esp-idf/components/log/log.c
Jiang Jiang Jian e9a4eb57b9 Merge branch 'bugfix/log_hex_buffer_pr1519' into 'master'
Fix hexdump comment and array size. See issue #1518.

See merge request !1832
2018-01-23 22:45:55 +08:00

468 lines
15 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* Log library implementation notes.
*
* Log library stores all tags provided to esp_log_level_set as a linked
* list. See uncached_tag_entry_t structure.
*
* To avoid looking up log level for given tag each time message is
* printed, this library caches pointers to tags. Because the suggested
* way of creating tags uses one 'TAG' constant per file, this caching
* should be effective. Cache is a binary min-heap of cached_tag_entry_t
* items, ordering is done on 'generation' member. In this context,
* generation is an integer which is incremented each time an operation
* with cache is performed. When cache is full, new item is inserted in
* place of an oldest item (that is, with smallest 'generation' value).
* After that, bubble-down operation is performed to fix ordering in the
* min-heap.
*
* The potential problem with wrap-around of cache generation counter is
* ignored for now. This will happen if someone happens to output more
* than 4 billion log entries, at which point wrap-around will not be
* the biggest problem.
*
*/
#ifndef BOOTLOADER_BUILD
#include <freertos/FreeRTOS.h>
#include <freertos/FreeRTOSConfig.h>
#include <freertos/task.h>
#include <freertos/semphr.h>
#endif
#include "esp_attr.h"
#include "xtensa/hal.h"
#include "soc/soc.h"
#include <stdbool.h>
#include <stdarg.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <ctype.h>
#include "esp_log.h"
#include "rom/queue.h"
#include "soc/soc_memory_layout.h"
//print number of bytes per line for esp_log_buffer_char and esp_log_buffer_hex
#define BYTES_PER_LINE 16
#ifndef BOOTLOADER_BUILD
// Number of tags to be cached. Must be 2**n - 1, n >= 2.
#define TAG_CACHE_SIZE 31
// Maximum time to wait for the mutex in a logging statement.
#define MAX_MUTEX_WAIT_MS 10
#define MAX_MUTEX_WAIT_TICKS ((MAX_MUTEX_WAIT_MS + portTICK_PERIOD_MS - 1) / portTICK_PERIOD_MS)
// Uncomment this to enable consistency checks and cache statistics in this file.
// #define LOG_BUILTIN_CHECKS
typedef struct {
const char* tag;
uint32_t level : 3;
uint32_t generation : 29;
} cached_tag_entry_t;
typedef struct uncached_tag_entry_{
SLIST_ENTRY(uncached_tag_entry_) entries;
uint8_t level; // esp_log_level_t as uint8_t
char tag[0]; // beginning of a zero-terminated string
} uncached_tag_entry_t;
static esp_log_level_t s_log_default_level = ESP_LOG_VERBOSE;
static SLIST_HEAD(log_tags_head , uncached_tag_entry_) s_log_tags = SLIST_HEAD_INITIALIZER(s_log_tags);
static cached_tag_entry_t s_log_cache[TAG_CACHE_SIZE];
static uint32_t s_log_cache_max_generation = 0;
static uint32_t s_log_cache_entry_count = 0;
static vprintf_like_t s_log_print_func = &vprintf;
static SemaphoreHandle_t s_log_mutex = NULL;
#ifdef LOG_BUILTIN_CHECKS
static uint32_t s_log_cache_misses = 0;
#endif
static inline bool get_cached_log_level(const char* tag, esp_log_level_t* level);
static inline bool get_uncached_log_level(const char* tag, esp_log_level_t* level);
static inline void add_to_cache(const char* tag, esp_log_level_t level);
static void heap_bubble_down(int index);
static inline void heap_swap(int i, int j);
static inline bool should_output(esp_log_level_t level_for_message, esp_log_level_t level_for_tag);
static inline void clear_log_level_list();
vprintf_like_t esp_log_set_vprintf(vprintf_like_t func)
{
if (!s_log_mutex) {
s_log_mutex = xSemaphoreCreateMutex();
}
xSemaphoreTake(s_log_mutex, portMAX_DELAY);
vprintf_like_t orig_func = s_log_print_func;
s_log_print_func = func;
xSemaphoreGive(s_log_mutex);
return orig_func;
}
void esp_log_level_set(const char* tag, esp_log_level_t level)
{
if (!s_log_mutex) {
s_log_mutex = xSemaphoreCreateMutex();
}
xSemaphoreTake(s_log_mutex, portMAX_DELAY);
// for wildcard tag, remove all linked list items and clear the cache
if (strcmp(tag, "*") == 0) {
s_log_default_level = level;
clear_log_level_list();
xSemaphoreGive(s_log_mutex);
return;
}
//searching exist tag
uncached_tag_entry_t *it = NULL;
SLIST_FOREACH( it, &s_log_tags, entries ) {
if ( strcmp(it->tag, tag)==0 ) {
//one tag in the linked list match, update the level
it->level = level;
//quit with it != NULL
break;
}
}
//no exist tag, append new one
if ( it == NULL ) {
// allocate new linked list entry and append it to the head of the list
size_t entry_size = offsetof(uncached_tag_entry_t, tag) + strlen(tag) + 1;
uncached_tag_entry_t* new_entry = (uncached_tag_entry_t*) malloc(entry_size);
if (!new_entry) {
xSemaphoreGive(s_log_mutex);
return;
}
new_entry->level = (uint8_t) level;
strcpy(new_entry->tag, tag);
SLIST_INSERT_HEAD( &s_log_tags, new_entry, entries );
}
//search in the cache and update it if exist
for (int i = 0; i < s_log_cache_entry_count; ++i) {
#ifdef LOG_BUILTIN_CHECKS
assert(i == 0 || s_log_cache[(i - 1) / 2].generation < s_log_cache[i].generation);
#endif
if (s_log_cache[i].tag == tag) {
s_log_cache[i].level = level;
break;
}
}
xSemaphoreGive(s_log_mutex);
}
void clear_log_level_list()
{
while( !SLIST_EMPTY(&s_log_tags)) {
SLIST_REMOVE_HEAD(&s_log_tags, entries );
}
s_log_cache_entry_count = 0;
s_log_cache_max_generation = 0;
#ifdef LOG_BUILTIN_CHECKS
s_log_cache_misses = 0;
#endif
}
void IRAM_ATTR esp_log_write(esp_log_level_t level,
const char* tag,
const char* format, ...)
{
if (!s_log_mutex) {
s_log_mutex = xSemaphoreCreateMutex();
}
if (xSemaphoreTake(s_log_mutex, MAX_MUTEX_WAIT_TICKS) == pdFALSE) {
return;
}
esp_log_level_t level_for_tag;
// Look for the tag in cache first, then in the linked list of all tags
if (!get_cached_log_level(tag, &level_for_tag)) {
if (!get_uncached_log_level(tag, &level_for_tag)) {
level_for_tag = s_log_default_level;
}
add_to_cache(tag, level_for_tag);
#ifdef LOG_BUILTIN_CHECKS
++s_log_cache_misses;
#endif
}
xSemaphoreGive(s_log_mutex);
if (!should_output(level, level_for_tag)) {
return;
}
va_list list;
va_start(list, format);
(*s_log_print_func)(format, list);
va_end(list);
}
static inline bool get_cached_log_level(const char* tag, esp_log_level_t* level)
{
// Look for `tag` in cache
int i;
for (i = 0; i < s_log_cache_entry_count; ++i) {
#ifdef LOG_BUILTIN_CHECKS
assert(i == 0 || s_log_cache[(i - 1) / 2].generation < s_log_cache[i].generation);
#endif
if (s_log_cache[i].tag == tag) {
break;
}
}
if (i == s_log_cache_entry_count) { // Not found in cache
return false;
}
// Return level from cache
*level = (esp_log_level_t) s_log_cache[i].level;
// If cache has been filled, start taking ordering into account
// (other options are: dynamically resize cache, add "dummy" entries
// to the cache; this option was chosen because code is much simpler,
// and the unfair behavior of cache will show it self at most once, when
// it has just been filled)
if (s_log_cache_entry_count == TAG_CACHE_SIZE) {
// Update item generation
s_log_cache[i].generation = s_log_cache_max_generation++;
// Restore heap ordering
heap_bubble_down(i);
}
return true;
}
static inline void add_to_cache(const char* tag, esp_log_level_t level)
{
uint32_t generation = s_log_cache_max_generation++;
// First consider the case when cache is not filled yet.
// In this case, just add new entry at the end.
// This happens to satisfy binary min-heap ordering.
if (s_log_cache_entry_count < TAG_CACHE_SIZE) {
s_log_cache[s_log_cache_entry_count] = (cached_tag_entry_t) {
.generation = generation,
.level = level,
.tag = tag
};
++s_log_cache_entry_count;
return;
}
// Cache is full, so we replace the oldest entry (which is at index 0
// because this is a min-heap) with the new one, and do bubble-down
// operation to restore min-heap ordering.
s_log_cache[0] = (cached_tag_entry_t) {
.tag = tag,
.level = level,
.generation = generation
};
heap_bubble_down(0);
}
static inline bool get_uncached_log_level(const char* tag, esp_log_level_t* level)
{
// Walk the linked list of all tags and see if given tag is present in the list.
// This is slow because tags are compared as strings.
uncached_tag_entry_t *it;
SLIST_FOREACH( it, &s_log_tags, entries ) {
if (strcmp(tag, it->tag) == 0) {
*level = it->level;
return true;
}
}
return false;
}
static inline bool should_output(esp_log_level_t level_for_message, esp_log_level_t level_for_tag)
{
return level_for_message <= level_for_tag;
}
static void heap_bubble_down(int index)
{
while (index < TAG_CACHE_SIZE / 2) {
int left_index = index * 2 + 1;
int right_index = left_index + 1;
int next = (s_log_cache[left_index].generation < s_log_cache[right_index].generation) ? left_index : right_index;
heap_swap(index, next);
index = next;
}
}
static inline void heap_swap(int i, int j)
{
cached_tag_entry_t tmp = s_log_cache[i];
s_log_cache[i] = s_log_cache[j];
s_log_cache[j] = tmp;
}
#endif //BOOTLOADER_BUILD
#ifndef BOOTLOADER_BUILD
#define ATTR IRAM_ATTR
#else
#define ATTR
#endif // BOOTLOADER_BUILD
//the variable defined in ROM is the cpu frequency in MHz.
//as a workaround before the interface for this variable
extern uint32_t g_ticks_per_us_pro;
uint32_t ATTR esp_log_early_timestamp()
{
return xthal_get_ccount() / (g_ticks_per_us_pro * 1000);
}
#ifndef BOOTLOADER_BUILD
uint32_t IRAM_ATTR esp_log_timestamp()
{
if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED) {
return esp_log_early_timestamp();
}
static uint32_t base = 0;
if (base == 0 && xPortGetCoreID() == 0) {
base = esp_log_early_timestamp();
}
return base + xTaskGetTickCount() * (1000 / configTICK_RATE_HZ);
}
#else
uint32_t esp_log_timestamp() __attribute__((alias("esp_log_early_timestamp")));
#endif //BOOTLOADER_BUILD
void esp_log_buffer_hex_internal(const char *tag, const void *buffer, uint16_t buff_len,
esp_log_level_t log_level)
{
if ( buff_len == 0 ) return;
char temp_buffer[BYTES_PER_LINE+3]; //for not-byte-accessible memory
char hex_buffer[3*BYTES_PER_LINE+1];
const char *ptr_line;
int bytes_cur_line;
do {
if ( buff_len > BYTES_PER_LINE ) {
bytes_cur_line = BYTES_PER_LINE;
} else {
bytes_cur_line = buff_len;
}
if ( !esp_ptr_byte_accessible(buffer) ) {
//use memcpy to get around alignment issue
memcpy( temp_buffer, buffer, (bytes_cur_line+3)/4*4 );
ptr_line = temp_buffer;
} else {
ptr_line = buffer;
}
for( int i = 0; i < bytes_cur_line; i ++ ) {
sprintf( hex_buffer + 3*i, "%02x ", ptr_line[i] );
}
ESP_LOG_LEVEL( log_level, tag, "%s", hex_buffer );
buffer += bytes_cur_line;
buff_len -= bytes_cur_line;
} while( buff_len );
}
void esp_log_buffer_char_internal(const char *tag, const void *buffer, uint16_t buff_len,
esp_log_level_t log_level)
{
if ( buff_len == 0 ) return;
char temp_buffer[BYTES_PER_LINE+3]; //for not-byte-accessible memory
char char_buffer[BYTES_PER_LINE+1];
const char *ptr_line;
int bytes_cur_line;
do {
if ( buff_len > BYTES_PER_LINE ) {
bytes_cur_line = BYTES_PER_LINE;
} else {
bytes_cur_line = buff_len;
}
if ( !esp_ptr_byte_accessible(buffer) ) {
//use memcpy to get around alignment issue
memcpy( temp_buffer, buffer, (bytes_cur_line+3)/4*4 );
ptr_line = temp_buffer;
} else {
ptr_line = buffer;
}
for( int i = 0; i < bytes_cur_line; i ++ ) {
sprintf( char_buffer + i, "%c", ptr_line[i] );
}
ESP_LOG_LEVEL( log_level, tag, "%s", char_buffer );
buffer += bytes_cur_line;
buff_len -= bytes_cur_line;
} while( buff_len );
}
void esp_log_buffer_hexdump_internal( const char *tag, const void *buffer, uint16_t buff_len, esp_log_level_t log_level)
{
if ( buff_len == 0 ) return;
char temp_buffer[BYTES_PER_LINE+3]; //for not-byte-accessible memory
const char *ptr_line;
//format: field[length]
// ADDR[10]+" "+DATA_HEX[8*3]+" "+DATA_HEX[8*3]+" |"+DATA_CHAR[8]+"|"
char hd_buffer[10+3+BYTES_PER_LINE*3+3+BYTES_PER_LINE+1+1];
char *ptr_hd;
int bytes_cur_line;
do {
if ( buff_len > BYTES_PER_LINE ) {
bytes_cur_line = BYTES_PER_LINE;
} else {
bytes_cur_line = buff_len;
}
if ( !esp_ptr_byte_accessible(buffer) ) {
//use memcpy to get around alignment issue
memcpy( temp_buffer, buffer, (bytes_cur_line+3)/4*4 );
ptr_line = temp_buffer;
} else {
ptr_line = buffer;
}
ptr_hd = hd_buffer;
ptr_hd += sprintf( ptr_hd, "%p ", buffer );
for( int i = 0; i < BYTES_PER_LINE; i ++ ) {
if ( (i&7)==0 ) {
ptr_hd += sprintf( ptr_hd, " " );
}
if ( i < bytes_cur_line ) {
ptr_hd += sprintf( ptr_hd, " %02x", ptr_line[i] );
} else {
ptr_hd += sprintf( ptr_hd, " " );
}
}
ptr_hd += sprintf( ptr_hd, " |" );
for( int i = 0; i < bytes_cur_line; i ++ ) {
if ( isprint((int)ptr_line[i]) ) {
ptr_hd += sprintf( ptr_hd, "%c", ptr_line[i] );
} else {
ptr_hd += sprintf( ptr_hd, "." );
}
}
ptr_hd += sprintf( ptr_hd, "|" );
ESP_LOG_LEVEL( log_level, tag, "%s", hd_buffer );
buffer += bytes_cur_line;
buff_len -= bytes_cur_line;
} while( buff_len );
}