esp-idf/components/hal/esp32p4/include/hal/mmu_ll.h

525 lines
14 KiB
C

/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// The LL layer for MMU register operations
#pragma once
#include "soc/spi_mem_c_reg.h"
#include "soc/spi_mem_s_reg.h"
#include "soc/ext_mem_defs.h"
#include "hal/assert.h"
#include "hal/mmu_types.h"
#include "hal/efuse_ll.h"
#ifdef __cplusplus
extern "C" {
#endif
///< MMU is per target
#define MMU_LL_MMU_PER_TARGET 1
#define MMU_LL_FLASH_MMU_ID 0
#define MMU_LL_PSRAM_MMU_ID 1
/**
* Convert MMU virtual address to linear address
*
* @param vaddr virtual address
*
* @return linear address
*/
static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
{
return vaddr & SOC_MMU_LINEAR_ADDR_MASK;
}
/**
* Convert MMU linear address to virtual address
*
* @param laddr linear address
* @param vaddr_type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
* @param target virtual address aimed physical memory target
*
* @return virtual address
*/
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
{
(void)vaddr_type;
uint32_t vaddr_base = 0;
if (target == MMU_TARGET_FLASH0) {
vaddr_base = SOC_MMU_FLASH_VADDR_BASE;
} else {
vaddr_base = SOC_MMU_PSRAM_VADDR_BASE;
}
return vaddr_base | laddr;
}
/**
* Convert MMU virtual address to its target
*
* @param vaddr virtual address
*
* @return target paddr memory target
*/
__attribute__((always_inline))
static inline mmu_target_t mmu_ll_vaddr_to_target(uint32_t vaddr)
{
mmu_target_t target = MMU_TARGET_FLASH0;
if (SOC_ADDRESS_IN_DRAM_FLASH(vaddr)) {
target = MMU_TARGET_FLASH0;
} else if (SOC_ADDRESS_IN_DRAM_PSRAM(vaddr)) {
target = MMU_TARGET_PSRAM0;
} else {
HAL_ASSERT(false);
}
return target;
}
__attribute__((always_inline)) static inline bool mmu_ll_cache_encryption_enabled(void)
{
unsigned cnt = efuse_ll_get_flash_crypt_cnt();
// 3 bits wide, any odd number - 1 or 3 - bits set means encryption is on
cnt = ((cnt >> 2) ^ (cnt >> 1) ^ cnt) & 0x1;
return (cnt == 1);
}
/**
* Get MMU page size
*
* @param mmu_id MMU ID
*
* @return MMU page size code
*/
__attribute__((always_inline))
static inline mmu_page_size_t mmu_ll_get_page_size(uint32_t mmu_id)
{
(void)mmu_id;
return MMU_PAGE_64KB;
}
/**
* Set MMU page size
*
* @param size MMU page size
*/
__attribute__((always_inline))
static inline void mmu_ll_set_page_size(uint32_t mmu_id, uint32_t size)
{
HAL_ASSERT(size == MMU_PAGE_64KB);
}
/**
* Check if the external memory vaddr region is valid
*
* @param mmu_id MMU ID
* @param vaddr_start start of the virtual address
* @param len length, in bytes
* @param type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
*
* @return
* True for valid
*/
__attribute__((always_inline))
static inline bool mmu_ll_check_valid_ext_vaddr_region(uint32_t mmu_id, uint32_t vaddr_start, uint32_t len, mmu_vaddr_t type)
{
(void)mmu_id;
(void)type;
uint32_t vaddr_end = vaddr_start + len - 1;
return (SOC_ADDRESS_IN_DRAM_FLASH(vaddr_start) && SOC_ADDRESS_IN_DRAM_FLASH(vaddr_end)) || (SOC_ADDRESS_IN_DRAM_PSRAM(vaddr_start) && SOC_ADDRESS_IN_DRAM_PSRAM(vaddr_end));
}
/**
* Check if the paddr region is valid
*
* @param mmu_id MMU ID
* @param paddr_start start of the physical address
* @param len length, in bytes
*
* @return
* True for valid
*/
static inline bool mmu_ll_check_valid_paddr_region(uint32_t mmu_id, uint32_t paddr_start, uint32_t len)
{
int max_paddr_page_num = 0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
max_paddr_page_num = SOC_MMU_FLASH_MAX_PADDR_PAGE_NUM;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
max_paddr_page_num = SOC_MMU_PSRAM_MAX_PADDR_PAGE_NUM;
} else {
HAL_ASSERT(false);
}
return (paddr_start < (mmu_ll_get_page_size(mmu_id) * max_paddr_page_num)) &&
(len < (mmu_ll_get_page_size(mmu_id) * max_paddr_page_num)) &&
((paddr_start + len - 1) < (mmu_ll_get_page_size(mmu_id) * max_paddr_page_num));
}
/**
* To get the MMU table entry id to be mapped
*
* @param mmu_id MMU ID
* @param vaddr virtual address to be mapped
*
* @return
* MMU table entry id
*/
__attribute__((always_inline))
static inline uint32_t mmu_ll_get_entry_id(uint32_t mmu_id, uint32_t vaddr)
{
mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id);
uint32_t shift_code = 0;
switch (page_size) {
case MMU_PAGE_64KB:
shift_code = 16;
break;
case MMU_PAGE_32KB:
shift_code = 15;
break;
case MMU_PAGE_16KB:
shift_code = 14;
break;
case MMU_PAGE_8KB:
shift_code = 13;
break;
default:
HAL_ASSERT(shift_code);
}
return ((vaddr & SOC_MMU_VADDR_MASK) >> shift_code);
}
/**
* Format the paddr to be mappable
*
* @param mmu_id MMU ID
* @param paddr physical address to be mapped
* @param target paddr memory target, not used
*
* @return
* mmu_val - paddr in MMU table supported format
*/
__attribute__((always_inline))
static inline uint32_t mmu_ll_format_paddr(uint32_t mmu_id, uint32_t paddr, mmu_target_t target)
{
(void)target;
mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id);
uint32_t shift_code = 0;
switch (page_size) {
case MMU_PAGE_64KB:
shift_code = 16;
break;
case MMU_PAGE_32KB:
shift_code = 15;
break;
case MMU_PAGE_16KB:
shift_code = 14;
break;
case MMU_PAGE_8KB:
shift_code = 13;
break;
default:
HAL_ASSERT(shift_code);
}
return paddr >> shift_code;
}
/**
* Write to the MMU table to map the virtual memory and the physical memory
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
* @param mmu_val Value to be set into an MMU entry, for physical address
* @param target MMU target physical memory.
*/
__attribute__((always_inline)) static inline void mmu_ll_write_entry(uint32_t mmu_id, uint32_t entry_id, uint32_t mmu_val, mmu_target_t target)
{
uint32_t index_reg = 0;
uint32_t content_reg = 0;
uint32_t sensitive = 0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
sensitive = SOC_MMU_FLASH_SENSITIVE;
mmu_val |= SOC_MMU_FLASH_VALID;
mmu_val |= SOC_MMU_ACCESS_FLASH;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
sensitive = SOC_MMU_PSRAM_SENSITIVE;
mmu_val |= SOC_MMU_PSRAM_VALID;
mmu_val |= SOC_MMU_ACCESS_PSRAM;
} else {
HAL_ASSERT(false);
}
if (mmu_ll_cache_encryption_enabled()) {
mmu_val |= sensitive;
}
REG_WRITE(index_reg, entry_id);
REG_WRITE(content_reg, mmu_val);
}
/**
* Read the raw value from MMU table
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
* @param mmu_val Value to be read from MMU table
*/
__attribute__((always_inline)) static inline uint32_t mmu_ll_read_entry(uint32_t mmu_id, uint32_t entry_id)
{
uint32_t index_reg = 0;
uint32_t content_reg = 0;
uint32_t mmu_val = 0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
} else {
HAL_ASSERT(false);
}
REG_WRITE(index_reg, entry_id);
mmu_val = REG_READ(content_reg);
return mmu_val;
}
/**
* Set MMU table entry as invalid
*
* @param mmu_id MMU ID
* @param entry_id MMU entry
*/
__attribute__((always_inline)) static inline void mmu_ll_set_entry_invalid(uint32_t mmu_id, uint32_t entry_id)
{
uint32_t index_reg = 0;
uint32_t content_reg = 0;
uint32_t invalid_mask = 0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
invalid_mask = SOC_MMU_FLASH_INVALID;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
invalid_mask = SOC_MMU_PSRAM_INVALID;
} else {
HAL_ASSERT(false);
}
REG_WRITE(index_reg, entry_id);
REG_WRITE(content_reg, invalid_mask);
}
/**
* Unmap all the items in the MMU table
*
* @param mmu_id MMU ID
*/
__attribute__((always_inline))
static inline void mmu_ll_unmap_all(uint32_t mmu_id)
{
for (int i = 0; i < SOC_MMU_ENTRY_NUM; i++) {
mmu_ll_set_entry_invalid(mmu_id, i);
}
}
/**
* Check MMU table entry value is valid
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
*
* @return Ture for MMU entry is valid; False for invalid
*/
static inline bool mmu_ll_check_entry_valid(uint32_t mmu_id, uint32_t entry_id)
{
uint32_t mmu_raw_value = 0;
uint32_t index_reg = 0;
uint32_t content_reg = 0;
uint32_t valid_mask = 0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
valid_mask = SOC_MMU_FLASH_VALID;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
valid_mask = SOC_MMU_PSRAM_VALID;
} else {
HAL_ASSERT(false);
}
REG_WRITE(index_reg, entry_id);
mmu_raw_value = REG_READ(content_reg);
bool is_valid = false;
if (mmu_raw_value & valid_mask) {
is_valid = true;
}
return is_valid;
}
/**
* Get the MMU table entry target
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
*
* @return Target, see `mmu_target_t`
*/
static inline mmu_target_t mmu_ll_get_entry_target(uint32_t mmu_id, uint32_t entry_id)
{
(void)entry_id;
mmu_target_t target = MMU_TARGET_FLASH0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
target = MMU_TARGET_FLASH0;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
target = MMU_TARGET_PSRAM0;
} else {
HAL_ASSERT(false);
}
return target;
}
/**
* Convert MMU entry ID to paddr base
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
*
* @return paddr base
*/
static inline uint32_t mmu_ll_entry_id_to_paddr_base(uint32_t mmu_id, uint32_t entry_id)
{
HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM);
uint32_t paddr_base = 0;
mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id);
uint32_t shift_code = 0;
switch (page_size) {
case MMU_PAGE_64KB:
shift_code = 16;
break;
case MMU_PAGE_32KB:
shift_code = 15;
break;
case MMU_PAGE_16KB:
shift_code = 14;
break;
case MMU_PAGE_8KB:
shift_code = 13;
break;
default:
HAL_ASSERT(shift_code);
}
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
REG_WRITE(SPI_MEM_C_MMU_ITEM_INDEX_REG, entry_id);
paddr_base = (REG_READ(SPI_MEM_C_MMU_ITEM_CONTENT_REG) & SOC_MMU_FLASH_VALID_VAL_MASK) << shift_code;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
REG_WRITE(SPI_MEM_S_MMU_ITEM_INDEX_REG, entry_id);
paddr_base = (REG_READ(SPI_MEM_S_MMU_ITEM_CONTENT_REG) & SOC_MMU_PSRAM_VALID_VAL_MASK) << shift_code;
} else {
HAL_ASSERT(false);
}
return paddr_base;
}
/**
* Find the MMU table entry ID based on table map value
* @note This function can only find the first match entry ID. However it is possible that a physical address
* is mapped to multiple virtual addresses
*
* @param mmu_id MMU ID
* @param mmu_val map value to be read from MMU table standing for paddr
* @param target physical memory target, see `mmu_target_t`
*
* @return MMU entry ID, -1 for invalid
*/
static inline int mmu_ll_find_entry_id_based_on_map_value(uint32_t mmu_id, uint32_t mmu_val, mmu_target_t target)
{
uint32_t index_reg = 0;
uint32_t content_reg = 0;
uint32_t valid_val_mask = 0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
valid_val_mask = SOC_MMU_FLASH_VALID_VAL_MASK;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
valid_val_mask = SOC_MMU_PSRAM_VALID_VAL_MASK;
} else {
HAL_ASSERT(false);
}
for (int i = 0; i < SOC_MMU_ENTRY_NUM; i++) {
if (mmu_ll_check_entry_valid(mmu_id, i)) {
if (mmu_ll_get_entry_target(mmu_id, i) == target) {
REG_WRITE(index_reg, i);
if ((REG_READ(content_reg) & valid_val_mask) == mmu_val) {
return i;
}
}
}
}
return -1;
}
/**
* Convert MMU entry ID to vaddr base
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
* @param type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
*/
static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t entry_id, mmu_vaddr_t type)
{
mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id);
uint32_t shift_code = 0;
switch (page_size) {
case MMU_PAGE_64KB:
shift_code = 16;
break;
case MMU_PAGE_32KB:
shift_code = 15;
break;
case MMU_PAGE_16KB:
shift_code = 14;
break;
case MMU_PAGE_8KB:
shift_code = 13;
break;
default:
HAL_ASSERT(shift_code);
}
uint32_t laddr = entry_id << shift_code;
return mmu_ll_laddr_to_vaddr(laddr, type, (mmu_id == MMU_LL_FLASH_MMU_ID) ? MMU_TARGET_FLASH0 : MMU_TARGET_PSRAM0);
}
#ifdef __cplusplus
}
#endif