mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
2cd1635b86
For ESP32-H2 case, the hardware k mode is always enforced through efuse settings (done in startup code). For ESP32-P4 case, the software k mode is not supported in the peripheral itself and code was redundant.
408 lines
15 KiB
C
408 lines
15 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#include <string.h>
|
|
#include "hal/ecdsa_hal.h"
|
|
#include "esp_crypto_lock.h"
|
|
#include "esp_efuse.h"
|
|
#include "mbedtls/ecp.h"
|
|
#include "mbedtls/error.h"
|
|
#include "mbedtls/ecdsa.h"
|
|
#include "mbedtls/asn1write.h"
|
|
#include "mbedtls/platform_util.h"
|
|
#include "esp_private/periph_ctrl.h"
|
|
#include "ecdsa/ecdsa_alt.h"
|
|
|
|
#define ECDSA_KEY_MAGIC (short) 0xECD5A
|
|
#define ECDSA_SHA_LEN 32
|
|
#define MAX_ECDSA_COMPONENT_LEN 32
|
|
|
|
__attribute__((unused)) static const char *TAG = "ecdsa_alt";
|
|
|
|
static void esp_ecdsa_acquire_hardware(void)
|
|
{
|
|
esp_crypto_ecdsa_lock_acquire();
|
|
|
|
periph_module_enable(PERIPH_ECDSA_MODULE);
|
|
}
|
|
|
|
static void esp_ecdsa_release_hardware(void)
|
|
{
|
|
periph_module_disable(PERIPH_ECDSA_MODULE);
|
|
|
|
esp_crypto_ecdsa_lock_release();
|
|
}
|
|
|
|
static void ecdsa_be_to_le(const uint8_t* be_point, uint8_t *le_point, uint8_t len)
|
|
{
|
|
/* When the size is 24 bytes, it should be padded with 0 bytes*/
|
|
memset(le_point, 0x0, 32);
|
|
|
|
for(int i = 0; i < len; i++) {
|
|
le_point[i] = be_point[len - i - 1];
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_MBEDTLS_HARDWARE_ECDSA_SIGN
|
|
int esp_ecdsa_privkey_load_mpi(mbedtls_mpi *key, int efuse_blk)
|
|
{
|
|
if (!key) {
|
|
ESP_LOGE(TAG, "Invalid memory");
|
|
return -1;
|
|
}
|
|
|
|
if (efuse_blk < EFUSE_BLK_KEY0 || efuse_blk >= EFUSE_BLK_KEY_MAX) {
|
|
ESP_LOGE(TAG, "Invalid efuse block");
|
|
return -1;
|
|
}
|
|
|
|
mbedtls_mpi_init(key);
|
|
|
|
/* We use the mbedtls_mpi struct to pass our own context to hardware ECDSA peripheral
|
|
* MPI struct expects `s` to be either 1 or -1, by setting it to 0xECD5A, we ensure that it does
|
|
* not collide with a valid MPI. This is done to differentiate between using the private key stored in efuse
|
|
* or using the private key provided by software
|
|
*
|
|
* `n` is used to store the efuse block which should be used as key
|
|
*/
|
|
key->MBEDTLS_PRIVATE(s) = ECDSA_KEY_MAGIC;
|
|
key->MBEDTLS_PRIVATE(n) = efuse_blk;
|
|
key->MBEDTLS_PRIVATE(p) = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int esp_ecdsa_privkey_load_pk_context(mbedtls_pk_context *key_ctx, int efuse_blk)
|
|
{
|
|
const mbedtls_pk_info_t *pk_info;
|
|
mbedtls_ecp_keypair *keypair;
|
|
|
|
if (!key_ctx) {
|
|
ESP_LOGE(TAG, "Invalid memory");
|
|
return -1;
|
|
}
|
|
|
|
if (efuse_blk < EFUSE_BLK_KEY0 || efuse_blk >= EFUSE_BLK_KEY_MAX) {
|
|
ESP_LOGE(TAG, "Invalid efuse block");
|
|
return -1;
|
|
}
|
|
|
|
mbedtls_pk_init(key_ctx);
|
|
pk_info = mbedtls_pk_info_from_type(MBEDTLS_PK_ECDSA);
|
|
mbedtls_pk_setup(key_ctx, pk_info);
|
|
keypair = mbedtls_pk_ec(*key_ctx);
|
|
|
|
return esp_ecdsa_privkey_load_mpi(&(keypair->MBEDTLS_PRIVATE(d)), efuse_blk);
|
|
}
|
|
|
|
static int esp_ecdsa_sign(mbedtls_ecp_group *grp, mbedtls_mpi* r, mbedtls_mpi* s,
|
|
const mbedtls_mpi *d, const unsigned char* msg, size_t msg_len)
|
|
{
|
|
ecdsa_curve_t curve;
|
|
esp_efuse_block_t blk;
|
|
uint16_t len;
|
|
uint8_t zeroes[MAX_ECDSA_COMPONENT_LEN] = {0};
|
|
uint8_t sha_le[ECDSA_SHA_LEN];
|
|
uint8_t r_le[MAX_ECDSA_COMPONENT_LEN];
|
|
uint8_t s_le[MAX_ECDSA_COMPONENT_LEN];
|
|
|
|
if (!grp || !r || !s || !d || !msg) {
|
|
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
|
|
}
|
|
|
|
if (msg_len != ECDSA_SHA_LEN) {
|
|
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
|
|
}
|
|
|
|
if (grp->id == MBEDTLS_ECP_DP_SECP192R1) {
|
|
curve = ECDSA_CURVE_SECP192R1;
|
|
len = 24;
|
|
} else if (grp->id == MBEDTLS_ECP_DP_SECP256R1) {
|
|
curve = ECDSA_CURVE_SECP256R1;
|
|
len = 32;
|
|
} else {
|
|
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
|
|
}
|
|
|
|
if (!esp_efuse_find_purpose(ESP_EFUSE_KEY_PURPOSE_ECDSA_KEY, &blk)) {
|
|
ESP_LOGE(TAG, "No efuse block with purpose ECDSA_KEY found");
|
|
return MBEDTLS_ERR_ECP_INVALID_KEY;
|
|
}
|
|
|
|
ecdsa_be_to_le(msg, sha_le, len);
|
|
|
|
esp_ecdsa_acquire_hardware();
|
|
|
|
do {
|
|
ecdsa_hal_config_t conf = {
|
|
.mode = ECDSA_MODE_SIGN_GEN,
|
|
.curve = curve,
|
|
.sha_mode = ECDSA_Z_USER_PROVIDED,
|
|
.efuse_key_blk = d->MBEDTLS_PRIVATE(n),
|
|
};
|
|
|
|
ecdsa_hal_gen_signature(&conf, sha_le, r_le, s_le, len);
|
|
} while (!memcmp(r_le, zeroes, len) || !memcmp(s_le, zeroes, len));
|
|
|
|
esp_ecdsa_release_hardware();
|
|
|
|
mbedtls_mpi_read_binary_le(r, r_le, len);
|
|
mbedtls_mpi_read_binary_le(s, s_le, len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Compute ECDSA signature of a hashed message;
|
|
*/
|
|
extern int __real_mbedtls_ecdsa_sign(mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
|
|
const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
|
|
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng);
|
|
|
|
int __wrap_mbedtls_ecdsa_sign(mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
|
|
const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
|
|
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng);
|
|
|
|
int __wrap_mbedtls_ecdsa_sign(mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
|
|
const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
|
|
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
|
|
{
|
|
/*
|
|
* Check `d` whether it contains the hardware key
|
|
*/
|
|
if (d->MBEDTLS_PRIVATE(s) == ECDSA_KEY_MAGIC) {
|
|
// Use hardware ECDSA peripheral
|
|
return esp_ecdsa_sign(grp, r, s, d, buf, blen);
|
|
} else {
|
|
return __real_mbedtls_ecdsa_sign(grp, r, s, d, buf, blen, f_rng, p_rng);
|
|
}
|
|
}
|
|
|
|
extern int __real_mbedtls_ecdsa_sign_restartable(mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
|
|
const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
|
|
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
|
|
int (*f_rng_blind)(void *, unsigned char *, size_t), void *p_rng_blind,
|
|
mbedtls_ecdsa_restart_ctx *rs_ctx);
|
|
|
|
int __wrap_mbedtls_ecdsa_sign_restartable(mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
|
|
const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
|
|
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
|
|
int (*f_rng_blind)(void *, unsigned char *, size_t), void *p_rng_blind,
|
|
mbedtls_ecdsa_restart_ctx *rs_ctx);
|
|
|
|
int __wrap_mbedtls_ecdsa_sign_restartable(mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
|
|
const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
|
|
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
|
|
int (*f_rng_blind)(void *, unsigned char *, size_t), void *p_rng_blind,
|
|
mbedtls_ecdsa_restart_ctx *rs_ctx)
|
|
{
|
|
/*
|
|
* Check `d` whether it contains the hardware key
|
|
*/
|
|
if (d->MBEDTLS_PRIVATE(s) == ECDSA_KEY_MAGIC) {
|
|
// Use hardware ECDSA peripheral
|
|
return esp_ecdsa_sign(grp, r, s, d, buf, blen);
|
|
} else {
|
|
return __real_mbedtls_ecdsa_sign_restartable(grp, r, s, d, buf, blen, f_rng, p_rng, f_rng_blind, p_rng_blind, rs_ctx);
|
|
}
|
|
}
|
|
|
|
int __real_mbedtls_ecdsa_write_signature_restartable(mbedtls_ecdsa_context *ctx,
|
|
mbedtls_md_type_t md_alg,
|
|
const unsigned char *hash, size_t hlen,
|
|
unsigned char *sig, size_t sig_size, size_t *slen,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
mbedtls_ecdsa_restart_ctx *rs_ctx);
|
|
|
|
int __wrap_mbedtls_ecdsa_write_signature_restartable(mbedtls_ecdsa_context *ctx,
|
|
mbedtls_md_type_t md_alg,
|
|
const unsigned char *hash, size_t hlen,
|
|
unsigned char *sig, size_t sig_size, size_t *slen,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
mbedtls_ecdsa_restart_ctx *rs_ctx);
|
|
|
|
/*
|
|
* Convert a signature (given by context) to ASN.1
|
|
*/
|
|
static int ecdsa_signature_to_asn1(const mbedtls_mpi *r, const mbedtls_mpi *s,
|
|
unsigned char *sig, size_t sig_size,
|
|
size_t *slen)
|
|
{
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
unsigned char buf[MBEDTLS_ECDSA_MAX_LEN] = { 0 };
|
|
// Setting the pointer p to the end of the buffer as the functions used afterwards write in backwards manner in the given buffer.
|
|
unsigned char *p = buf + sizeof(buf);
|
|
size_t len = 0;
|
|
|
|
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_mpi(&p, buf, s));
|
|
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_mpi(&p, buf, r));
|
|
|
|
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(&p, buf, len));
|
|
MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(&p, buf,
|
|
MBEDTLS_ASN1_CONSTRUCTED |
|
|
MBEDTLS_ASN1_SEQUENCE));
|
|
|
|
if (len > sig_size) {
|
|
return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
|
|
}
|
|
|
|
memcpy(sig, p, len);
|
|
*slen = len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __wrap_mbedtls_ecdsa_write_signature_restartable(mbedtls_ecdsa_context *ctx,
|
|
mbedtls_md_type_t md_alg,
|
|
const unsigned char *hash, size_t hlen,
|
|
unsigned char *sig, size_t sig_size, size_t *slen,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng,
|
|
mbedtls_ecdsa_restart_ctx *rs_ctx)
|
|
{
|
|
if (ctx->MBEDTLS_PRIVATE(d).MBEDTLS_PRIVATE(s) != ECDSA_KEY_MAGIC) {
|
|
return __real_mbedtls_ecdsa_write_signature_restartable(ctx, md_alg, hash, hlen, sig, sig_size, slen, f_rng, p_rng, rs_ctx);
|
|
}
|
|
|
|
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
|
|
mbedtls_mpi r, s;
|
|
|
|
mbedtls_mpi_init(&r);
|
|
mbedtls_mpi_init(&s);
|
|
|
|
/*
|
|
* Check `d` whether it contains the hardware key
|
|
*/
|
|
if (ctx->MBEDTLS_PRIVATE(d).MBEDTLS_PRIVATE(s) == ECDSA_KEY_MAGIC) {
|
|
// Use hardware ECDSA peripheral
|
|
|
|
MBEDTLS_MPI_CHK(esp_ecdsa_sign(&ctx->MBEDTLS_PRIVATE(grp), &r, &s, &ctx->MBEDTLS_PRIVATE(d), hash, hlen));
|
|
}
|
|
|
|
MBEDTLS_MPI_CHK(ecdsa_signature_to_asn1(&r, &s, sig, sig_size, slen));
|
|
|
|
cleanup:
|
|
mbedtls_mpi_free(&r);
|
|
mbedtls_mpi_free(&s);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __wrap_mbedtls_ecdsa_write_signature(mbedtls_ecdsa_context *ctx,
|
|
mbedtls_md_type_t md_alg,
|
|
const unsigned char *hash, size_t hlen,
|
|
unsigned char *sig, size_t sig_size, size_t *slen,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng);
|
|
|
|
int __wrap_mbedtls_ecdsa_write_signature(mbedtls_ecdsa_context *ctx,
|
|
mbedtls_md_type_t md_alg,
|
|
const unsigned char *hash, size_t hlen,
|
|
unsigned char *sig, size_t sig_size, size_t *slen,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng)
|
|
{
|
|
return __wrap_mbedtls_ecdsa_write_signature_restartable(
|
|
ctx, md_alg, hash, hlen, sig, sig_size, slen,
|
|
f_rng, p_rng, NULL);
|
|
}
|
|
#endif /* CONFIG_MBEDTLS_HARDWARE_ECDSA_SIGN */
|
|
|
|
#ifdef CONFIG_MBEDTLS_HARDWARE_ECDSA_VERIFY
|
|
static int esp_ecdsa_verify(mbedtls_ecp_group *grp,
|
|
const unsigned char *buf, size_t blen,
|
|
const mbedtls_ecp_point *Q,
|
|
const mbedtls_mpi *r,
|
|
const mbedtls_mpi *s)
|
|
{
|
|
ecdsa_curve_t curve;
|
|
uint16_t len;
|
|
uint8_t r_le[MAX_ECDSA_COMPONENT_LEN];
|
|
uint8_t s_le[MAX_ECDSA_COMPONENT_LEN];
|
|
uint8_t qx_le[MAX_ECDSA_COMPONENT_LEN];
|
|
uint8_t qy_le[MAX_ECDSA_COMPONENT_LEN];
|
|
uint8_t sha_le[ECDSA_SHA_LEN];
|
|
|
|
if (!grp || !buf || !Q || !r || !s) {
|
|
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
|
|
}
|
|
|
|
if (blen != ECDSA_SHA_LEN) {
|
|
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
|
|
}
|
|
|
|
if (grp->id == MBEDTLS_ECP_DP_SECP192R1) {
|
|
curve = ECDSA_CURVE_SECP192R1;
|
|
len = 24;
|
|
} else if (grp->id == MBEDTLS_ECP_DP_SECP256R1) {
|
|
curve = ECDSA_CURVE_SECP256R1;
|
|
len = 32;
|
|
} else {
|
|
return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
|
|
}
|
|
|
|
if (mbedtls_mpi_cmp_int(r, 1) < 0 || mbedtls_mpi_cmp_mpi(r, &grp->N) >= 0 ||
|
|
mbedtls_mpi_cmp_int(s, 1) < 0 || mbedtls_mpi_cmp_mpi(s, &grp->N) >= 0 )
|
|
{
|
|
return MBEDTLS_ERR_ECP_VERIFY_FAILED;
|
|
}
|
|
|
|
ecdsa_be_to_le(buf, sha_le, len);
|
|
|
|
mbedtls_mpi_write_binary_le(&Q->MBEDTLS_PRIVATE(X), qx_le, len);
|
|
mbedtls_mpi_write_binary_le(&Q->MBEDTLS_PRIVATE(Y), qy_le, len);
|
|
mbedtls_mpi_write_binary_le(r, r_le, len);
|
|
mbedtls_mpi_write_binary_le(s, s_le, len);
|
|
|
|
esp_ecdsa_acquire_hardware();
|
|
|
|
ecdsa_hal_config_t conf = {
|
|
.mode = ECDSA_MODE_SIGN_VERIFY,
|
|
.curve = curve,
|
|
.sha_mode = ECDSA_Z_USER_PROVIDED,
|
|
};
|
|
|
|
int ret = ecdsa_hal_verify_signature(&conf, sha_le, r_le, s_le, qx_le, qy_le, len);
|
|
|
|
esp_ecdsa_release_hardware();
|
|
|
|
if (ret != 0) {
|
|
return MBEDTLS_ERR_ECP_VERIFY_FAILED;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Verify ECDSA signature of hashed message
|
|
*/
|
|
extern int __real_mbedtls_ecdsa_verify(mbedtls_ecp_group *grp,
|
|
const unsigned char *buf, size_t blen,
|
|
const mbedtls_ecp_point *Q,
|
|
const mbedtls_mpi *r,
|
|
const mbedtls_mpi *s);
|
|
|
|
int __wrap_mbedtls_ecdsa_verify(mbedtls_ecp_group *grp,
|
|
const unsigned char *buf, size_t blen,
|
|
const mbedtls_ecp_point *Q,
|
|
const mbedtls_mpi *r,
|
|
const mbedtls_mpi *s);
|
|
|
|
int __wrap_mbedtls_ecdsa_verify(mbedtls_ecp_group *grp,
|
|
const unsigned char *buf, size_t blen,
|
|
const mbedtls_ecp_point *Q,
|
|
const mbedtls_mpi *r,
|
|
const mbedtls_mpi *s)
|
|
{
|
|
if (grp->id == MBEDTLS_ECP_DP_SECP192R1 || grp->id == MBEDTLS_ECP_DP_SECP256R1) {
|
|
return esp_ecdsa_verify(grp, buf, blen, Q, r, s);
|
|
} else {
|
|
return __real_mbedtls_ecdsa_verify(grp, buf, blen, Q, r, s);
|
|
}
|
|
}
|
|
#endif /* CONFIG_MBEDTLS_HARDWARE_ECDSA_VERIFY */
|