esp-idf/examples/common_components/iperf/iperf.c
fl0wl0w 90d1dcfd76 feat(freertos): Introduced new Kconfig option CONFIG_FREERTOS_NUMBER_OF_CORES
This commit replaces the use of portNUM_PROCESSORS and configNUM_CORES
macros in all of ESP-IDF. These macros are needed to realize an SMP
scenario by fetching the number of active cores FreeRTOS is running on.
Instead, a new Kconfig option, CONFIG_FREERTOS_NUMBER_OF_CORES, has been
added as a proxy for the FreeRTOS config option, configNUMBER_OF_CORES.
This new commit is now used to realize an SMP scenario in various places
in ESP-IDF.

[Sudeep Mohanty: Added new Kconfig option CONFIG_FREERTOS_NUMBER_OF_CORES]

Signed-off-by: Sudeep Mohanty <sudeep.mohanty@espressif.com>
2024-02-09 09:11:28 +01:00

610 lines
22 KiB
C

/* Iperf Example - iperf implementation
This example code is in the Public Domain (or CC0 licensed, at your option.)
/
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#include "sdkconfig.h"
#include <stdio.h>
#include <string.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <inttypes.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_check.h"
#include "esp_log.h"
#include "esp_rom_sys.h"
#include "esp_timer.h"
#include "iperf.h"
#include "wifi_stats.h"
typedef struct {
iperf_cfg_t cfg;
bool finish;
uint32_t actual_len;
uint32_t buffer_len;
uint8_t *buffer;
uint32_t sockfd;
} iperf_ctrl_t;
static bool s_iperf_is_running = false;
static iperf_ctrl_t s_iperf_ctrl;
static const char *TAG = "iperf";
inline static bool iperf_is_udp_client(void)
{
return ((s_iperf_ctrl.cfg.flag & IPERF_FLAG_CLIENT) && (s_iperf_ctrl.cfg.flag & IPERF_FLAG_UDP));
}
inline static bool iperf_is_udp_server(void)
{
return ((s_iperf_ctrl.cfg.flag & IPERF_FLAG_SERVER) && (s_iperf_ctrl.cfg.flag & IPERF_FLAG_UDP));
}
inline static bool iperf_is_tcp_client(void)
{
return ((s_iperf_ctrl.cfg.flag & IPERF_FLAG_CLIENT) && (s_iperf_ctrl.cfg.flag & IPERF_FLAG_TCP));
}
inline static bool iperf_is_tcp_server(void)
{
return ((s_iperf_ctrl.cfg.flag & IPERF_FLAG_SERVER) && (s_iperf_ctrl.cfg.flag & IPERF_FLAG_TCP));
}
static int iperf_get_socket_error_code(int sockfd)
{
return errno;
}
static int iperf_show_socket_error_reason(const char *str, int sockfd)
{
int err = errno;
if (err != 0) {
ESP_LOGW(TAG, "%s error, error code: %d, reason: %s", str, err, strerror(err));
}
return err;
}
static void iperf_report_task(void *arg)
{
uint32_t interval = s_iperf_ctrl.cfg.interval;
uint32_t time = s_iperf_ctrl.cfg.time;
TickType_t delay_interval = (interval * 1000) / portTICK_PERIOD_MS;
uint32_t cur = 0;
double average = 0;
double actual_bandwidth = 0;
int k = 1;
const double coefficient[3] = {1048576.0, 1024.0, 1.0};
const char unit[3] = {'M', 'K', '\0'};
iperf_output_format format = s_iperf_ctrl.cfg.format;
printf("\n%16s %s\n", "Interval", "Bandwidth");
while (!s_iperf_ctrl.finish) {
vTaskDelay(delay_interval);
actual_bandwidth = (s_iperf_ctrl.actual_len / coefficient[format] * 8) / interval;
printf("%4" PRIi32 "-%4" PRIi32 " sec %.2f %cbits/sec\n", cur, cur + interval,
actual_bandwidth, unit[format]);
cur += interval;
average = ((average * (k - 1) / k) + (actual_bandwidth / k));
k++;
s_iperf_ctrl.actual_len = 0;
if (cur >= time) {
printf("%4d-%4" PRIu32 " sec %.2f %cbits/sec\n", 0, time,
average, unit[format]);
break;
}
}
s_iperf_ctrl.finish = true;
vTaskDelete(NULL);
}
static esp_err_t iperf_start_report(void)
{
int ret;
ret = xTaskCreatePinnedToCore(iperf_report_task, IPERF_REPORT_TASK_NAME, IPERF_REPORT_TASK_STACK, NULL, IPERF_REPORT_TASK_PRIORITY, NULL, CONFIG_FREERTOS_NUMBER_OF_CORES - 1);
if (ret != pdPASS) {
ESP_LOGE(TAG, "create task %s failed", IPERF_REPORT_TASK_NAME);
return ESP_FAIL;
}
return ESP_OK;
}
static void IRAM_ATTR socket_recv(int recv_socket, struct sockaddr_storage listen_addr, uint8_t type)
{
bool iperf_recv_start = true;
uint8_t *buffer;
int want_recv = 0;
int actual_recv = 0;
#ifdef CONFIG_LWIP_IPV6
socklen_t socklen = (s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in);
#else
socklen_t socklen = sizeof(struct sockaddr_in);
#endif
const char *error_log = (type == IPERF_TRANS_TYPE_TCP) ? "tcp server recv" : "udp server recv";
buffer = s_iperf_ctrl.buffer;
want_recv = s_iperf_ctrl.buffer_len;
while (!s_iperf_ctrl.finish) {
actual_recv = recvfrom(recv_socket, buffer, want_recv, 0, (struct sockaddr *)&listen_addr, &socklen);
if (actual_recv < 0) {
iperf_show_socket_error_reason(error_log, recv_socket);
s_iperf_ctrl.finish = true;
break;
} else {
if (iperf_recv_start) {
iperf_start_report();
iperf_recv_start = false;
}
s_iperf_ctrl.actual_len += actual_recv;
}
}
}
static void IRAM_ATTR socket_send(int send_socket, struct sockaddr_storage dest_addr, uint8_t type, int bw_lim)
{
uint8_t *buffer;
uint32_t *pkt_id_p;
uint32_t pkt_cnt = 0;
int actual_send = 0;
int want_send = 0;
int period_us = -1;
int delay_us = 0;
int64_t prev_time = 0;
int64_t send_time = 0;
int err = 0;
#ifdef CONFIG_LWIP_IPV6
const socklen_t socklen = (s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV6) ? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in);
#else
const socklen_t socklen = sizeof(struct sockaddr_in);
#endif
const char *error_log = (type == IPERF_TRANS_TYPE_TCP) ? "tcp client send" : "udp client send";
buffer = s_iperf_ctrl.buffer;
pkt_id_p = (uint32_t *)s_iperf_ctrl.buffer;
want_send = s_iperf_ctrl.buffer_len;
iperf_start_report();
if (bw_lim > 0) {
period_us = want_send * 8 / bw_lim;
}
while (!s_iperf_ctrl.finish) {
if (period_us > 0) {
send_time = esp_timer_get_time();
if (actual_send > 0){
// Last packet "send" was successful, check how much off the previous loop duration was to the ideal send period. Result will adjust the
// next send delay.
delay_us += period_us + (int32_t)(prev_time - send_time);
} else {
// Last packet "send" was not successful. Ideally we should try to catch up the whole previous loop duration (e.g. prev_time - send_time).
// However, that's not possible since the most probable reason why the send was unsuccessful is the HW was not able to process the packet.
// Hence, we cannot queue more packets with shorter (or no) delay to catch up since we are already at the performance edge. The best we
// can do is to reset the send delay (which is probably big negative number) and start all over again.
delay_us = 0;
}
prev_time = send_time;
}
*pkt_id_p = htonl(pkt_cnt++); // datagrams need to be sequentially numbered
actual_send = sendto(send_socket, buffer, want_send, 0, (struct sockaddr *)&dest_addr, socklen);
if (actual_send != want_send) {
if (type == IPERF_TRANS_TYPE_UDP) {
err = iperf_get_socket_error_code(send_socket);
// ENOMEM is expected under heavy load => do not print it
if (err != ENOMEM) {
iperf_show_socket_error_reason(error_log, send_socket);
}
} else if (type == IPERF_TRANS_TYPE_TCP) {
iperf_show_socket_error_reason(error_log, send_socket);
break;
}
} else {
s_iperf_ctrl.actual_len += actual_send;
}
// The send delay may be negative, it indicates we are trying to catch up and hence to not delay the loop at all.
if (delay_us > 0) {
esp_rom_delay_us(delay_us);
}
}
}
static esp_err_t iperf_run_tcp_server(void)
{
int listen_socket = -1;
int client_socket = -1;
int opt = 1;
int err = 0;
esp_err_t ret = ESP_OK;
struct sockaddr_in remote_addr;
struct timeval timeout = { 0 };
socklen_t addr_len = sizeof(struct sockaddr);
struct sockaddr_storage listen_addr = { 0 };
struct sockaddr_in listen_addr4 = { 0 };
#ifdef CONFIG_LWIP_IPV6
struct sockaddr_in6 listen_addr6 = { 0 };
ESP_GOTO_ON_FALSE((s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV6 || s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV4), ESP_FAIL, exit, TAG, "Ivalid AF types");
#else
ESP_GOTO_ON_FALSE((s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV4), ESP_FAIL, exit, TAG, "Invalid AF types");
#endif
#ifdef CONFIG_LWIP_IPV6
if (s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV6) {
// The TCP server listen at the address "::", which means all addresses can be listened to.
inet6_aton("::", &listen_addr6.sin6_addr);
listen_addr6.sin6_family = AF_INET6;
listen_addr6.sin6_port = htons(s_iperf_ctrl.cfg.sport);
listen_socket = socket(AF_INET6, SOCK_STREAM, IPPROTO_IPV6);
ESP_GOTO_ON_FALSE((listen_socket >= 0), ESP_FAIL, exit, TAG, "Unable to create socket: errno %d", errno);
setsockopt(listen_socket, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
setsockopt(listen_socket, IPPROTO_IPV6, IPV6_V6ONLY, &opt, sizeof(opt));
ESP_LOGI(TAG, "Socket created");
err = bind(listen_socket, (struct sockaddr *)&listen_addr6, sizeof(listen_addr6));
ESP_GOTO_ON_FALSE((err == 0), ESP_FAIL, exit, TAG, "Socket unable to bind: errno %d, IPPROTO: %d", errno, AF_INET6);
err = listen(listen_socket, 1);
ESP_GOTO_ON_FALSE((err == 0), ESP_FAIL, exit, TAG, "Error occurred during listen: errno %d", errno);
memcpy(&listen_addr, &listen_addr6, sizeof(listen_addr6));
} else
#endif
if (s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV4) {
listen_addr4.sin_family = AF_INET;
listen_addr4.sin_port = htons(s_iperf_ctrl.cfg.sport);
listen_addr4.sin_addr.s_addr = s_iperf_ctrl.cfg.source_ip4;
listen_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
ESP_GOTO_ON_FALSE((listen_socket >= 0), ESP_FAIL, exit, TAG, "Unable to create socket: errno %d", errno);
setsockopt(listen_socket, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
ESP_LOGI(TAG, "Socket created");
err = bind(listen_socket, (struct sockaddr *)&listen_addr4, sizeof(listen_addr4));
ESP_GOTO_ON_FALSE((err == 0), ESP_FAIL, exit, TAG, "Socket unable to bind: errno %d, IPPROTO: %d", errno, AF_INET);
err = listen(listen_socket, 5);
ESP_GOTO_ON_FALSE((err == 0), ESP_FAIL, exit, TAG, "Error occurred during listen: errno %d", errno);
memcpy(&listen_addr, &listen_addr4, sizeof(listen_addr4));
}
timeout.tv_sec = IPERF_SOCKET_RX_TIMEOUT;
setsockopt(listen_socket, SOL_SOCKET, SO_RCVTIMEO, &timeout, sizeof(timeout));
client_socket = accept(listen_socket, (struct sockaddr *)&remote_addr, &addr_len);
ESP_GOTO_ON_FALSE((client_socket >= 0), ESP_FAIL, exit, TAG, "Unable to accept connection: errno %d", errno);
ESP_LOGI(TAG, "accept: %s,%d", inet_ntoa(remote_addr.sin_addr), htons(remote_addr.sin_port));
timeout.tv_sec = IPERF_SOCKET_RX_TIMEOUT;
setsockopt(client_socket, SOL_SOCKET, SO_RCVTIMEO, &timeout, sizeof(timeout));
#if CONFIG_ESP_WIFI_ENABLE_WIFI_TX_STATS
wifi_cmd_clr_tx_statistics(0, NULL);
#endif
#if CONFIG_ESP_WIFI_ENABLE_WIFI_RX_STATS
wifi_cmd_clr_rx_statistics(0, NULL);
#endif
socket_recv(client_socket, listen_addr, IPERF_TRANS_TYPE_TCP);
#if CONFIG_ESP_WIFI_ENABLE_WIFI_RX_STATS
wifi_cmd_get_rx_statistics(0, NULL);
#endif
#if CONFIG_ESP_WIFI_ENABLE_WIFI_TX_STATS
wifi_cmd_get_tx_statistics(0, NULL);
#endif
exit:
if (client_socket != -1) {
close(client_socket);
}
if (listen_socket != -1) {
shutdown(listen_socket, 0);
close(listen_socket);
ESP_LOGI(TAG, "TCP Socket server is closed.");
}
s_iperf_ctrl.finish = true;
return ret;
}
static esp_err_t iperf_run_tcp_client(void)
{
int client_socket = -1;
int err = 0;
esp_err_t ret = ESP_OK;
struct sockaddr_storage dest_addr = { 0 };
struct sockaddr_in dest_addr4 = { 0 };
struct timeval timeout = { 0 };
#ifdef CONFIG_LWIP_IPV6
struct sockaddr_in6 dest_addr6 = { 0 };
ESP_GOTO_ON_FALSE((s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV6 || s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV4), ESP_FAIL, exit, TAG, "Ivalid AF types");
#else
ESP_GOTO_ON_FALSE((s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV4), ESP_FAIL, exit, TAG, "Invalid AF types");
#endif
#ifdef CONFIG_LWIP_IPV6
if (s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV6) {
client_socket = socket(AF_INET6, SOCK_STREAM, IPPROTO_IPV6);
ESP_GOTO_ON_FALSE((client_socket >= 0), ESP_FAIL, exit, TAG, "Unable to create socket: errno %d", errno);
inet6_aton(s_iperf_ctrl.cfg.destination_ip6, &dest_addr6.sin6_addr);
dest_addr6.sin6_family = AF_INET6;
dest_addr6.sin6_port = htons(s_iperf_ctrl.cfg.dport);
err = connect(client_socket, (struct sockaddr *)&dest_addr6, sizeof(struct sockaddr_in6));
ESP_GOTO_ON_FALSE((err == 0), ESP_FAIL, exit, TAG, "Socket unable to connect: errno %d", errno);
ESP_LOGI(TAG, "Successfully connected");
memcpy(&dest_addr, &dest_addr6, sizeof(dest_addr6));
} else
#endif
if (s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV4) {
client_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
ESP_GOTO_ON_FALSE((client_socket >= 0), ESP_FAIL, exit, TAG, "Unable to create socket: errno %d", errno);
dest_addr4.sin_family = AF_INET;
dest_addr4.sin_port = htons(s_iperf_ctrl.cfg.dport);
dest_addr4.sin_addr.s_addr = s_iperf_ctrl.cfg.destination_ip4;
err = connect(client_socket, (struct sockaddr *)&dest_addr4, sizeof(struct sockaddr_in));
ESP_GOTO_ON_FALSE((err == 0), ESP_FAIL, exit, TAG, "Socket unable to connect: errno %d", errno);
ESP_LOGI(TAG, "Successfully connected");
memcpy(&dest_addr, &dest_addr4, sizeof(dest_addr4));
}
timeout.tv_sec = IPERF_SOCKET_TCP_TX_TIMEOUT;
setsockopt(client_socket, SOL_SOCKET, SO_SNDTIMEO, &timeout, sizeof(timeout));
#if CONFIG_ESP_WIFI_ENABLE_WIFI_RX_STATS
wifi_cmd_clr_rx_statistics(0, NULL);
#endif
#if CONFIG_ESP_WIFI_ENABLE_WIFI_TX_STATS
wifi_cmd_clr_tx_statistics(0, NULL);
#endif
socket_send(client_socket, dest_addr, IPERF_TRANS_TYPE_TCP, s_iperf_ctrl.cfg.bw_lim);
#if CONFIG_ESP_WIFI_ENABLE_WIFI_RX_STATS
wifi_cmd_get_rx_statistics(0, NULL);
#endif
#if CONFIG_ESP_WIFI_ENABLE_WIFI_TX_STATS
wifi_cmd_get_tx_statistics(0, NULL);
#endif
exit:
if (client_socket != -1) {
shutdown(client_socket, 0);
close(client_socket);
ESP_LOGI(TAG, "TCP Socket client is closed.");
}
s_iperf_ctrl.finish = true;
return ret;
}
static esp_err_t iperf_run_udp_server(void)
{
int listen_socket = -1;
int opt = 1;
int err = 0;
esp_err_t ret = ESP_OK;
struct timeval timeout = { 0 };
struct sockaddr_storage listen_addr = { 0 };
struct sockaddr_in listen_addr4 = { 0 };
#ifdef CONFIG_LWIP_IPV6
struct sockaddr_in6 listen_addr6 = { 0 };
ESP_GOTO_ON_FALSE((s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV6 || s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV4), ESP_FAIL, exit, TAG, "Ivalid AF types");
#else
ESP_GOTO_ON_FALSE((s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV4), ESP_FAIL, exit, TAG, "Ivalid AF types");
#endif
#ifdef CONFIG_LWIP_IPV6
if (s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV6) {
// The UDP server listen at the address "::", which means all addresses can be listened to.
inet6_aton("::", &listen_addr6.sin6_addr);
listen_addr6.sin6_family = AF_INET6;
listen_addr6.sin6_port = htons(s_iperf_ctrl.cfg.sport);
listen_socket = socket(AF_INET6, SOCK_DGRAM, IPPROTO_UDP);
ESP_GOTO_ON_FALSE((listen_socket >= 0), ESP_FAIL, exit, TAG, "Unable to create socket: errno %d", errno);
ESP_LOGI(TAG, "Socket created");
setsockopt(listen_socket, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
err = bind(listen_socket, (struct sockaddr *)&listen_addr6, sizeof(struct sockaddr_in6));
ESP_GOTO_ON_FALSE((err == 0), ESP_FAIL, exit, TAG, "Socket unable to bind: errno %d", errno);
ESP_LOGI(TAG, "Socket bound, port %" PRIu16, listen_addr6.sin6_port);
memcpy(&listen_addr, &listen_addr6, sizeof(listen_addr6));
} else
#endif
if (s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV4) {
listen_addr4.sin_family = AF_INET;
listen_addr4.sin_port = htons(s_iperf_ctrl.cfg.sport);
listen_addr4.sin_addr.s_addr = s_iperf_ctrl.cfg.source_ip4;
listen_socket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
ESP_GOTO_ON_FALSE((listen_socket >= 0), ESP_FAIL, exit, TAG, "Unable to create socket: errno %d", errno);
ESP_LOGI(TAG, "Socket created");
setsockopt(listen_socket, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
err = bind(listen_socket, (struct sockaddr *)&listen_addr4, sizeof(struct sockaddr_in));
ESP_GOTO_ON_FALSE((err == 0), ESP_FAIL, exit, TAG, "Socket unable to bind: errno %d", errno);
ESP_LOGI(TAG, "Socket bound, port %d", listen_addr4.sin_port);
memcpy(&listen_addr, &listen_addr4, sizeof(listen_addr4));
}
timeout.tv_sec = IPERF_SOCKET_RX_TIMEOUT;
setsockopt(listen_socket, SOL_SOCKET, SO_RCVTIMEO, &timeout, sizeof(timeout));
#if CONFIG_ESP_WIFI_ENABLE_WIFI_RX_STATS
wifi_cmd_clr_rx_statistics(0, NULL);
#endif
socket_recv(listen_socket, listen_addr, IPERF_TRANS_TYPE_UDP);
#if CONFIG_ESP_WIFI_ENABLE_WIFI_RX_STATS
wifi_cmd_get_rx_statistics(0, NULL);
#endif
exit:
if (listen_socket != -1) {
shutdown(listen_socket, 0);
close(listen_socket);
}
ESP_LOGI(TAG, "Udp socket server is closed.");
s_iperf_ctrl.finish = true;
return ret;
}
static esp_err_t iperf_run_udp_client(void)
{
int client_socket = -1;
int opt = 1;
esp_err_t ret = ESP_OK;
struct sockaddr_storage dest_addr = { 0 };
struct sockaddr_in dest_addr4 = { 0 };
#ifdef CONFIG_LWIP_IPV6
struct sockaddr_in6 dest_addr6 = { 0 };
ESP_GOTO_ON_FALSE((s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV6 || s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV4), ESP_FAIL, exit, TAG, "Ivalid AF types");
#else
ESP_GOTO_ON_FALSE((s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV4), ESP_FAIL, exit, TAG, "Ivalid AF types");
#endif
#ifdef CONFIG_LWIP_IPV6
if (s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV6) {
inet6_aton(s_iperf_ctrl.cfg.destination_ip6, &dest_addr6.sin6_addr);
dest_addr6.sin6_family = AF_INET6;
dest_addr6.sin6_port = htons(s_iperf_ctrl.cfg.dport);
client_socket = socket(AF_INET6, SOCK_DGRAM, IPPROTO_IPV6);
ESP_GOTO_ON_FALSE((client_socket >= 0), ESP_FAIL, exit, TAG, "Unable to create socket: errno %d", errno);
ESP_LOGI(TAG, "Socket created, sending to %s:%" PRIu16, s_iperf_ctrl.cfg.destination_ip6, s_iperf_ctrl.cfg.dport);
setsockopt(client_socket, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
memcpy(&dest_addr, &dest_addr6, sizeof(dest_addr6));
} else
#endif
if (s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV4) {
dest_addr4.sin_family = AF_INET;
dest_addr4.sin_port = htons(s_iperf_ctrl.cfg.dport);
dest_addr4.sin_addr.s_addr = s_iperf_ctrl.cfg.destination_ip4;
client_socket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
ESP_GOTO_ON_FALSE((client_socket >= 0), ESP_FAIL, exit, TAG, "Unable to create socket: errno %d", errno);
ESP_LOGI(TAG, "Socket created, sending to %d.%d.%d.%d:%" PRIu16,
(uint16_t) s_iperf_ctrl.cfg.destination_ip4 & 0xFF,
(uint16_t) (s_iperf_ctrl.cfg.destination_ip4 >> 8) & 0xFF,
(uint16_t) (s_iperf_ctrl.cfg.destination_ip4 >> 16) & 0xFF,
(uint16_t) (s_iperf_ctrl.cfg.destination_ip4 >> 24) & 0xFF,
s_iperf_ctrl.cfg.dport);
setsockopt(client_socket, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
memcpy(&dest_addr, &dest_addr4, sizeof(dest_addr4));
}
#if CONFIG_ESP_WIFI_ENABLE_WIFI_TX_STATS
wifi_cmd_clr_tx_statistics(0, NULL);
#endif
socket_send(client_socket, dest_addr, IPERF_TRANS_TYPE_UDP, s_iperf_ctrl.cfg.bw_lim);
#if CONFIG_ESP_WIFI_ENABLE_WIFI_TX_STATS
wifi_cmd_get_tx_statistics(0, NULL);
#endif
exit:
if (client_socket != -1) {
shutdown(client_socket, 0);
close(client_socket);
}
s_iperf_ctrl.finish = true;
ESP_LOGI(TAG, "UDP Socket client is closed");
return ret;
}
static void iperf_task_traffic(void *arg)
{
if (iperf_is_udp_client()) {
iperf_run_udp_client();
} else if (iperf_is_udp_server()) {
iperf_run_udp_server();
} else if (iperf_is_tcp_client()) {
iperf_run_tcp_client();
} else {
iperf_run_tcp_server();
}
if (s_iperf_ctrl.buffer) {
free(s_iperf_ctrl.buffer);
s_iperf_ctrl.buffer = NULL;
}
ESP_LOGI(TAG, "iperf exit");
s_iperf_is_running = false;
vTaskDelete(NULL);
}
static uint32_t iperf_get_buffer_len(void)
{
if (iperf_is_udp_client()) {
#ifdef CONFIG_LWIP_IPV6
if (s_iperf_ctrl.cfg.len_send_buf) {
return s_iperf_ctrl.cfg.len_send_buf;
} else if (s_iperf_ctrl.cfg.type == IPERF_IP_TYPE_IPV6) {
return IPERF_DEFAULT_IPV6_UDP_TX_LEN;
} else {
return IPERF_DEFAULT_IPV4_UDP_TX_LEN;
}
#else
return (s_iperf_ctrl.cfg.len_send_buf == 0 ? IPERF_DEFAULT_IPV4_UDP_TX_LEN : s_iperf_ctrl.cfg.len_send_buf);
#endif
} else if (iperf_is_udp_server()) {
return IPERF_DEFAULT_UDP_RX_LEN;
} else if (iperf_is_tcp_client()) {
return (s_iperf_ctrl.cfg.len_send_buf == 0 ? IPERF_DEFAULT_TCP_TX_LEN : s_iperf_ctrl.cfg.len_send_buf);
} else {
return IPERF_DEFAULT_TCP_RX_LEN;
}
return 0;
}
esp_err_t iperf_start(iperf_cfg_t *cfg)
{
BaseType_t ret;
if (!cfg) {
return ESP_FAIL;
}
if (s_iperf_is_running) {
ESP_LOGW(TAG, "iperf is running");
return ESP_FAIL;
}
memset(&s_iperf_ctrl, 0, sizeof(s_iperf_ctrl));
memcpy(&s_iperf_ctrl.cfg, cfg, sizeof(*cfg));
s_iperf_is_running = true;
s_iperf_ctrl.finish = false;
s_iperf_ctrl.buffer_len = iperf_get_buffer_len();
s_iperf_ctrl.buffer = (uint8_t *)malloc(s_iperf_ctrl.buffer_len);
if (!s_iperf_ctrl.buffer) {
ESP_LOGE(TAG, "create buffer: not enough memory");
return ESP_FAIL;
}
memset(s_iperf_ctrl.buffer, 0, s_iperf_ctrl.buffer_len);
ret = xTaskCreatePinnedToCore(iperf_task_traffic, IPERF_TRAFFIC_TASK_NAME, IPERF_TRAFFIC_TASK_STACK, NULL, IPERF_TRAFFIC_TASK_PRIORITY, NULL, CONFIG_FREERTOS_NUMBER_OF_CORES - 1);
if (ret != pdPASS) {
ESP_LOGE(TAG, "create task %s failed", IPERF_TRAFFIC_TASK_NAME);
free(s_iperf_ctrl.buffer);
s_iperf_ctrl.buffer = NULL;
return ESP_FAIL;
}
return ESP_OK;
}
esp_err_t iperf_stop(void)
{
if (s_iperf_is_running) {
s_iperf_ctrl.finish = true;
}
while (s_iperf_is_running) {
ESP_LOGI(TAG, "wait current iperf to stop ...");
vTaskDelay(300 / portTICK_PERIOD_MS);
}
return ESP_OK;
}