_signal[host].spid_iomux_pin) {
return false;
}
if (bus_config->miso_io_num>=0 &&
bus_config->miso_io_num != spi_periph_signal[host].spiq_iomux_pin) {
return false;
}
return true;
}
/*
Do the common stuff to hook up a SPI host to a bus defined by a bunch of GPIO pins. Feed it a host number and a
bus config struct and it'll set up the GPIO matrix and enable the device. If a pin is set to non-negative value,
it should be able to be initialized.
*/
esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, uint32_t flags, uint32_t* flags_o)
{
uint32_t temp_flag = 0;
bool miso_need_output;
bool mosi_need_output;
bool sclk_need_output;
if ((flags&SPICOMMON_BUSFLAG_MASTER) != 0) {
//initial for master
miso_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false;
mosi_need_output = true;
sclk_need_output = true;
} else {
//initial for slave
miso_need_output = true;
mosi_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false;
sclk_need_output = false;
}
const bool wp_need_output = true;
const bool hd_need_output = true;
//check pin capabilities
if (bus_config->sclk_io_num>=0) {
temp_flag |= SPICOMMON_BUSFLAG_SCLK;
SPI_CHECK_PIN(bus_config->sclk_io_num, "sclk", sclk_need_output);
}
if (bus_config->quadwp_io_num>=0) {
SPI_CHECK_PIN(bus_config->quadwp_io_num, "wp", wp_need_output);
}
if (bus_config->quadhd_io_num>=0) {
SPI_CHECK_PIN(bus_config->quadhd_io_num, "hd", hd_need_output);
}
//set flags for QUAD mode according to the existence of wp and hd
if (bus_config->quadhd_io_num >= 0 && bus_config->quadwp_io_num >= 0) temp_flag |= SPICOMMON_BUSFLAG_WPHD;
if (bus_config->mosi_io_num >= 0) {
temp_flag |= SPICOMMON_BUSFLAG_MOSI;
SPI_CHECK_PIN(bus_config->mosi_io_num, "mosi", mosi_need_output);
}
if (bus_config->miso_io_num>=0) {
temp_flag |= SPICOMMON_BUSFLAG_MISO;
SPI_CHECK_PIN(bus_config->miso_io_num, "miso", miso_need_output);
}
//set flags for DUAL mode according to output-capability of MOSI and MISO pins.
if ( (bus_config->mosi_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num)) &&
(bus_config->miso_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->miso_io_num)) ) {
temp_flag |= SPICOMMON_BUSFLAG_DUAL;
}
//check if the selected pins correspond to the iomux pins of the peripheral
bool use_iomux = !(flags & SPICOMMON_BUSFLAG_GPIO_PINS) && bus_uses_iomux_pins(host, bus_config);
if (use_iomux) {
temp_flag |= SPICOMMON_BUSFLAG_IOMUX_PINS;
} else {
temp_flag |= SPICOMMON_BUSFLAG_GPIO_PINS;
}
uint32_t missing_flag = flags & ~temp_flag;
missing_flag &= ~SPICOMMON_BUSFLAG_MASTER;//don't check this flag
if (missing_flag != 0) {
//check pins existence
if (missing_flag & SPICOMMON_BUSFLAG_SCLK) ESP_LOGE(SPI_TAG, "sclk pin required.");
if (missing_flag & SPICOMMON_BUSFLAG_MOSI) ESP_LOGE(SPI_TAG, "mosi pin required.");
if (missing_flag & SPICOMMON_BUSFLAG_MISO) ESP_LOGE(SPI_TAG, "miso pin required.");
if (missing_flag & SPICOMMON_BUSFLAG_DUAL) ESP_LOGE(SPI_TAG, "not both mosi and miso output capable");
if (missing_flag & SPICOMMON_BUSFLAG_WPHD) ESP_LOGE(SPI_TAG, "both wp and hd required.");
if (missing_flag & SPICOMMON_BUSFLAG_IOMUX_PINS) ESP_LOGE(SPI_TAG, "not using iomux pins");
SPI_CHECK(missing_flag == 0, "not all required capabilities satisfied.", ESP_ERR_INVALID_ARG);
}
if (use_iomux) {
//All SPI iomux pin selections resolve to 1, so we put that here instead of trying to figure
//out which FUNC_GPIOx_xSPIxx to grab; they all are defined to 1 anyway.
ESP_LOGD(SPI_TAG, "SPI%d use iomux pins.", host+1);
if (bus_config->mosi_io_num >= 0) {
gpio_iomux_in(bus_config->mosi_io_num, spi_periph_signal[host].spid_in);
gpio_iomux_out(bus_config->mosi_io_num, spi_periph_signal[host].func, false);
}
if (bus_config->miso_io_num >= 0) {
gpio_iomux_in(bus_config->miso_io_num, spi_periph_signal[host].spiq_in);
gpio_iomux_out(bus_config->miso_io_num, spi_periph_signal[host].func, false);
}
if (bus_config->quadwp_io_num >= 0) {
gpio_iomux_in(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in);
gpio_iomux_out(bus_config->quadwp_io_num, spi_periph_signal[host].func, false);
}
if (bus_config->quadhd_io_num >= 0) {
gpio_iomux_in(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in);
gpio_iomux_out(bus_config->quadhd_io_num, spi_periph_signal[host].func, false);
}
if (bus_config->sclk_io_num >= 0) {
gpio_iomux_in(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in);
gpio_iomux_out(bus_config->sclk_io_num, spi_periph_signal[host].func, false);
}
temp_flag |= SPICOMMON_BUSFLAG_IOMUX_PINS;
} else {
//Use GPIO matrix
ESP_LOGD(SPI_TAG, "SPI%d use gpio matrix.", host+1);
if (bus_config->mosi_io_num >= 0) {
if (mosi_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) {
gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT_OUTPUT);
esp_rom_gpio_connect_out_signal(bus_config->mosi_io_num, spi_periph_signal[host].spid_out, false, false);
} else {
gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT);
}
esp_rom_gpio_connect_in_signal(bus_config->mosi_io_num, spi_periph_signal[host].spid_in, false);
#if CONFIG_IDF_TARGET_ESP32S2
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->mosi_io_num]);
#endif
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], FUNC_GPIO);
}
if (bus_config->miso_io_num >= 0) {
if (miso_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) {
gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT_OUTPUT);
esp_rom_gpio_connect_out_signal(bus_config->miso_io_num, spi_periph_signal[host].spiq_out, false, false);
} else {
gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT);
}
esp_rom_gpio_connect_in_signal(bus_config->miso_io_num, spi_periph_signal[host].spiq_in, false);
#if CONFIG_IDF_TARGET_ESP32S2
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->miso_io_num]);
#endif
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->miso_io_num], FUNC_GPIO);
}
if (bus_config->quadwp_io_num >= 0) {
gpio_set_direction(bus_config->quadwp_io_num, GPIO_MODE_INPUT_OUTPUT);
esp_rom_gpio_connect_out_signal(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_out, false, false);
esp_rom_gpio_connect_in_signal(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in, false);
#if CONFIG_IDF_TARGET_ESP32S2
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num]);
#endif
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], FUNC_GPIO);
}
if (bus_config->quadhd_io_num >= 0) {
gpio_set_direction(bus_config->quadhd_io_num, GPIO_MODE_INPUT_OUTPUT);
esp_rom_gpio_connect_out_signal(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_out, false, false);
esp_rom_gpio_connect_in_signal(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in, false);
#if CONFIG_IDF_TARGET_ESP32S2
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num]);
#endif
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], FUNC_GPIO);
}
if (bus_config->sclk_io_num >= 0) {
if (sclk_need_output) {
gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT_OUTPUT);
esp_rom_gpio_connect_out_signal(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_out, false, false);
} else {
gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT);
}
esp_rom_gpio_connect_in_signal(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in, false);
#if CONFIG_IDF_TARGET_ESP32S2
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->sclk_io_num]);
#endif
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], FUNC_GPIO);
}
}
if (flags_o) *flags_o = temp_flag;
return ESP_OK;
}
esp_err_t spicommon_bus_free_io_cfg(const spi_bus_config_t *bus_cfg)
{
int pin_array[] = {
bus_cfg->mosi_io_num,
bus_cfg->miso_io_num,
bus_cfg->sclk_io_num,
bus_cfg->quadwp_io_num,
bus_cfg->quadhd_io_num,
};
for (int i = 0; i < sizeof(pin_array)/sizeof(int); i ++) {
const int io = pin_array[i];
if (io >= 0 && GPIO_IS_VALID_GPIO(io)) gpio_reset_pin(io);
}
return ESP_OK;
}
void spicommon_cs_initialize(spi_host_device_t host, int cs_io_num, int cs_num, int force_gpio_matrix)
{
if (!force_gpio_matrix && cs_io_num == spi_periph_signal[host].spics0_iomux_pin && cs_num == 0) {
//The cs0s for all SPI peripherals map to pin mux source 1, so we use that instead of a define.
gpio_iomux_in(cs_io_num, spi_periph_signal[host].spics_in);
gpio_iomux_out(cs_io_num, spi_periph_signal[host].func, false);
} else {
//Use GPIO matrix
if (GPIO_IS_VALID_OUTPUT_GPIO(cs_io_num)) {
gpio_set_direction(cs_io_num, GPIO_MODE_INPUT_OUTPUT);
esp_rom_gpio_connect_out_signal(cs_io_num, spi_periph_signal[host].spics_out[cs_num], false, false);
} else {
gpio_set_direction(cs_io_num, GPIO_MODE_INPUT);
}
if (cs_num == 0) esp_rom_gpio_connect_in_signal(cs_io_num, spi_periph_signal[host].spics_in, false);
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[cs_io_num]);
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[cs_io_num], FUNC_GPIO);
}
}
void spicommon_cs_free_io(int cs_gpio_num)
{
assert(cs_gpio_num>=0 && GPIO_IS_VALID_GPIO(cs_gpio_num));
gpio_reset_pin(cs_gpio_num);
}
bool spicommon_bus_using_iomux(spi_host_device_t host)
{
#define CHECK_IOMUX_PIN(HOST, PIN_NAME) if (GPIO.func_in_sel_cfg[spi_periph_signal[(HOST)].PIN_NAME##_in].sig_in_sel) return false
CHECK_IOMUX_PIN(host, spid);
CHECK_IOMUX_PIN(host, spiq);
CHECK_IOMUX_PIN(host, spiwp);
CHECK_IOMUX_PIN(host, spihd);
return true;
}
void spi_bus_main_set_lock(spi_bus_lock_handle_t lock)
{
bus_ctx[0]->bus_attr.lock = lock;
}
spi_bus_lock_handle_t spi_bus_lock_get_by_id(spi_host_device_t host_id)
{
return bus_ctx[host_id]->bus_attr.lock;
}
//----------------------------------------------------------master bus init-------------------------------------------------------//
esp_err_t spi_bus_initialize(spi_host_device_t host_id, const spi_bus_config_t *bus_config, spi_dma_chan_t dma_chan)
{
esp_err_t err = ESP_OK;
spicommon_bus_context_t *ctx = NULL;
spi_bus_attr_t *bus_attr = NULL;
uint32_t actual_tx_dma_chan = 0;
uint32_t actual_rx_dma_chan = 0;
SPI_CHECK(is_valid_host(host_id), "invalid host_id", ESP_ERR_INVALID_ARG);
SPI_CHECK(bus_ctx[host_id] == NULL, "SPI bus already initialized.", ESP_ERR_INVALID_STATE);
#ifdef CONFIG_IDF_TARGET_ESP32
SPI_CHECK(dma_chan >= SPI_DMA_DISABLED && dma_chan <= SPI_DMA_CH_AUTO, "invalid dma channel", ESP_ERR_INVALID_ARG );
#elif CONFIG_IDF_TARGET_ESP32S2
SPI_CHECK( dma_chan == SPI_DMA_DISABLED || dma_chan == (int)host_id || dma_chan == SPI_DMA_CH_AUTO, "invalid dma channel", ESP_ERR_INVALID_ARG );
#elif SOC_GDMA_SUPPORTED
SPI_CHECK( dma_chan == SPI_DMA_DISABLED || dma_chan == SPI_DMA_CH_AUTO, "invalid dma channel, chip only support spi dma channel auto-alloc", ESP_ERR_INVALID_ARG );
#endif
SPI_CHECK((bus_config->intr_flags & (ESP_INTR_FLAG_HIGH|ESP_INTR_FLAG_EDGE|ESP_INTR_FLAG_INTRDISABLED))==0, "intr flag not allowed", ESP_ERR_INVALID_ARG);
#ifndef CONFIG_SPI_MASTER_ISR_IN_IRAM
SPI_CHECK((bus_config->intr_flags & ESP_INTR_FLAG_IRAM)==0, "ESP_INTR_FLAG_IRAM should be disabled when CONFIG_SPI_MASTER_ISR_IN_IRAM is not set.", ESP_ERR_INVALID_ARG);
#endif
bool spi_chan_claimed = spicommon_periph_claim(host_id, "spi master");
SPI_CHECK(spi_chan_claimed, "host_id already in use", ESP_ERR_INVALID_STATE);
//clean and initialize the context
ctx = (spicommon_bus_context_t *)calloc(1, sizeof(spicommon_bus_context_t));
if (!ctx) {
err = ESP_ERR_NO_MEM;
goto cleanup;
}
bus_ctx[host_id] = ctx;
ctx->host_id = host_id;
bus_attr = &ctx->bus_attr;
bus_attr->bus_cfg = *bus_config;
if (dma_chan != SPI_DMA_DISABLED) {
bus_attr->dma_enabled = 1;
err = spicommon_dma_chan_alloc(host_id, dma_chan, &actual_tx_dma_chan, &actual_rx_dma_chan);
if (err != ESP_OK) {
goto cleanup;
}
bus_attr->tx_dma_chan = actual_tx_dma_chan;
bus_attr->rx_dma_chan = actual_rx_dma_chan;
int dma_desc_ct = lldesc_get_required_num(bus_config->max_transfer_sz);
if (dma_desc_ct == 0) dma_desc_ct = 1; //default to 4k when max is not given
bus_attr->max_transfer_sz = dma_desc_ct * LLDESC_MAX_NUM_PER_DESC;
bus_attr->dmadesc_tx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA);
bus_attr->dmadesc_rx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA);
if (bus_attr->dmadesc_tx == NULL || bus_attr->dmadesc_rx == NULL) {
err = ESP_ERR_NO_MEM;
goto cleanup;
}
bus_attr->dma_desc_num = dma_desc_ct;
} else {
bus_attr->dma_enabled = 0;
bus_attr->max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE;
bus_attr->dma_desc_num = 0;
}
spi_bus_lock_config_t lock_config = {
.host_id = host_id,
.cs_num = SOC_SPI_PERIPH_CS_NUM(host_id),
};
err = spi_bus_init_lock(&bus_attr->lock, &lock_config);
if (err != ESP_OK) {
goto cleanup;
}
#ifdef CONFIG_PM_ENABLE
err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_master",
&bus_attr->pm_lock);
if (err != ESP_OK) {
goto cleanup;
}
#endif //CONFIG_PM_ENABLE
err = spicommon_bus_initialize_io(host_id, bus_config, SPICOMMON_BUSFLAG_MASTER | bus_config->flags, &bus_attr->flags);
if (err != ESP_OK) {
goto cleanup;
}
return ESP_OK;
cleanup:
if (bus_attr) {
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_delete(bus_attr->pm_lock);
#endif
if (bus_attr->lock) {
spi_bus_deinit_lock(bus_attr->lock);
}
free(bus_attr->dmadesc_tx);
free(bus_attr->dmadesc_rx);
bus_attr->dmadesc_tx = NULL;
bus_attr->dmadesc_rx = NULL;
if (bus_attr->dma_enabled) {
spicommon_dma_chan_free(host_id);
}
}
spicommon_periph_free(host_id);
free(bus_ctx[host_id]);
bus_ctx[host_id] = NULL;
return err;
}
const spi_bus_attr_t* spi_bus_get_attr(spi_host_device_t host_id)
{
if (bus_ctx[host_id] == NULL) return NULL;
return &bus_ctx[host_id]->bus_attr;
}
esp_err_t spi_bus_free(spi_host_device_t host_id)
{
esp_err_t err = ESP_OK;
spicommon_bus_context_t* ctx = bus_ctx[host_id];
spi_bus_attr_t* bus_attr = &ctx->bus_attr;
if (ctx->destroy_func) {
err = ctx->destroy_func(ctx->destroy_arg);
}
spicommon_bus_free_io_cfg(&bus_attr->bus_cfg);
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_delete(bus_attr->pm_lock);
#endif
spi_bus_deinit_lock(bus_attr->lock);
free(bus_attr->dmadesc_rx);
free(bus_attr->dmadesc_tx);
bus_attr->dmadesc_tx = NULL;
bus_attr->dmadesc_rx = NULL;
if (bus_attr->dma_enabled > 0) {
spicommon_dma_chan_free(host_id);
}
spicommon_periph_free(host_id);
free(ctx);
bus_ctx[host_id] = NULL;
return err;
}
esp_err_t spi_bus_register_destroy_func(spi_host_device_t host_id,
spi_destroy_func_t f, void *arg)
{
bus_ctx[host_id]->destroy_func = f;
bus_ctx[host_id]->destroy_arg = arg;
return ESP_OK;
}
/*
Code for workaround for DMA issue in ESP32 v0/v1 silicon
*/
#if CONFIG_IDF_TARGET_ESP32
static volatile int dmaworkaround_channels_busy[2] = {0, 0};
static dmaworkaround_cb_t dmaworkaround_cb;
static void *dmaworkaround_cb_arg;
static portMUX_TYPE dmaworkaround_mux = portMUX_INITIALIZER_UNLOCKED;
static int dmaworkaround_waiting_for_chan = 0;
#endif
bool IRAM_ATTR spicommon_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg)
{
#if CONFIG_IDF_TARGET_ESP32
int otherchan = (dmachan == 1) ? 2 : 1;
bool ret;
portENTER_CRITICAL_ISR(&dmaworkaround_mux);
if (dmaworkaround_channels_busy[otherchan-1]) {
//Other channel is busy. Call back when it's done.
dmaworkaround_cb = cb;
dmaworkaround_cb_arg = arg;
dmaworkaround_waiting_for_chan = otherchan;
ret = false;
} else {
//Reset DMA
periph_module_reset( PERIPH_SPI_DMA_MODULE );
ret = true;
}
portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
return ret;
#else
//no need to reset
return true;
#endif
}
bool IRAM_ATTR spicommon_dmaworkaround_reset_in_progress(void)
{
#if CONFIG_IDF_TARGET_ESP32
return (dmaworkaround_waiting_for_chan != 0);
#else
return false;
#endif
}
void IRAM_ATTR spicommon_dmaworkaround_idle(int dmachan)
{
#if CONFIG_IDF_TARGET_ESP32
portENTER_CRITICAL_ISR(&dmaworkaround_mux);
dmaworkaround_channels_busy[dmachan-1] = 0;
if (dmaworkaround_waiting_for_chan == dmachan) {
//Reset DMA
periph_module_reset( PERIPH_SPI_DMA_MODULE );
dmaworkaround_waiting_for_chan = 0;
//Call callback
dmaworkaround_cb(dmaworkaround_cb_arg);
}
portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
#endif
}
void IRAM_ATTR spicommon_dmaworkaround_transfer_active(int dmachan)
{
#if CONFIG_IDF_TARGET_ESP32
portENTER_CRITICAL_ISR(&dmaworkaround_mux);
dmaworkaround_channels_busy[dmachan-1] = 1;
portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
#endif
}