esp-idf/components/newlib/test/test_time.c
2022-02-23 16:51:28 +08:00

633 lines
22 KiB
C

#include <stdio.h>
#include <math.h>
#include "unity.h"
#include "driver/adc.h"
#include <time.h>
#include <sys/time.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "sdkconfig.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "esp_system.h"
#include "test_utils.h"
#include "esp_log.h"
#include "esp_rom_sys.h"
#include "esp_system.h"
#include "esp_timer.h"
#include "esp_private/system_internal.h"
#include "esp_private/esp_timer_private.h"
#include "../priv_include/esp_time_impl.h"
#include "esp_private/system_internal.h"
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/clk.h"
#include "esp32/rtc.h"
#define TARGET_DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/clk.h"
#include "esp32s2/rtc.h"
#define TARGET_DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/clk.h"
#include "esp32s3/rtc.h"
#define TARGET_DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32S3_DEFAULT_CPU_FREQ_MHZ
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/clk.h"
#include "esp32c3/rtc.h"
#define TARGET_DEFAULT_CPU_FREQ_MHZ CONFIG_ESP32C3_DEFAULT_CPU_FREQ_MHZ
#endif
#if portNUM_PROCESSORS == 2
// https://github.com/espressif/arduino-esp32/issues/120
TEST_CASE("Reading RTC registers on APP CPU doesn't affect clock", "[newlib]")
{
// This runs on APP CPU:
void time_adc_test_task(void* arg)
{
for (int i = 0; i < 200000; ++i) {
// wait for 20us, reading one of RTC registers
uint32_t ccount = xthal_get_ccount();
while (xthal_get_ccount() - ccount < 20 * TARGET_DEFAULT_CPU_FREQ_MHZ) {
volatile uint32_t val = REG_READ(RTC_CNTL_STATE0_REG);
(void) val;
}
}
SemaphoreHandle_t * p_done = (SemaphoreHandle_t *) arg;
xSemaphoreGive(*p_done);
vTaskDelay(1);
vTaskDelete(NULL);
}
SemaphoreHandle_t done = xSemaphoreCreateBinary();
xTaskCreatePinnedToCore(&time_adc_test_task, "time_adc", 4096, &done, 5, NULL, 1);
// This runs on PRO CPU:
for (int i = 0; i < 4; ++i) {
struct timeval tv_start;
gettimeofday(&tv_start, NULL);
vTaskDelay(1000/portTICK_PERIOD_MS);
struct timeval tv_stop;
gettimeofday(&tv_stop, NULL);
float time_sec = tv_stop.tv_sec - tv_start.tv_sec + 1e-6f * (tv_stop.tv_usec - tv_start.tv_usec);
printf("(0) time taken: %f sec\n", time_sec);
TEST_ASSERT_TRUE(fabs(time_sec - 1.0f) < 0.1);
}
TEST_ASSERT_TRUE(xSemaphoreTake(done, 5000 / portTICK_RATE_MS));
}
#endif // portNUM_PROCESSORS == 2
TEST_CASE("test adjtime function", "[newlib]")
{
struct timeval tv_time;
struct timeval tv_delta;
struct timeval tv_outdelta;
TEST_ASSERT_EQUAL(adjtime(NULL, NULL), 0);
tv_time.tv_sec = 5000;
tv_time.tv_usec = 5000;
TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0);
tv_outdelta.tv_sec = 5;
tv_outdelta.tv_usec = 5;
TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
tv_delta.tv_sec = INT_MAX / 1000000L;
TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), -1);
tv_delta.tv_sec = INT_MIN / 1000000L;
TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), -1);
tv_delta.tv_sec = 0;
tv_delta.tv_usec = -900000;
TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
TEST_ASSERT_LESS_THAN(-800000, tv_outdelta.tv_usec);
tv_delta.tv_sec = -4;
tv_delta.tv_usec = -900000;
TEST_ASSERT_EQUAL(adjtime(&tv_delta, NULL), 0);
TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, -4);
TEST_ASSERT_LESS_THAN(-800000, tv_outdelta.tv_usec);
// after settimeofday() adjtime() is stopped
tv_delta.tv_sec = 15;
tv_delta.tv_usec = 900000;
TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, -4);
TEST_ASSERT_LESS_THAN(-800000, tv_outdelta.tv_usec);
TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15);
TEST_ASSERT_GREATER_OR_EQUAL(800000, tv_outdelta.tv_usec);
TEST_ASSERT_EQUAL(gettimeofday(&tv_time, NULL), 0);
TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0);
TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
// after gettimeofday() adjtime() is not stopped
tv_delta.tv_sec = 15;
tv_delta.tv_usec = 900000;
TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15);
TEST_ASSERT_GREATER_OR_EQUAL(800000, tv_outdelta.tv_usec);
TEST_ASSERT_EQUAL(gettimeofday(&tv_time, NULL), 0);
TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15);
TEST_ASSERT_GREATER_OR_EQUAL(800000, tv_outdelta.tv_usec);
tv_delta.tv_sec = 1;
tv_delta.tv_usec = 0;
TEST_ASSERT_EQUAL(adjtime(&tv_delta, NULL), 0);
vTaskDelay(1000 / portTICK_PERIOD_MS);
TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
// the correction will be equal to (1_000_000us >> 6) = 15_625 us.
TEST_ASSERT_TRUE(1000000L - tv_outdelta.tv_usec >= 15600);
TEST_ASSERT_TRUE(1000000L - tv_outdelta.tv_usec <= 15650);
}
static volatile bool exit_flag;
static void adjtimeTask2(void *pvParameters)
{
xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
struct timeval delta = {.tv_sec = 0, .tv_usec = 0};
struct timeval outdelta;
// although exit flag is set in another task, checking (exit_flag == false) is safe
while (exit_flag == false) {
delta.tv_sec += 1;
delta.tv_usec = 900000;
if (delta.tv_sec >= 2146) delta.tv_sec = 1;
adjtime(&delta, &outdelta);
}
xSemaphoreGive(*sema);
vTaskDelete(NULL);
}
static void timeTask(void *pvParameters)
{
xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
struct timeval tv_time = { .tv_sec = 1520000000, .tv_usec = 900000 };
// although exit flag is set in another task, checking (exit_flag == false) is safe
while (exit_flag == false) {
tv_time.tv_sec += 1;
settimeofday(&tv_time, NULL);
gettimeofday(&tv_time, NULL);
}
xSemaphoreGive(*sema);
vTaskDelete(NULL);
}
TEST_CASE("test for no interlocking adjtime, gettimeofday and settimeofday functions", "[newlib]")
{
TaskHandle_t th[4];
exit_flag = false;
struct timeval tv_time = { .tv_sec = 1520000000, .tv_usec = 900000 };
TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0);
const int max_tasks = 2;
xSemaphoreHandle exit_sema[max_tasks];
for (int i = 0; i < max_tasks; ++i) {
exit_sema[i] = xSemaphoreCreateBinary();
}
#ifndef CONFIG_FREERTOS_UNICORE
printf("CPU0 and CPU1. Tasks run: 1 - adjtimeTask, 2 - gettimeofdayTask, 3 - settimeofdayTask \n");
xTaskCreatePinnedToCore(adjtimeTask2, "adjtimeTask2", 2048, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, &th[0], 0);
xTaskCreatePinnedToCore(timeTask, "timeTask", 2048, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, &th[1], 1);
#else
printf("Only one CPU. Tasks run: 1 - adjtimeTask, 2 - gettimeofdayTask, 3 - settimeofdayTask\n");
xTaskCreate(adjtimeTask2, "adjtimeTask2", 2048, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, &th[0]);
xTaskCreate(timeTask, "timeTask", 2048, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, &th[1]);
#endif
printf("start wait for 5 seconds\n");
vTaskDelay(5000 / portTICK_PERIOD_MS);
// set exit flag to let thread exit
exit_flag = true;
for (int i = 0; i < max_tasks; ++i) {
if (!xSemaphoreTake(exit_sema[i], 2000/portTICK_PERIOD_MS)) {
TEST_FAIL_MESSAGE("exit_sema not released by test task");
}
vSemaphoreDelete(exit_sema[i]);
}
}
#ifndef CONFIG_FREERTOS_UNICORE
#define ADJTIME_CORRECTION_FACTOR 6
static int64_t result_adjtime_correction_us[2];
static void get_time_task(void *pvParameters)
{
xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
struct timeval tv_time;
// although exit flag is set in another task, checking (exit_flag == false) is safe
while (exit_flag == false) {
gettimeofday(&tv_time, NULL);
vTaskDelay(1500 / portTICK_PERIOD_MS);
}
xSemaphoreGive(*sema);
vTaskDelete(NULL);
}
static void start_measure(int64_t* sys_time, int64_t* real_time)
{
struct timeval tv_time;
// there shouldn't be much time between gettimeofday and esp_timer_get_time
gettimeofday(&tv_time, NULL);
*real_time = esp_timer_get_time();
*sys_time = (int64_t)tv_time.tv_sec * 1000000L + tv_time.tv_usec;
}
static int64_t calc_correction(const char* tag, int64_t* sys_time, int64_t* real_time)
{
int64_t dt_real_time_us = real_time[1] - real_time[0];
int64_t dt_sys_time_us = sys_time[1] - sys_time[0];
int64_t calc_correction_us = dt_real_time_us >> ADJTIME_CORRECTION_FACTOR;
int64_t real_correction_us = dt_sys_time_us - dt_real_time_us;
int64_t error_us = calc_correction_us - real_correction_us;
printf("%s: dt_real_time = %lli us, dt_sys_time = %lli us, calc_correction = %lli us, error = %lli us\n",
tag, dt_real_time_us, dt_sys_time_us, calc_correction_us, error_us);
TEST_ASSERT_TRUE(dt_sys_time_us > 0 && dt_real_time_us > 0);
TEST_ASSERT_INT_WITHIN(100, 0, error_us);
return real_correction_us;
}
static void measure_time_task(void *pvParameters)
{
xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
int64_t main_real_time_us[2];
int64_t main_sys_time_us[2];
struct timeval tv_time = {.tv_sec = 1550000000, .tv_usec = 0};
TEST_ASSERT_EQUAL(0, settimeofday(&tv_time, NULL));
struct timeval delta = {.tv_sec = 2000, .tv_usec = 900000};
adjtime(&delta, NULL);
gettimeofday(&tv_time, NULL);
start_measure(&main_sys_time_us[0], &main_real_time_us[0]);
{
int64_t real_time_us[2] = { main_real_time_us[0], 0};
int64_t sys_time_us[2] = { main_sys_time_us[0], 0};
// although exit flag is set in another task, checking (exit_flag == false) is safe
while (exit_flag == false) {
vTaskDelay(2000 / portTICK_PERIOD_MS);
start_measure(&sys_time_us[1], &real_time_us[1]);
result_adjtime_correction_us[1] += calc_correction("measure", sys_time_us, real_time_us);
sys_time_us[0] = sys_time_us[1];
real_time_us[0] = real_time_us[1];
}
main_sys_time_us[1] = sys_time_us[1];
main_real_time_us[1] = real_time_us[1];
}
result_adjtime_correction_us[0] = calc_correction("main", main_sys_time_us, main_real_time_us);
int64_t delta_us = result_adjtime_correction_us[0] - result_adjtime_correction_us[1];
printf("\nresult of adjtime correction: %lli us, %lli us. delta = %lli us\n", result_adjtime_correction_us[0], result_adjtime_correction_us[1], delta_us);
TEST_ASSERT_INT_WITHIN(100, 0, delta_us);
xSemaphoreGive(*sema);
vTaskDelete(NULL);
}
TEST_CASE("test time adjustment happens linearly", "[newlib][timeout=15]")
{
exit_flag = false;
xSemaphoreHandle exit_sema[2];
for (int i = 0; i < 2; ++i) {
exit_sema[i] = xSemaphoreCreateBinary();
result_adjtime_correction_us[i] = 0;
}
xTaskCreatePinnedToCore(get_time_task, "get_time_task", 4096, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, NULL, 0);
xTaskCreatePinnedToCore(measure_time_task, "measure_time_task", 4096, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, NULL, 1);
printf("start waiting for 10 seconds\n");
vTaskDelay(10000 / portTICK_PERIOD_MS);
// set exit flag to let thread exit
exit_flag = true;
for (int i = 0; i < 2; ++i) {
if (!xSemaphoreTake(exit_sema[i], 2100/portTICK_PERIOD_MS)) {
TEST_FAIL_MESSAGE("exit_sema not released by test task");
}
}
for (int i = 0; i < 2; ++i) {
vSemaphoreDelete(exit_sema[i]);
}
}
#endif
void test_posix_timers_clock (void)
{
#ifndef _POSIX_TIMERS
TEST_ASSERT_MESSAGE(false, "_POSIX_TIMERS - is not defined");
#endif
#if defined( CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER )
printf("CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER ");
#endif
#if defined( CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER )
printf("CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER ");
#endif
#ifdef CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS
printf("External (crystal) Frequency = %d Hz\n", rtc_clk_slow_freq_get_hz());
#else
printf("Internal Frequency = %d Hz\n", rtc_clk_slow_freq_get_hz());
#endif
TEST_ASSERT(clock_settime(CLOCK_REALTIME, NULL) == -1);
TEST_ASSERT(clock_gettime(CLOCK_REALTIME, NULL) == -1);
TEST_ASSERT(clock_getres(CLOCK_REALTIME, NULL) == -1);
TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, NULL) == -1);
TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, NULL) == -1);
TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, NULL) == -1);
#if defined( CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER ) || defined( CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER )
struct timeval now = {0};
now.tv_sec = 10L;
now.tv_usec = 100000L;
TEST_ASSERT(settimeofday(&now, NULL) == 0);
TEST_ASSERT(gettimeofday(&now, NULL) == 0);
struct timespec ts = {0};
TEST_ASSERT(clock_settime(0xFFFFFFFF, &ts) == -1);
TEST_ASSERT(clock_gettime(0xFFFFFFFF, &ts) == -1);
TEST_ASSERT(clock_getres(0xFFFFFFFF, &ts) == 0);
TEST_ASSERT(clock_gettime(CLOCK_REALTIME, &ts) == 0);
TEST_ASSERT(now.tv_sec == ts.tv_sec);
TEST_ASSERT_INT_WITHIN(5000000L, ts.tv_nsec, now.tv_usec * 1000L);
ts.tv_sec = 20;
ts.tv_nsec = 100000000L;
TEST_ASSERT(clock_settime(CLOCK_REALTIME, &ts) == 0);
TEST_ASSERT(gettimeofday(&now, NULL) == 0);
TEST_ASSERT_EQUAL(ts.tv_sec, now.tv_sec);
TEST_ASSERT_INT_WITHIN(5000L, ts.tv_nsec / 1000L, now.tv_usec);
TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, &ts) == -1);
uint64_t delta_monotonic_us = 0;
#if defined( CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER )
TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == 0);
TEST_ASSERT_EQUAL_INT(1000, ts.tv_nsec);
TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == 0);
TEST_ASSERT_EQUAL_INT(1000, ts.tv_nsec);
TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
delta_monotonic_us = esp_system_get_time() - (ts.tv_sec * 1000000L + ts.tv_nsec / 1000L);
TEST_ASSERT(delta_monotonic_us > 0 || delta_monotonic_us == 0);
TEST_ASSERT_INT_WITHIN(5000L, 0, delta_monotonic_us);
#elif defined( CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER )
TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == 0);
TEST_ASSERT_EQUAL_INT(1000000000L / rtc_clk_slow_freq_get_hz(), ts.tv_nsec);
TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == 0);
TEST_ASSERT_EQUAL_INT(1000000000L / rtc_clk_slow_freq_get_hz(), ts.tv_nsec);
TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
delta_monotonic_us = esp_clk_rtc_time() - (ts.tv_sec * 1000000L + ts.tv_nsec / 1000L);
TEST_ASSERT(delta_monotonic_us > 0 || delta_monotonic_us == 0);
TEST_ASSERT_INT_WITHIN(5000L, 0, delta_monotonic_us);
#endif // CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER
#else
struct timespec ts = {0};
TEST_ASSERT(clock_settime(CLOCK_REALTIME, &ts) == -1);
TEST_ASSERT(clock_gettime(CLOCK_REALTIME, &ts) == -1);
TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == -1);
TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, &ts) == -1);
TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == -1);
TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == -1);
#endif // defined( CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER ) || defined( CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER )
}
TEST_CASE("test posix_timers clock_... functions", "[newlib]")
{
test_posix_timers_clock();
}
#ifdef CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS
#include <string.h>
static struct timeval get_time(const char *desc, char *buffer)
{
struct timeval timestamp;
gettimeofday(&timestamp, NULL);
struct tm* tm_info = localtime(&timestamp.tv_sec);
strftime(buffer, 32, "%c", tm_info);
ESP_LOGI("TAG", "%s: %016llX (%s)", desc, timestamp.tv_sec, buffer);
return timestamp;
}
TEST_CASE("test time_t wide 64 bits", "[newlib]")
{
static char buffer[32];
ESP_LOGI("TAG", "sizeof(time_t): %d (%d-bit)", sizeof(time_t), sizeof(time_t)*8);
TEST_ASSERT_EQUAL(8, sizeof(time_t));
struct tm tm = {4, 14, 3, 19, 0, 138, 0, 0, 0};
struct timeval timestamp = { mktime(&tm), 0 };
ESP_LOGI("TAG", "timestamp: %016llX", timestamp.tv_sec);
settimeofday(&timestamp, NULL);
get_time("Set time", buffer);
while (timestamp.tv_sec < 0x80000003LL) {
vTaskDelay(1000 / portTICK_PERIOD_MS);
timestamp = get_time("Time now", buffer);
}
TEST_ASSERT_EQUAL_MEMORY("Tue Jan 19 03:14:11 2038", buffer, strlen(buffer));
}
TEST_CASE("test time functions wide 64 bits", "[newlib]")
{
static char origin_buffer[32];
char strftime_buf[64];
int year = 2018;
struct tm tm = {0, 14, 3, 19, 0, year - 1900, 0, 0, 0};
time_t t = mktime(&tm);
while (year < 2119) {
struct timeval timestamp = { t, 0 };
ESP_LOGI("TAG", "year: %d", year);
settimeofday(&timestamp, NULL);
get_time("Time now", origin_buffer);
vTaskDelay(10 / portTICK_PERIOD_MS);
t += 86400 * 366;
struct tm timeinfo = { 0 };
time_t now;
time(&now);
localtime_r(&now, &timeinfo);
time_t t = mktime(&timeinfo);
ESP_LOGI("TAG", "Test mktime(). Time: %016llX", t);
TEST_ASSERT_EQUAL(timestamp.tv_sec, t);
// mktime() has error in newlib-3.0.0. It fixed in newlib-3.0.0.20180720
TEST_ASSERT_EQUAL((timestamp.tv_sec >> 32), (t >> 32));
strftime(strftime_buf, sizeof(strftime_buf), "%c", &timeinfo);
ESP_LOGI("TAG", "Test time() and localtime_r(). Time: %s", strftime_buf);
TEST_ASSERT_EQUAL(timeinfo.tm_year, year - 1900);
TEST_ASSERT_EQUAL_MEMORY(origin_buffer, strftime_buf, strlen(origin_buffer));
struct tm *tm2 = localtime(&now);
strftime(strftime_buf, sizeof(strftime_buf), "%c", tm2);
ESP_LOGI("TAG", "Test localtime(). Time: %s", strftime_buf);
TEST_ASSERT_EQUAL(tm2->tm_year, year - 1900);
TEST_ASSERT_EQUAL_MEMORY(origin_buffer, strftime_buf, strlen(origin_buffer));
struct tm *gm = gmtime(&now);
strftime(strftime_buf, sizeof(strftime_buf), "%c", gm);
ESP_LOGI("TAG", "Test gmtime(). Time: %s", strftime_buf);
TEST_ASSERT_EQUAL_MEMORY(origin_buffer, strftime_buf, strlen(origin_buffer));
const char* time_str1 = ctime(&now);
ESP_LOGI("TAG", "Test ctime(). Time: %s", time_str1);
TEST_ASSERT_EQUAL_MEMORY(origin_buffer, time_str1, strlen(origin_buffer));
const char* time_str2 = asctime(&timeinfo);
ESP_LOGI("TAG", "Test asctime(). Time: %s", time_str2);
TEST_ASSERT_EQUAL_MEMORY(origin_buffer, time_str2, strlen(origin_buffer));
printf("\n");
++year;
}
}
#endif // CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS
#if defined( CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER ) && defined( CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER )
extern int64_t s_microseconds_offset;
static const uint64_t s_start_timestamp = 1606838354;
static RTC_NOINIT_ATTR uint64_t s_saved_time;
static RTC_NOINIT_ATTR uint64_t s_time_in_reboot;
typedef enum {
TYPE_REBOOT_ABORT = 0,
TYPE_REBOOT_RESTART,
} type_reboot_t;
static void print_counters(void)
{
int64_t frc = esp_system_get_time();
int64_t rtc = esp_rtc_get_time_us();
uint64_t boot_time = esp_time_impl_get_boot_time();
printf("\tFRC %lld (us)\n", frc);
printf("\tRTC %lld (us)\n", rtc);
printf("\tBOOT %lld (us)\n", boot_time);
printf("\ts_microseconds_offset %lld (us)\n", s_microseconds_offset);
printf("delta RTC - FRC counters %lld (us)\n", rtc - frc);
}
static void set_initial_condition(type_reboot_t type_reboot, int error_time)
{
print_counters();
struct timeval tv = { .tv_sec = s_start_timestamp, .tv_usec = 0, };
settimeofday(&tv, NULL);
printf("set timestamp %lld (s)\n", s_start_timestamp);
print_counters();
int delay_s = abs(error_time) * 2;
printf("Waiting for %d (s) ...\n", delay_s);
vTaskDelay(delay_s * 1000 / portTICK_RATE_MS);
print_counters();
printf("FRC counter increased to %d (s)\n", error_time);
esp_timer_private_advance(error_time * 1000000ULL);
print_counters();
gettimeofday(&tv, NULL);
s_saved_time = tv.tv_sec;
printf("s_saved_time %lld (s)\n", s_saved_time);
int dt = s_saved_time - s_start_timestamp;
printf("delta timestamp = %d (s)\n", dt);
TEST_ASSERT_GREATER_OR_EQUAL(error_time, dt);
s_time_in_reboot = esp_rtc_get_time_us();
if (type_reboot == TYPE_REBOOT_ABORT) {
printf("Update boot time based on diff\n");
esp_sync_counters_rtc_and_frc();
print_counters();
printf("reboot as abort\n");
abort();
} else if (type_reboot == TYPE_REBOOT_RESTART) {
printf("reboot as restart\n");
esp_restart();
}
}
static void set_timestamp1(void)
{
set_initial_condition(TYPE_REBOOT_ABORT, 5);
}
static void set_timestamp2(void)
{
set_initial_condition(TYPE_REBOOT_RESTART, 5);
}
static void set_timestamp3(void)
{
set_initial_condition(TYPE_REBOOT_RESTART, -5);
}
static void check_time(void)
{
print_counters();
int latency_before_run_ut = 1 + (esp_rtc_get_time_us() - s_time_in_reboot) / 1000000;
struct timeval tv;
gettimeofday(&tv, NULL);
printf("timestamp %ld (s)\n", tv.tv_sec);
int dt = tv.tv_sec - s_saved_time;
printf("delta timestamp = %d (s)\n", dt);
TEST_ASSERT_GREATER_OR_EQUAL(0, dt);
TEST_ASSERT_LESS_OR_EQUAL(latency_before_run_ut, dt);
}
TEST_CASE_MULTIPLE_STAGES("Timestamp after abort is correct in case RTC & FRC have + big error", "[newlib][reset=abort,SW_CPU_RESET]", set_timestamp1, check_time);
TEST_CASE_MULTIPLE_STAGES("Timestamp after restart is correct in case RTC & FRC have + big error", "[newlib][reset=SW_CPU_RESET]", set_timestamp2, check_time);
TEST_CASE_MULTIPLE_STAGES("Timestamp after restart is correct in case RTC & FRC have - big error", "[newlib][reset=SW_CPU_RESET]", set_timestamp3, check_time);
#endif // CONFIG_ESP_TIME_FUNCS_USE_ESP_TIMER && CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER