esp-idf/components/esp_eth/src/esp_eth_mac_esp.c

626 lines
24 KiB
C

// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <stdlib.h>
#include <sys/cdefs.h>
#include "driver/periph_ctrl.h"
#include "driver/gpio.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_check.h"
#include "esp_eth.h"
#include "esp_pm.h"
#include "esp_system.h"
#include "esp_heap_caps.h"
#include "esp_intr_alloc.h"
#include "esp_private/esp_clk.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "hal/cpu_hal.h"
#include "hal/emac_hal.h"
#include "hal/gpio_hal.h"
#include "soc/soc.h"
#include "soc/rtc.h"
#include "sdkconfig.h"
#include "esp_rom_gpio.h"
#include "esp_rom_sys.h"
#include "hal/emac_ll.h"
static const char *TAG = "esp.emac";
#define PHY_OPERATION_TIMEOUT_US (1000)
#define FLOW_CONTROL_LOW_WATER_MARK (CONFIG_ETH_DMA_RX_BUFFER_NUM / 3)
#define FLOW_CONTROL_HIGH_WATER_MARK (FLOW_CONTROL_LOW_WATER_MARK * 2)
typedef struct {
esp_eth_mac_t parent;
esp_eth_mediator_t *eth;
emac_hal_context_t hal;
intr_handle_t intr_hdl;
TaskHandle_t rx_task_hdl;
uint32_t sw_reset_timeout_ms;
uint32_t frames_remain;
uint32_t free_rx_descriptor;
uint32_t flow_control_high_water_mark;
uint32_t flow_control_low_water_mark;
int smi_mdc_gpio_num;
int smi_mdio_gpio_num;
eth_mac_clock_config_t clock_config;
uint8_t addr[6];
uint8_t *rx_buf[CONFIG_ETH_DMA_RX_BUFFER_NUM];
uint8_t *tx_buf[CONFIG_ETH_DMA_TX_BUFFER_NUM];
bool isr_need_yield;
bool flow_ctrl_enabled; // indicates whether the user want to do flow control
bool do_flow_ctrl; // indicates whether we need to do software flow control
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_handle_t pm_lock;
#endif
} emac_esp32_t;
static esp_err_t esp_emac_alloc_driver_obj(const eth_mac_config_t *config, emac_esp32_t **emac_out_hdl, void **out_descriptors);
static void esp_emac_free_driver_obj(emac_esp32_t *emac, void *descriptors);
static esp_err_t emac_esp32_set_mediator(esp_eth_mac_t *mac, esp_eth_mediator_t *eth)
{
esp_err_t ret = ESP_OK;
ESP_GOTO_ON_FALSE(eth, ESP_ERR_INVALID_ARG, err, TAG, "can't set mac's mediator to null");
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
emac->eth = eth;
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_esp32_write_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t reg_value)
{
esp_err_t ret = ESP_OK;
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
ESP_GOTO_ON_FALSE(!emac_ll_is_mii_busy(emac->hal.mac_regs), ESP_ERR_INVALID_STATE, err, TAG, "phy is busy");
emac_ll_set_phy_data(emac->hal.mac_regs, reg_value);
emac_hal_set_phy_cmd(&emac->hal, phy_addr, phy_reg, true);
/* polling the busy flag */
uint32_t to = 0;
bool busy = true;
do {
esp_rom_delay_us(100);
busy = emac_ll_is_mii_busy(emac->hal.mac_regs);
to += 100;
} while (busy && to < PHY_OPERATION_TIMEOUT_US);
ESP_GOTO_ON_FALSE(!busy, ESP_ERR_TIMEOUT, err, TAG, "phy is busy");
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_esp32_read_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t *reg_value)
{
esp_err_t ret = ESP_OK;
ESP_GOTO_ON_FALSE(reg_value, ESP_ERR_INVALID_ARG, err, TAG, "can't set reg_value to null");
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
ESP_GOTO_ON_FALSE(!emac_ll_is_mii_busy(emac->hal.mac_regs), ESP_ERR_INVALID_STATE, err, TAG, "phy is busy");
emac_hal_set_phy_cmd(&emac->hal, phy_addr, phy_reg, false);
/* polling the busy flag */
uint32_t to = 0;
bool busy = true;
do {
esp_rom_delay_us(100);
busy = emac_ll_is_mii_busy(emac->hal.mac_regs);
to += 100;
} while (busy && to < PHY_OPERATION_TIMEOUT_US);
ESP_GOTO_ON_FALSE(!busy, ESP_ERR_TIMEOUT, err, TAG, "phy is busy");
/* Store value */
*reg_value = emac_ll_get_phy_data(emac->hal.mac_regs);
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_esp32_set_addr(esp_eth_mac_t *mac, uint8_t *addr)
{
esp_err_t ret = ESP_OK;
ESP_GOTO_ON_FALSE(addr, ESP_ERR_INVALID_ARG, err, TAG, "can't set mac addr to null");
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
memcpy(emac->addr, addr, 6);
emac_hal_set_address(&emac->hal, emac->addr);
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_esp32_get_addr(esp_eth_mac_t *mac, uint8_t *addr)
{
esp_err_t ret = ESP_OK;
ESP_GOTO_ON_FALSE(addr, ESP_ERR_INVALID_ARG, err, TAG, "can't set mac addr to null");
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
memcpy(addr, emac->addr, 6);
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_esp32_set_link(esp_eth_mac_t *mac, eth_link_t link)
{
esp_err_t ret = ESP_OK;
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
switch (link) {
case ETH_LINK_UP:
ESP_GOTO_ON_ERROR(esp_intr_enable(emac->intr_hdl), err, TAG, "enable interrupt failed");
emac_hal_start(&emac->hal);
break;
case ETH_LINK_DOWN:
ESP_GOTO_ON_ERROR(esp_intr_disable(emac->intr_hdl), err, TAG, "disable interrupt failed");
emac_hal_stop(&emac->hal);
break;
default:
ESP_GOTO_ON_FALSE(false, ESP_ERR_INVALID_ARG, err, TAG, "unknown link status");
break;
}
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_esp32_set_speed(esp_eth_mac_t *mac, eth_speed_t speed)
{
esp_err_t ret = ESP_ERR_INVALID_ARG;
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
if (speed >= ETH_SPEED_10M && speed < ETH_SPEED_MAX) {
emac_ll_set_port_speed(emac->hal.mac_regs, speed);
ESP_LOGD(TAG, "working in %dMbps", speed == ETH_SPEED_10M ? 10 : 100);
return ESP_OK;
}
return ret;
}
static esp_err_t emac_esp32_set_duplex(esp_eth_mac_t *mac, eth_duplex_t duplex)
{
esp_err_t ret = ESP_ERR_INVALID_ARG;
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
if (duplex == ETH_DUPLEX_HALF || duplex == ETH_DUPLEX_FULL) {
emac_ll_set_duplex(emac->hal.mac_regs, duplex);
ESP_LOGD(TAG, "working in %s duplex", duplex == ETH_DUPLEX_HALF ? "half" : "full");
return ESP_OK;
}
return ret;
}
static esp_err_t emac_esp32_set_promiscuous(esp_eth_mac_t *mac, bool enable)
{
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
emac_ll_promiscuous_mode_enable(emac->hal.mac_regs, enable);
return ESP_OK;
}
static esp_err_t emac_esp32_enable_flow_ctrl(esp_eth_mac_t *mac, bool enable)
{
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
emac->flow_ctrl_enabled = enable;
return ESP_OK;
}
static esp_err_t emac_esp32_set_peer_pause_ability(esp_eth_mac_t *mac, uint32_t ability)
{
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
// we want to enable flow control, and peer does support pause function
// then configure the MAC layer to enable flow control feature
if (emac->flow_ctrl_enabled && ability) {
emac_hal_enable_flow_ctrl(&emac->hal, true);
emac->do_flow_ctrl = true;
} else {
emac_hal_enable_flow_ctrl(&emac->hal, false);
emac->do_flow_ctrl = false;
ESP_LOGD(TAG, "Flow control not enabled for the link");
}
return ESP_OK;
}
static esp_err_t emac_esp32_transmit(esp_eth_mac_t *mac, uint8_t *buf, uint32_t length)
{
esp_err_t ret = ESP_OK;
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
uint32_t sent_len = emac_hal_transmit_frame(&emac->hal, buf, length);
ESP_GOTO_ON_FALSE(sent_len == length, ESP_ERR_INVALID_SIZE, err, TAG, "insufficient TX buffer size");
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_esp32_receive(esp_eth_mac_t *mac, uint8_t *buf, uint32_t *length)
{
esp_err_t ret = ESP_OK;
uint32_t expected_len = *length;
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
ESP_GOTO_ON_FALSE(buf && length, ESP_ERR_INVALID_ARG, err, TAG, "can't set buf and length to null");
uint32_t receive_len = emac_hal_receive_frame(&emac->hal, buf, expected_len, &emac->frames_remain, &emac->free_rx_descriptor);
/* we need to check the return value in case the buffer size is not enough */
ESP_LOGD(TAG, "receive len= %d", receive_len);
ESP_GOTO_ON_FALSE(expected_len >= receive_len, ESP_ERR_INVALID_SIZE, err, TAG, "received buffer longer than expected");
*length = receive_len;
return ESP_OK;
err:
*length = expected_len;
return ret;
}
static void emac_esp32_rx_task(void *arg)
{
emac_esp32_t *emac = (emac_esp32_t *)arg;
uint8_t *buffer = NULL;
uint32_t length = 0;
while (1) {
// block indefinitely until got notification from underlay event
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
do {
length = ETH_MAX_PACKET_SIZE;
buffer = malloc(length);
if (!buffer) {
ESP_LOGE(TAG, "no mem for receive buffer");
} else if (emac_esp32_receive(&emac->parent, buffer, &length) == ESP_OK) {
/* pass the buffer to stack (e.g. TCP/IP layer) */
if (length) {
emac->eth->stack_input(emac->eth, buffer, length);
} else {
free(buffer);
}
} else {
free(buffer);
}
#if CONFIG_ETH_SOFT_FLOW_CONTROL
// we need to do extra checking of remained frames in case there are no unhandled frames left, but pause frame is still undergoing
if ((emac->free_rx_descriptor < emac->flow_control_low_water_mark) && emac->do_flow_ctrl && emac->frames_remain) {
emac_ll_pause_frame_enable(emac->hal.ext_regs, true);
} else if ((emac->free_rx_descriptor > emac->flow_control_high_water_mark) || !emac->frames_remain) {
emac_ll_pause_frame_enable(emac->hal.ext_regs, false);
}
#endif
} while (emac->frames_remain);
}
vTaskDelete(NULL);
}
static void emac_esp32_init_smi_gpio(emac_esp32_t *emac)
{
if (emac->smi_mdc_gpio_num >= 0) {
/* Setup SMI MDC GPIO */
gpio_set_direction(emac->smi_mdc_gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(emac->smi_mdc_gpio_num, EMAC_MDC_O_IDX, false, false);
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[emac->smi_mdc_gpio_num], PIN_FUNC_GPIO);
}
if (emac->smi_mdio_gpio_num >= 0) {
/* Setup SMI MDIO GPIO */
gpio_set_direction(emac->smi_mdio_gpio_num, GPIO_MODE_INPUT_OUTPUT);
esp_rom_gpio_connect_out_signal(emac->smi_mdio_gpio_num, EMAC_MDO_O_IDX, false, false);
esp_rom_gpio_connect_in_signal(emac->smi_mdio_gpio_num, EMAC_MDI_I_IDX, false);
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[emac->smi_mdio_gpio_num], PIN_FUNC_GPIO);
}
}
static void emac_config_apll_clock(void)
{
/* apll_freq = xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536)/((o_div + 2) * 2) */
rtc_xtal_freq_t rtc_xtal_freq = rtc_clk_xtal_freq_get();
switch (rtc_xtal_freq) {
case RTC_XTAL_FREQ_40M: // Recommended
/* 50 MHz = 40MHz * (4 + 6) / (2 * (2 + 2) = 50.000 */
/* sdm0 = 0, sdm1 = 0, sdm2 = 6, o_div = 2 */
rtc_clk_apll_enable(true, 0, 0, 6, 2);
break;
case RTC_XTAL_FREQ_26M:
/* 50 MHz = 26MHz * (4 + 15 + 118 / 256 + 39/65536) / ((3 + 2) * 2) = 49.999992 */
/* sdm0 = 39, sdm1 = 118, sdm2 = 15, o_div = 3 */
rtc_clk_apll_enable(true, 39, 118, 15, 3);
break;
case RTC_XTAL_FREQ_24M:
/* 50 MHz = 24MHz * (4 + 12 + 255 / 256 + 255/65536) / ((2 + 2) * 2) = 49.499977 */
/* sdm0 = 255, sdm1 = 255, sdm2 = 12, o_div = 2 */
rtc_clk_apll_enable(true, 255, 255, 12, 2);
break;
default: // Assume we have a 40M xtal
rtc_clk_apll_enable(true, 0, 0, 6, 2);
break;
}
}
static esp_err_t emac_esp32_init(esp_eth_mac_t *mac)
{
esp_err_t ret = ESP_OK;
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
esp_eth_mediator_t *eth = emac->eth;
/* init gpio used by smi interface */
emac_esp32_init_smi_gpio(emac);
ESP_GOTO_ON_ERROR(eth->on_state_changed(eth, ETH_STATE_LLINIT, NULL), err, TAG, "lowlevel init failed");
/* software reset */
emac_ll_reset(emac->hal.dma_regs);
uint32_t to = 0;
for (to = 0; to < emac->sw_reset_timeout_ms / 10; to++) {
if (emac_ll_is_reset_done(emac->hal.dma_regs)) {
break;
}
vTaskDelay(pdMS_TO_TICKS(10));
}
ESP_GOTO_ON_FALSE(to < emac->sw_reset_timeout_ms / 10, ESP_ERR_TIMEOUT, err, TAG, "reset timeout");
/* set smi clock */
emac_hal_set_csr_clock_range(&emac->hal, esp_clk_apb_freq());
/* reset descriptor chain */
emac_hal_reset_desc_chain(&emac->hal);
/* init mac registers by default */
emac_hal_init_mac_default(&emac->hal);
/* init dma registers by default */
emac_hal_init_dma_default(&emac->hal);
/* get emac address from efuse */
ESP_GOTO_ON_ERROR(esp_read_mac(emac->addr, ESP_MAC_ETH), err, TAG, "fetch ethernet mac address failed");
/* set MAC address to emac register */
emac_hal_set_address(&emac->hal, emac->addr);
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_acquire(emac->pm_lock);
#endif
return ESP_OK;
err:
eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL);
periph_module_disable(PERIPH_EMAC_MODULE);
return ret;
}
static esp_err_t emac_esp32_deinit(esp_eth_mac_t *mac)
{
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
esp_eth_mediator_t *eth = emac->eth;
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_release(emac->pm_lock);
#endif
emac_hal_stop(&emac->hal);
eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL);
return ESP_OK;
}
static esp_err_t emac_esp32_start(esp_eth_mac_t *mac)
{
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
emac_hal_start(&emac->hal);
return ESP_OK;
}
static esp_err_t emac_esp32_stop(esp_eth_mac_t *mac)
{
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
emac_hal_stop(&emac->hal);
return ESP_OK;
}
static esp_err_t emac_esp32_del(esp_eth_mac_t *mac)
{
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
esp_emac_free_driver_obj(emac, emac->hal.descriptors);
periph_module_disable(PERIPH_EMAC_MODULE);
return ESP_OK;
}
// To achieve a better performance, we put the ISR always in IRAM
IRAM_ATTR void emac_isr_default_handler(void *args)
{
emac_hal_context_t *hal = (emac_hal_context_t *)args;
emac_esp32_t *emac = __containerof(hal, emac_esp32_t, hal);
BaseType_t high_task_wakeup = pdFALSE;
uint32_t intr_stat = emac_ll_get_intr_status(hal->dma_regs);
emac_ll_clear_corresponding_intr(hal->dma_regs, intr_stat);
#if EMAC_LL_CONFIG_ENABLE_INTR_MASK & EMAC_LL_INTR_RECEIVE_ENABLE
if (intr_stat & EMAC_LL_DMA_RECEIVE_FINISH_INTR) {
/* notify receive task */
vTaskNotifyGiveFromISR(emac->rx_task_hdl, &high_task_wakeup);
if (high_task_wakeup == pdTRUE) {
portYIELD_FROM_ISR();
}
}
#endif
}
static void esp_emac_free_driver_obj(emac_esp32_t *emac, void *descriptors)
{
if (emac) {
if (emac->rx_task_hdl) {
vTaskDelete(emac->rx_task_hdl);
}
if (emac->intr_hdl) {
esp_intr_free(emac->intr_hdl);
}
for (int i = 0; i < CONFIG_ETH_DMA_TX_BUFFER_NUM; i++) {
free(emac->tx_buf[i]);
}
for (int i = 0; i < CONFIG_ETH_DMA_RX_BUFFER_NUM; i++) {
free(emac->rx_buf[i]);
}
#ifdef CONFIG_PM_ENABLE
if (emac->pm_lock) {
esp_pm_lock_delete(emac->pm_lock);
}
#endif
free(emac);
}
if (descriptors) {
free(descriptors);
}
}
static esp_err_t esp_emac_alloc_driver_obj(const eth_mac_config_t *config, emac_esp32_t **emac_out_hdl, void **out_descriptors)
{
esp_err_t ret = ESP_OK;
emac_esp32_t *emac = NULL;
void *descriptors = NULL;
if (config->flags & ETH_MAC_FLAG_WORK_WITH_CACHE_DISABLE) {
emac = heap_caps_calloc(1, sizeof(emac_esp32_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
} else {
emac = calloc(1, sizeof(emac_esp32_t));
}
ESP_GOTO_ON_FALSE(emac, ESP_ERR_NO_MEM, err, TAG, "no mem for esp emac object");
/* alloc memory for ethernet dma descriptor */
uint32_t desc_size = CONFIG_ETH_DMA_RX_BUFFER_NUM * sizeof(eth_dma_rx_descriptor_t) +
CONFIG_ETH_DMA_TX_BUFFER_NUM * sizeof(eth_dma_tx_descriptor_t);
descriptors = heap_caps_calloc(1, desc_size, MALLOC_CAP_DMA);
ESP_GOTO_ON_FALSE(descriptors, ESP_ERR_NO_MEM, err, TAG, "no mem for descriptors");
/* alloc memory for ethernet dma buffer */
for (int i = 0; i < CONFIG_ETH_DMA_RX_BUFFER_NUM; i++) {
emac->rx_buf[i] = heap_caps_calloc(1, CONFIG_ETH_DMA_BUFFER_SIZE, MALLOC_CAP_DMA);
ESP_GOTO_ON_FALSE(emac->rx_buf[i], ESP_ERR_NO_MEM, err, TAG, "no mem for RX DMA buffers");
}
for (int i = 0; i < CONFIG_ETH_DMA_TX_BUFFER_NUM; i++) {
emac->tx_buf[i] = heap_caps_calloc(1, CONFIG_ETH_DMA_BUFFER_SIZE, MALLOC_CAP_DMA);
ESP_GOTO_ON_FALSE(emac->tx_buf[i], ESP_ERR_NO_MEM, err, TAG, "no mem for TX DMA buffers");
}
/* alloc PM lock */
#ifdef CONFIG_PM_ENABLE
ESP_GOTO_ON_ERROR(esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "emac_esp32", &emac->pm_lock), err, TAG, "create pm lock failed");
#endif
/* create rx task */
BaseType_t core_num = tskNO_AFFINITY;
if (config->flags & ETH_MAC_FLAG_PIN_TO_CORE) {
core_num = cpu_hal_get_core_id();
}
BaseType_t xReturned = xTaskCreatePinnedToCore(emac_esp32_rx_task, "emac_rx", config->rx_task_stack_size, emac,
config->rx_task_prio, &emac->rx_task_hdl, core_num);
ESP_GOTO_ON_FALSE(xReturned == pdPASS, ESP_FAIL, err, TAG, "create emac_rx task failed");
*out_descriptors = descriptors;
*emac_out_hdl = emac;
return ESP_OK;
err:
esp_emac_free_driver_obj(emac, descriptors);
return ret;
}
static esp_err_t esp_emac_config_data_interface(const eth_mac_config_t *config, emac_esp32_t *emac)
{
esp_err_t ret = ESP_OK;
switch (config->interface) {
case EMAC_DATA_INTERFACE_MII:
emac->clock_config = config->clock_config;
/* MII interface GPIO initialization */
emac_hal_iomux_init_mii();
/* Enable MII clock */
emac_ll_clock_enable_mii(emac->hal.ext_regs);
break;
case EMAC_DATA_INTERFACE_RMII:
// by default, the clock mode is selected at compile time (by Kconfig)
if (config->clock_config.rmii.clock_mode == EMAC_CLK_DEFAULT) {
#if CONFIG_ETH_RMII_CLK_INPUT
#if CONFIG_ETH_RMII_CLK_IN_GPIO == 0
emac->clock_config.rmii.clock_mode = EMAC_CLK_EXT_IN;
emac->clock_config.rmii.clock_gpio = CONFIG_ETH_RMII_CLK_IN_GPIO;
#else
#error "ESP32 EMAC only support input RMII clock to GPIO0"
#endif // CONFIG_ETH_RMII_CLK_IN_GPIO == 0
#elif CONFIG_ETH_RMII_CLK_OUTPUT
emac->clock_config.rmii.clock_mode = EMAC_CLK_OUT;
#if CONFIG_ETH_RMII_CLK_OUTPUT_GPIO0
emac->clock_config.rmii.clock_gpio = 0;
#elif CONFIG_ETH_RMII_CLK_OUT_GPIO
emac->clock_config.rmii.clock_gpio = CONFIG_ETH_RMII_CLK_OUT_GPIO;
#endif // CONFIG_ETH_RMII_CLK_OUTPUT_GPIO0
#else
#error "Unsupported RMII clock mode"
#endif
} else {
emac->clock_config = config->clock_config;
}
/* RMII interface GPIO initialization */
emac_hal_iomux_init_rmii();
/* If ref_clk is configured as input */
if (emac->clock_config.rmii.clock_mode == EMAC_CLK_EXT_IN) {
ESP_GOTO_ON_FALSE(emac->clock_config.rmii.clock_gpio == EMAC_CLK_IN_GPIO,
ESP_ERR_INVALID_ARG, err, TAG, "ESP32 EMAC only support input RMII clock to GPIO0");
emac_hal_iomux_rmii_clk_input();
emac_ll_clock_enable_rmii_input(emac->hal.ext_regs);
} else if (emac->clock_config.rmii.clock_mode == EMAC_CLK_OUT) {
ESP_GOTO_ON_FALSE(emac->clock_config.rmii.clock_gpio == EMAC_APPL_CLK_OUT_GPIO ||
emac->clock_config.rmii.clock_gpio == EMAC_CLK_OUT_GPIO ||
emac->clock_config.rmii.clock_gpio == EMAC_CLK_OUT_180_GPIO,
ESP_ERR_INVALID_ARG, err, TAG, "invalid EMAC clock output GPIO");
emac_hal_iomux_rmii_clk_ouput(emac->clock_config.rmii.clock_gpio);
if (emac->clock_config.rmii.clock_gpio == EMAC_APPL_CLK_OUT_GPIO) {
REG_SET_FIELD(PIN_CTRL, CLK_OUT1, 6);
}
/* Enable RMII clock */
emac_ll_clock_enable_rmii_output(emac->hal.ext_regs);
emac_config_apll_clock();
} else {
ESP_GOTO_ON_FALSE(false, ESP_ERR_INVALID_ARG, err, TAG, "invalid EMAC clock mode");
}
break;
default:
ESP_GOTO_ON_FALSE(false, ESP_ERR_INVALID_ARG, err, TAG, "invalid EMAC Data Interface:%d", config->interface);
}
err:
return ret;
}
esp_eth_mac_t *esp_eth_mac_new_esp32(const eth_mac_config_t *config)
{
esp_err_t ret_code = ESP_OK;
esp_eth_mac_t *ret = NULL;
void *descriptors = NULL;
emac_esp32_t *emac = NULL;
ESP_GOTO_ON_FALSE(config, NULL, err, TAG, "can't set mac config to null");
ret_code = esp_emac_alloc_driver_obj(config, &emac, &descriptors);
ESP_GOTO_ON_FALSE(ret_code == ESP_OK, NULL, err, TAG, "alloc driver object failed");
/* enable APB to access Ethernet peripheral registers */
periph_module_enable(PERIPH_EMAC_MODULE);
/* initialize hal layer driver */
emac_hal_init(&emac->hal, descriptors, emac->rx_buf, emac->tx_buf);
/* alloc interrupt */
if (config->flags & ETH_MAC_FLAG_WORK_WITH_CACHE_DISABLE) {
ret_code = esp_intr_alloc(ETS_ETH_MAC_INTR_SOURCE, ESP_INTR_FLAG_IRAM,
emac_isr_default_handler, &emac->hal, &(emac->intr_hdl));
} else {
ret_code = esp_intr_alloc(ETS_ETH_MAC_INTR_SOURCE, 0,
emac_isr_default_handler, &emac->hal, &(emac->intr_hdl));
}
ESP_GOTO_ON_FALSE(ret_code == ESP_OK, NULL, err, TAG, "alloc emac interrupt failed");
ret_code = esp_emac_config_data_interface(config, emac);
ESP_GOTO_ON_FALSE(ret_code == ESP_OK, NULL, err_interf, TAG, "config emac interface failed");
emac->sw_reset_timeout_ms = config->sw_reset_timeout_ms;
emac->smi_mdc_gpio_num = config->smi_mdc_gpio_num;
emac->smi_mdio_gpio_num = config->smi_mdio_gpio_num;
emac->flow_control_high_water_mark = FLOW_CONTROL_HIGH_WATER_MARK;
emac->flow_control_low_water_mark = FLOW_CONTROL_LOW_WATER_MARK;
emac->parent.set_mediator = emac_esp32_set_mediator;
emac->parent.init = emac_esp32_init;
emac->parent.deinit = emac_esp32_deinit;
emac->parent.start = emac_esp32_start;
emac->parent.stop = emac_esp32_stop;
emac->parent.del = emac_esp32_del;
emac->parent.write_phy_reg = emac_esp32_write_phy_reg;
emac->parent.read_phy_reg = emac_esp32_read_phy_reg;
emac->parent.set_addr = emac_esp32_set_addr;
emac->parent.get_addr = emac_esp32_get_addr;
emac->parent.set_speed = emac_esp32_set_speed;
emac->parent.set_duplex = emac_esp32_set_duplex;
emac->parent.set_link = emac_esp32_set_link;
emac->parent.set_promiscuous = emac_esp32_set_promiscuous;
emac->parent.set_peer_pause_ability = emac_esp32_set_peer_pause_ability;
emac->parent.enable_flow_ctrl = emac_esp32_enable_flow_ctrl;
emac->parent.transmit = emac_esp32_transmit;
emac->parent.receive = emac_esp32_receive;
return &(emac->parent);
err_interf:
periph_module_disable(PERIPH_EMAC_MODULE);
err:
esp_emac_free_driver_obj(emac, descriptors);
return ret;
}