mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
472 lines
16 KiB
C
472 lines
16 KiB
C
/*
|
|
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
|
|
* Adaptations to ESP-IDF Copyright (c) 2016-2018 Espressif Systems (Shanghai) PTE LTD
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
#include "esp_timer.h"
|
|
#include "esp_cache.h"
|
|
#include "sdmmc_common.h"
|
|
|
|
static const char* TAG = "sdmmc_sd";
|
|
|
|
esp_err_t sdmmc_init_sd_if_cond(sdmmc_card_t* card)
|
|
{
|
|
/* SEND_IF_COND (CMD8) command is used to identify SDHC/SDXC cards.
|
|
* SD v1 and non-SD cards will not respond to this command.
|
|
*/
|
|
uint32_t host_ocr = get_host_ocr(card->host.io_voltage);
|
|
esp_err_t err = sdmmc_send_cmd_send_if_cond(card, host_ocr);
|
|
if (err == ESP_OK) {
|
|
ESP_LOGD(TAG, "SDHC/SDXC card");
|
|
host_ocr |= SD_OCR_SDHC_CAP;
|
|
} else if (err == ESP_ERR_TIMEOUT) {
|
|
ESP_LOGD(TAG, "CMD8 timeout; not an SD v2.00 card");
|
|
} else if (host_is_spi(card) && err == ESP_ERR_NOT_SUPPORTED) {
|
|
ESP_LOGD(TAG, "CMD8 rejected; not an SD v2.00 card");
|
|
} else {
|
|
ESP_LOGE(TAG, "%s: send_if_cond (1) returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
card->ocr = host_ocr;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_init_sd_blocklen(sdmmc_card_t* card)
|
|
{
|
|
/* SDSC cards support configurable data block lengths.
|
|
* We don't use this feature and set the block length to 512 bytes,
|
|
* same as the block length for SDHC cards.
|
|
*/
|
|
if ((card->ocr & SD_OCR_SDHC_CAP) == 0) {
|
|
esp_err_t err = sdmmc_send_cmd_set_blocklen(card, &card->csd);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: set_blocklen returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_init_sd_scr(sdmmc_card_t* card)
|
|
{
|
|
esp_err_t err;
|
|
/* Get the contents of SCR register: bus width and the version of SD spec
|
|
* supported by the card.
|
|
* In SD mode, this is the first command which uses D0 line. Errors at
|
|
* this step usually indicate connection issue or lack of pull-up resistor.
|
|
*/
|
|
err = sdmmc_send_cmd_send_scr(card, &card->scr);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: send_scr (1) returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
|
|
if ((card->scr.bus_width & SCR_SD_BUS_WIDTHS_4BIT)
|
|
&& (card->host.flags & SDMMC_HOST_FLAG_4BIT)) {
|
|
card->log_bus_width = 2;
|
|
} else {
|
|
card->log_bus_width = 0;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_init_sd_ssr(sdmmc_card_t* card)
|
|
{
|
|
esp_err_t err = ESP_OK;
|
|
/* Get the contents of SSR register: SD additional information
|
|
* ACMD13 to read 512byte SD status information
|
|
*/
|
|
uint32_t* sd_ssr = NULL;
|
|
size_t actual_size = 0;
|
|
err = esp_dma_calloc(1, SD_SSR_SIZE, 0, (void *)&sd_ssr, &actual_size);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: could not allocate sd_ssr", __func__);
|
|
return err;
|
|
}
|
|
|
|
sdmmc_command_t cmd = {
|
|
.data = sd_ssr,
|
|
.datalen = SD_SSR_SIZE,
|
|
.buflen = actual_size,
|
|
.blklen = SD_SSR_SIZE,
|
|
.opcode = SD_APP_SD_STATUS,
|
|
.arg = 0,
|
|
.flags = SCF_CMD_ADTC | SCF_RSP_R1 | SCF_CMD_READ
|
|
};
|
|
|
|
// read SD status register
|
|
err = sdmmc_send_app_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
free(sd_ssr);
|
|
ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
|
|
err = sdmmc_decode_ssr(sd_ssr, &card->ssr);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: error sdmmc_decode_scr returned 0x%x", __func__, err);
|
|
}
|
|
free(sd_ssr);
|
|
return err;
|
|
}
|
|
|
|
esp_err_t sdmmc_init_sd_bus_width(sdmmc_card_t* card)
|
|
{
|
|
int width = 1;
|
|
if (card->log_bus_width == 2) {
|
|
width = 4;
|
|
} else if (card->log_bus_width == 3) {
|
|
width = 8;
|
|
}
|
|
esp_err_t err = sdmmc_send_cmd_set_bus_width(card, width);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "set_bus_width failed (0x%x)", err);
|
|
return err;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_init_sd_wait_data_ready(sdmmc_card_t* card)
|
|
{
|
|
/* Wait for the card to be ready for data transfers */
|
|
uint32_t status = 0;
|
|
uint32_t count = 0;
|
|
int64_t yield_delay_us = 100 * 1000; // initially 100ms
|
|
int64_t t0 = esp_timer_get_time();
|
|
int64_t t1 = 0;
|
|
while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
|
|
t1 = esp_timer_get_time();
|
|
if (t1 - t0 > SDMMC_INIT_WAIT_DATA_READY_TIMEOUT_US) {
|
|
ESP_LOGE(TAG, "init wait data ready - timeout");
|
|
return ESP_ERR_TIMEOUT;
|
|
}
|
|
if (t1 - t0 > yield_delay_us) {
|
|
yield_delay_us *= 2;
|
|
vTaskDelay(1);
|
|
}
|
|
esp_err_t err = sdmmc_send_cmd_send_status(card, &status);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
if (++count % 16 == 0) {
|
|
ESP_LOGV(TAG, "waiting for card to become ready (%" PRIu32 ")", count);
|
|
}
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_send_cmd_switch_func(sdmmc_card_t* card,
|
|
uint32_t mode, uint32_t group, uint32_t function,
|
|
sdmmc_switch_func_rsp_t* resp)
|
|
{
|
|
if (card->scr.sd_spec < SCR_SD_SPEC_VER_1_10 ||
|
|
((card->csd.card_command_class & SD_CSD_CCC_SWITCH) == 0)) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
|
|
if (group == 0 ||
|
|
group > SD_SFUNC_GROUP_MAX ||
|
|
function > SD_SFUNC_FUNC_MAX) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
if (mode > 1) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
uint32_t group_shift = (group - 1) << 2;
|
|
/* all functions which should not be affected are set to 0xf (no change) */
|
|
uint32_t other_func_mask = (0x00ffffff & ~(0xf << group_shift));
|
|
uint32_t func_val = (function << group_shift) | other_func_mask;
|
|
|
|
size_t datalen = sizeof(sdmmc_switch_func_rsp_t);
|
|
sdmmc_command_t cmd = {
|
|
.opcode = MMC_SWITCH,
|
|
.flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
|
|
.blklen = sizeof(sdmmc_switch_func_rsp_t),
|
|
.data = resp->data,
|
|
.datalen = datalen,
|
|
.buflen = datalen,
|
|
.arg = (!!mode << 31) | func_val
|
|
};
|
|
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
sdmmc_flip_byte_order(resp->data, sizeof(sdmmc_switch_func_rsp_t));
|
|
uint32_t resp_ver = SD_SFUNC_VER(resp->data);
|
|
if (resp_ver == 0) {
|
|
/* busy response is never sent */
|
|
} else if (resp_ver == 1) {
|
|
if (SD_SFUNC_BUSY(resp->data, group) & (1 << function)) {
|
|
ESP_LOGD(TAG, "%s: response indicates function %" PRIu32 ":%" PRIu32 " is busy",
|
|
__func__, group, function);
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
} else {
|
|
ESP_LOGD(TAG, "%s: got an invalid version of SWITCH_FUNC response: 0x%02" PRIx32,
|
|
__func__, resp_ver);
|
|
return ESP_ERR_INVALID_RESPONSE;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_enable_hs_mode(sdmmc_card_t* card)
|
|
{
|
|
/* This will determine if the card supports SWITCH_FUNC command,
|
|
* and high speed mode. If the cards supports both, this will enable
|
|
* high speed mode at the card side.
|
|
*/
|
|
if (card->scr.sd_spec < SCR_SD_SPEC_VER_1_10 ||
|
|
((card->csd.card_command_class & SD_CSD_CCC_SWITCH) == 0)) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
|
|
size_t actual_size = 0;
|
|
sdmmc_switch_func_rsp_t *response = NULL;
|
|
esp_err_t err = esp_dma_malloc(sizeof(*response), 0, (void *)&response, &actual_size);
|
|
assert(actual_size == sizeof(*response));
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
err = sdmmc_send_cmd_switch_func(card, 0, SD_ACCESS_MODE, 0, response);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGD(TAG, "%s: sdmmc_send_cmd_switch_func (1) returned 0x%x", __func__, err);
|
|
goto out;
|
|
}
|
|
uint32_t supported_mask = SD_SFUNC_SUPPORTED(response->data, 1);
|
|
if ((supported_mask & BIT(SD_ACCESS_MODE_SDR25)) == 0) {
|
|
err = ESP_ERR_NOT_SUPPORTED;
|
|
goto out;
|
|
}
|
|
err = sdmmc_send_cmd_switch_func(card, 1, SD_ACCESS_MODE, SD_ACCESS_MODE_SDR25, response);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGD(TAG, "%s: sdmmc_send_cmd_switch_func (2) returned 0x%x", __func__, err);
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
free(response);
|
|
return err;
|
|
}
|
|
|
|
esp_err_t sdmmc_enable_hs_mode_and_check(sdmmc_card_t* card)
|
|
{
|
|
/* All cards should support at least default speed */
|
|
card->max_freq_khz = SDMMC_FREQ_DEFAULT;
|
|
if (card->host.max_freq_khz <= card->max_freq_khz) {
|
|
/* Host is configured to use low frequency, don't attempt to switch */
|
|
card->max_freq_khz = card->host.max_freq_khz;
|
|
return ESP_OK;
|
|
}
|
|
|
|
/* Try to enabled HS mode */
|
|
esp_err_t err = sdmmc_enable_hs_mode(card);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
/* HS mode has been enabled on the card.
|
|
* Read CSD again, it should now indicate that the card supports
|
|
* 50MHz clock.
|
|
* Since SEND_CSD is allowed only in standby mode, and the card is currently in data transfer
|
|
* mode, deselect the card first, then get the CSD, then select the card again. This step is
|
|
* not required in SPI mode, since CMD7 (select_card) is not supported.
|
|
*/
|
|
const bool is_spi = host_is_spi(card);
|
|
if (!is_spi) {
|
|
err = sdmmc_send_cmd_select_card(card, 0);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: select_card (1) returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
}
|
|
err = sdmmc_send_cmd_send_csd(card, &card->csd);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: send_csd returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
if (!is_spi) {
|
|
err = sdmmc_send_cmd_select_card(card, card->rca);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: select_card (2) returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (card->csd.tr_speed != 50000000) {
|
|
ESP_LOGW(TAG, "unexpected: after enabling HS mode, tr_speed=%d", card->csd.tr_speed);
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
|
|
card->max_freq_khz = MIN(card->host.max_freq_khz, SDMMC_FREQ_HIGHSPEED);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_check_scr(sdmmc_card_t* card)
|
|
{
|
|
/* If frequency switch has been performed, read SCR register one more time
|
|
* and compare the result with the previous one. Use this simple check as
|
|
* an indicator of potential signal integrity issues.
|
|
*/
|
|
sdmmc_scr_t scr_tmp = { 0 };
|
|
esp_err_t err = sdmmc_send_cmd_send_scr(card, &scr_tmp);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: send_scr returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
if (memcmp(&card->scr, &scr_tmp, sizeof(scr_tmp)) != 0) {
|
|
ESP_LOGE(TAG, "got corrupted data after increasing clock frequency");
|
|
return ESP_ERR_INVALID_RESPONSE;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_init_spi_crc(sdmmc_card_t* card)
|
|
{
|
|
/* In SD mode, CRC checks of data transfers are mandatory and performed
|
|
* by the hardware. In SPI mode, CRC16 of data transfers is optional and
|
|
* needs to be enabled.
|
|
*/
|
|
assert(host_is_spi(card));
|
|
esp_err_t err = sdmmc_send_cmd_crc_on_off(card, true);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: sdmmc_send_cmd_crc_on_off returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_decode_cid(sdmmc_response_t resp, sdmmc_cid_t* out_cid)
|
|
{
|
|
out_cid->mfg_id = SD_CID_MID(resp);
|
|
out_cid->oem_id = SD_CID_OID(resp);
|
|
SD_CID_PNM_CPY(resp, out_cid->name);
|
|
out_cid->revision = SD_CID_REV(resp);
|
|
out_cid->serial = SD_CID_PSN(resp);
|
|
out_cid->date = SD_CID_MDT(resp);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_decode_csd(sdmmc_response_t response, sdmmc_csd_t* out_csd)
|
|
{
|
|
out_csd->csd_ver = SD_CSD_CSDVER(response);
|
|
switch (out_csd->csd_ver) {
|
|
case SD_CSD_CSDVER_2_0:
|
|
out_csd->capacity = SD_CSD_V2_CAPACITY(response);
|
|
out_csd->read_block_len = SD_CSD_V2_BL_LEN;
|
|
break;
|
|
case SD_CSD_CSDVER_1_0:
|
|
out_csd->capacity = SD_CSD_CAPACITY(response);
|
|
out_csd->read_block_len = SD_CSD_READ_BL_LEN(response);
|
|
break;
|
|
default:
|
|
ESP_LOGE(TAG, "unknown SD CSD structure version 0x%x", out_csd->csd_ver);
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
out_csd->card_command_class = SD_CSD_CCC(response);
|
|
int read_bl_size = 1 << out_csd->read_block_len;
|
|
out_csd->sector_size = MIN(read_bl_size, 512);
|
|
if (out_csd->sector_size < read_bl_size) {
|
|
out_csd->capacity *= read_bl_size / out_csd->sector_size;
|
|
}
|
|
int speed = SD_CSD_SPEED(response);
|
|
if (speed == SD_CSD_SPEED_50_MHZ) {
|
|
out_csd->tr_speed = 50000000;
|
|
} else {
|
|
out_csd->tr_speed = 25000000;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_decode_scr(uint32_t *raw_scr, sdmmc_scr_t* out_scr)
|
|
{
|
|
sdmmc_response_t resp = { 0 };
|
|
resp[1] = __builtin_bswap32(raw_scr[0]);
|
|
resp[0] = __builtin_bswap32(raw_scr[1]);
|
|
int ver = SCR_STRUCTURE(resp);
|
|
if (ver != 0) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
out_scr->sd_spec = SCR_SD_SPEC(resp);
|
|
out_scr->erase_mem_state = SCR_DATA_STAT_AFTER_ERASE(resp);
|
|
out_scr->bus_width = SCR_SD_BUS_WIDTHS(resp);
|
|
return ESP_OK;
|
|
}
|
|
|
|
static const uint32_t s_au_to_size_kb[] = {
|
|
0, 16, 32, 64,
|
|
128, 256, 512, 1024,
|
|
2 * 1024, 4 * 1024,
|
|
8 * 1024, 12 * 1024,
|
|
16 * 1024, 24 * 1024,
|
|
32 * 1024, 64 * 1024
|
|
};
|
|
_Static_assert(sizeof(s_au_to_size_kb)/sizeof(s_au_to_size_kb[0]) == 16, "invalid number of elements in s_au_to_size_kb");
|
|
|
|
esp_err_t sdmmc_decode_ssr(uint32_t *raw_ssr, sdmmc_ssr_t* out_ssr)
|
|
{
|
|
uint32_t ssr[(SD_SSR_SIZE/sizeof(uint32_t))] = { 0 };
|
|
size_t j = (SD_SSR_SIZE/sizeof(uint32_t) - 1);
|
|
|
|
for(size_t i = 0; i < (SD_SSR_SIZE/sizeof(uint32_t)); i++) {
|
|
ssr[j - i] = __builtin_bswap32(raw_ssr[i]);
|
|
}
|
|
|
|
out_ssr->cur_bus_width = SSR_DAT_BUS_WIDTH(ssr);
|
|
out_ssr->discard_support = SSR_DISCARD_SUPPORT(ssr);
|
|
out_ssr->fule_support = SSR_FULE_SUPPORT(ssr);
|
|
uint32_t au = SSR_AU_SIZE(ssr);
|
|
out_ssr->alloc_unit_kb = s_au_to_size_kb[au];
|
|
out_ssr->erase_timeout = SSR_ERASE_TIMEOUT(ssr);
|
|
out_ssr->erase_size_au = SSR_ERASE_SIZE(ssr);
|
|
out_ssr->erase_offset = SSR_ERASE_OFFSET(ssr);
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
uint32_t sdmmc_sd_get_erase_timeout_ms(const sdmmc_card_t* card, int arg, size_t erase_size_kb)
|
|
{
|
|
if (arg == SDMMC_SD_DISCARD_ARG) {
|
|
return SDMMC_SD_DISCARD_TIMEOUT;
|
|
} else if (arg == SDMMC_SD_ERASE_ARG) {
|
|
if (card->ssr.alloc_unit_kb != 0 &&
|
|
card->ssr.erase_size_au != 0 &&
|
|
card->ssr.erase_timeout != 0 &&
|
|
card->ssr.erase_offset != 0) {
|
|
/* Card supports erase timeout estimation. See the erase timeout equation in SD spec. */
|
|
uint32_t timeout_sec = card->ssr.erase_offset +
|
|
card->ssr.erase_timeout * (erase_size_kb + card->ssr.alloc_unit_kb - 1) /
|
|
(card->ssr.erase_size_au * card->ssr.alloc_unit_kb);
|
|
ESP_LOGD(TAG, "%s: erase timeout %" PRIu32 " s (erasing %" PRIu32 " kB, ES=%" PRIu32 ", ET=%" PRIu32 ", EO=%" PRIu32 ", AU=%" PRIu32 " kB)",
|
|
__func__, timeout_sec, (uint32_t) erase_size_kb, (uint32_t) card->ssr.erase_size_au,
|
|
(uint32_t) card->ssr.erase_timeout, (uint32_t) card->ssr.erase_offset, (uint32_t) card->ssr.alloc_unit_kb);
|
|
return timeout_sec * 1000;
|
|
} else {
|
|
uint32_t timeout_ms = SDMMC_SD_DISCARD_TIMEOUT * erase_size_kb / card->csd.sector_size;
|
|
timeout_ms = MAX(1000, timeout_ms);
|
|
ESP_LOGD(TAG, "%s: erase timeout %" PRIu32 " s (erasing %" PRIu32 " kB, %" PRIu32 " ms per sector)",
|
|
__func__, (uint32_t) (timeout_ms / 1000), (uint32_t) erase_size_kb, (uint32_t) SDMMC_SD_DISCARD_TIMEOUT);
|
|
return timeout_ms;
|
|
}
|
|
} else {
|
|
assert(false && "unexpected SD erase argument");
|
|
return 0;
|
|
}
|
|
}
|