mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
8d949c3c9d
Still using ESP32_xxx prefix on all chips: CORE_DUMP, APP_TRACE Still using the same config prefix and duplicate names in esp32 & esp32s2beta: SPIRAM, PM
648 lines
28 KiB
Plaintext
648 lines
28 KiB
Plaintext
menu "ESP32S2-specific"
|
|
|
|
choice ESP32S2_DEFAULT_CPU_FREQ_MHZ
|
|
prompt "CPU frequency"
|
|
default ESP32S2_DEFAULT_CPU_FREQ_160
|
|
help
|
|
CPU frequency to be set on application startup.
|
|
|
|
config ESP32S2_DEFAULT_CPU_FREQ_80
|
|
bool "80 MHz"
|
|
config ESP32S2_DEFAULT_CPU_FREQ_160
|
|
bool "160 MHz"
|
|
config ESP32S2_DEFAULT_CPU_FREQ_240
|
|
bool "240 MHz"
|
|
endchoice
|
|
|
|
config ESP32S2_DEFAULT_CPU_FREQ_MHZ
|
|
int
|
|
default 80 if ESP32S2_DEFAULT_CPU_FREQ_80
|
|
default 160 if ESP32S2_DEFAULT_CPU_FREQ_160
|
|
default 240 if ESP32S2_DEFAULT_CPU_FREQ_240
|
|
|
|
menu "Cache config"
|
|
|
|
choice ESP32S2_INSTRUCTION_CACHE_SIZE
|
|
prompt "Instruction cache size"
|
|
default ESP32S2_INSTRUCTION_CACHE_8KB
|
|
help
|
|
Instruction cache size to be set on application startup.
|
|
If you use 8KB instruction cache rather than 16KB instruction cache, the other 8KB will be added to the heap.
|
|
|
|
config ESP32S2_INSTRUCTION_CACHE_8KB
|
|
bool "8KB"
|
|
config ESP32S2_INSTRUCTION_CACHE_16KB
|
|
bool "16KB"
|
|
endchoice
|
|
|
|
choice ESP32S2_INSTRUCTION_CACHE_ASSOCIATED_WAYS
|
|
prompt "Instruction cache associated ways"
|
|
default ESP32S2_INSTRUCTION_CACHE_8WAYS
|
|
help
|
|
Instruction cache associated ways to be set on application startup.
|
|
|
|
config ESP32S2_INSTRUCTION_CACHE_4WAYS
|
|
bool "4 ways"
|
|
config ESP32S2_INSTRUCTION_CACHE_8WAYS
|
|
bool "8 ways"
|
|
endchoice
|
|
|
|
choice ESP32S2_INSTRUCTION_CACHE_LINE_SIZE
|
|
prompt "Instruction cache line size"
|
|
default ESP32S2_INSTRUCTION_CACHE_LINE_32B
|
|
help
|
|
Instruction cache line size to be set on application startup.
|
|
|
|
config ESP32S2_INSTRUCTION_CACHE_LINE_16B
|
|
bool "16 Bytes"
|
|
config ESP32S2_INSTRUCTION_CACHE_LINE_32B
|
|
bool "32 Bytes"
|
|
config ESP32S2_INSTRUCTION_CACHE_LINE_64B
|
|
bool "64 Bytes"
|
|
endchoice
|
|
|
|
choice ESP32S2_DATA_CACHE_SIZE
|
|
prompt "Data cache size"
|
|
default ESP32S2_DATA_CACHE_8KB
|
|
help
|
|
Data cache size to be set on application startup.
|
|
If you use 8KB data cache rather than 16KB data cache, the other 8KB will be added to the heap.
|
|
|
|
config ESP32S2_DATA_CACHE_0KB
|
|
depends on !ESP32S2_SPIRAM_SUPPORT
|
|
bool "0KB"
|
|
config ESP32S2_DATA_CACHE_8KB
|
|
bool "8KB"
|
|
config ESP32S2_DATA_CACHE_16KB
|
|
bool "16KB"
|
|
endchoice
|
|
|
|
choice ESP32S2_DATA_CACHE_ASSOCIATED_WAYS
|
|
prompt "Data cache associated ways"
|
|
default ESP32S2_DATA_CACHE_8WAYS
|
|
help
|
|
Data cache associated ways to be set on application startup.
|
|
|
|
config ESP32S2_DATA_CACHE_4WAYS
|
|
bool "4 ways"
|
|
config ESP32S2_DATA_CACHE_8WAYS
|
|
bool "8 ways"
|
|
endchoice
|
|
|
|
choice ESP32S2_DATA_CACHE_LINE_SIZE
|
|
prompt "Data cache line size"
|
|
default ESP32S2_DATA_CACHE_LINE_32B
|
|
help
|
|
Data cache line size to be set on application startup.
|
|
|
|
config ESP32S2_DATA_CACHE_LINE_16B
|
|
bool "16 Bytes"
|
|
config ESP32S2_DATA_CACHE_LINE_32B
|
|
bool "32 Bytes"
|
|
config ESP32S2_DATA_CACHE_LINE_64B
|
|
bool "64 Bytes"
|
|
endchoice
|
|
|
|
config ESP32S2_RODATA_USE_DATA_CACHE
|
|
depends on ESP32S2_DATA_CACHE_8KB || ESP32S2_DATA_CACHE_16KB
|
|
bool "Use data cache rather than instruction cache to access read only data"
|
|
default "n"
|
|
help
|
|
If enabled, CPU will access rodata through data cache, which will reduce the overload
|
|
of instruction cache, however will increase the overload of data cache.
|
|
|
|
config ESP32S2_INSTRUCTION_CACHE_WRAP
|
|
bool "Enable instruction cache wrap"
|
|
default "n"
|
|
help
|
|
If enabled, instruction cache will use wrap mode to read spi flash (maybe spiram).
|
|
The wrap length equals to INSTRUCTION_CACHE_LINE_SIZE.
|
|
However, it depends on complex conditions.
|
|
|
|
config ESP32S2_DATA_CACHE_WRAP
|
|
bool "Enable data cache wrap"
|
|
default "n"
|
|
help
|
|
If enabled, data cache will use wrap mode to read spiram (maybe spi flash).
|
|
The wrap length equals to DATA_CACHE_LINE_SIZE.
|
|
However, it depends on complex conditions.
|
|
|
|
endmenu # Cache config
|
|
|
|
config ESP32S2_SPIRAM_SUPPORT
|
|
bool "Support for external, SPI-connected RAM"
|
|
default "n"
|
|
help
|
|
This enables support for an external SPI RAM chip, connected in parallel with the
|
|
main SPI flash chip.
|
|
|
|
menu "SPI RAM config"
|
|
depends on ESP32S2_SPIRAM_SUPPORT
|
|
|
|
config SPIRAM_BOOT_INIT
|
|
bool "Initialize SPI RAM when booting the ESP32"
|
|
default "y"
|
|
help
|
|
If this is enabled, the SPI RAM will be enabled during initial boot. Unless you
|
|
have specific requirements, you'll want to leave this enabled so memory allocated
|
|
during boot-up can also be placed in SPI RAM.
|
|
|
|
config SPIRAM_IGNORE_NOTFOUND
|
|
bool "Ignore PSRAM when not found"
|
|
default "n"
|
|
depends on SPIRAM_BOOT_INIT
|
|
help
|
|
Normally, if psram initialization is enabled during compile time but not found at runtime, it
|
|
is seen as an error making the ESP32 panic. If this is enabled, the ESP32 will keep on
|
|
running but will not add the (non-existing) RAM to any allocator.
|
|
|
|
choice SPIRAM_USE
|
|
prompt "SPI RAM access method"
|
|
default SPIRAM_USE_MALLOC
|
|
help
|
|
The SPI RAM can be accessed in multiple methods: by just having it available as an unmanaged
|
|
memory region in the ESP32 memory map, by integrating it in the ESP32s heap as 'special' memory
|
|
needing heap_caps_malloc to allocate, or by fully integrating it making malloc() also able to
|
|
return SPI RAM pointers.
|
|
|
|
config SPIRAM_USE_MEMMAP
|
|
bool "Integrate RAM into ESP32 memory map"
|
|
config SPIRAM_USE_CAPS_ALLOC
|
|
bool "Make RAM allocatable using heap_caps_malloc(..., MALLOC_CAP_SPIRAM)"
|
|
config SPIRAM_USE_MALLOC
|
|
bool "Make RAM allocatable using malloc() as well"
|
|
select SUPPORT_STATIC_ALLOCATION
|
|
endchoice
|
|
|
|
choice SPIRAM_TYPE
|
|
prompt "Type of SPI RAM chip in use"
|
|
default SPIRAM_TYPE_AUTO
|
|
|
|
config SPIRAM_TYPE_AUTO
|
|
bool "Auto-detect"
|
|
|
|
config SPIRAM_TYPE_ESPPSRAM32
|
|
bool "ESP-PSRAM32 or IS25WP032"
|
|
|
|
config SPIRAM_TYPE_ESPPSRAM64
|
|
bool "ESP-PSRAM64 or LY68L6400"
|
|
endchoice
|
|
|
|
config SPIRAM_SIZE
|
|
int
|
|
default -1 if SPIRAM_TYPE_AUTO
|
|
default 4194304 if SPIRAM_TYPE_ESPPSRAM32
|
|
default 8388608 if SPIRAM_TYPE_ESPPSRAM64
|
|
default 0
|
|
|
|
config SPIRAM_FETCH_INSTRUCTIONS
|
|
bool "Cache fetch instructions from SPI RAM"
|
|
default n
|
|
help
|
|
If enabled, instruction in flash will be copied into SPIRAM.
|
|
If you also enable RODATA_USE_SPIRAM option, you can run the instruction when you are erasing or programming the flash.
|
|
|
|
config SPIRAM_RODATA
|
|
bool "Cache load read only data from SPI RAM"
|
|
default n
|
|
help
|
|
If enabled, radata in flash will be copied into SPIRAM.
|
|
If you also enable INSTRUCTION_USE_SPIRAM option, you can run the instruction when you erasing or programming the flash.
|
|
|
|
config SPIRAM_USE_AHB_DBUS3
|
|
bool "Enable AHB DBUS3 to access SPIRAM"
|
|
default n
|
|
help
|
|
If Enabled, if SPI_CONFIG_SIZE is bigger then 10MB+576KB, then you can have 4MB more space to map the SPIRAM.
|
|
However, the AHB bus is slower than other data cache buses.
|
|
|
|
choice SPIRAM_SPEED
|
|
prompt "Set RAM clock speed"
|
|
default SPIRAM_CACHE_SPEED_40M
|
|
help
|
|
Select the speed for the SPI RAM chip.
|
|
If SPI RAM is enabled, we only support three combinations of SPI speed mode we supported now:
|
|
|
|
1. Flash SPI running at 40Mhz and RAM SPI running at 40Mhz
|
|
2. Flash SPI running at 80Mhz and RAM SPI running at 40Mhz
|
|
3. Flash SPI running at 80Mhz and RAM SPI running at 80Mhz
|
|
|
|
Note: If the third mode(80Mhz+80Mhz) is enabled for SPI RAM of type 32MBit, one of the HSPI/VSPI host
|
|
will be occupied by the system. Which SPI host to use can be selected by the config item
|
|
SPIRAM_OCCUPY_SPI_HOST. Application code should never touch HSPI/VSPI hardware in this case. The
|
|
option to select 80MHz will only be visible if the flash SPI speed is also 80MHz.
|
|
(ESPTOOLPY_FLASHFREQ_80M is true)
|
|
|
|
config SPIRAM_SPEED_40M
|
|
bool "40MHz clock speed"
|
|
config SPIRAM_SPEED_80M
|
|
depends on ESPTOOLPY_FLASHFREQ_80M
|
|
bool "80MHz clock speed"
|
|
endchoice
|
|
|
|
config SPIRAM_MEMTEST
|
|
bool "Run memory test on SPI RAM initialization"
|
|
default "y"
|
|
depends on SPIRAM_BOOT_INIT
|
|
help
|
|
Runs a rudimentary memory test on initialization. Aborts when memory test fails. Disable this for
|
|
slightly faster startop.
|
|
|
|
config SPIRAM_CACHE_WORKAROUND
|
|
bool "Enable workaround for bug in SPI RAM cache for Rev1 ESP32s"
|
|
depends on SPIRAM_USE_MEMMAP || SPIRAM_USE_CAPS_ALLOC || SPIRAM_USE_MALLOC
|
|
default "y"
|
|
help
|
|
Revision 1 of the ESP32 has a bug that can cause a write to PSRAM not to take place in some situations
|
|
when the cache line needs to be fetched from external RAM and an interrupt occurs. This enables a
|
|
fix in the compiler (-mfix-esp32-psram-cache-issue) that makes sure the specific code that is
|
|
vulnerable to this will not be emitted.
|
|
|
|
This will also not use any bits of newlib that are located in ROM, opting for a version that is
|
|
compiled with the workaround and located in flash instead.
|
|
|
|
config SPIRAM_MALLOC_ALWAYSINTERNAL
|
|
int "Maximum malloc() size, in bytes, to always put in internal memory"
|
|
depends on SPIRAM_USE_MALLOC
|
|
default 16384
|
|
range 0 131072
|
|
help
|
|
If malloc() is capable of also allocating SPI-connected ram, its allocation strategy will prefer to
|
|
allocate chunks less than this size in internal memory, while allocations larger than this will be
|
|
done from external RAM. If allocation from the preferred region fails, an attempt is made to allocate
|
|
from the non-preferred region instead, so malloc() will not suddenly fail when either internal or
|
|
external memory is full.
|
|
|
|
config WIFI_LWIP_ALLOCATION_FROM_SPIRAM_FIRST
|
|
bool "Try to allocate memories of WiFi and LWIP in SPIRAM firstly. If failed, allocate internal memory"
|
|
depends on SPIRAM_USE_CAPS_ALLOC || SPIRAM_USE_MALLOC
|
|
default "n"
|
|
help
|
|
Try to allocate memories of WiFi and LWIP in SPIRAM firstly. If failed, try to allocate internal
|
|
memory then.
|
|
|
|
config SPIRAM_MALLOC_RESERVE_INTERNAL
|
|
int "Reserve this amount of bytes for data that specifically needs to be in DMA or internal memory"
|
|
depends on SPIRAM_USE_MALLOC
|
|
default 32768
|
|
range 0 262144
|
|
help
|
|
Because the external/internal RAM allocation strategy is not always perfect, it sometimes may happen
|
|
that the internal memory is entirely filled up. This causes allocations that are specifically done in
|
|
internal memory, for example the stack for new tasks or memory to service DMA or have memory that's
|
|
also available when SPI cache is down, to fail. This option reserves a pool specifically for requests
|
|
like that; the memory in this pool is not given out when a normal malloc() is called.
|
|
|
|
Set this to 0 to disable this feature.
|
|
|
|
Note that because FreeRTOS stacks are forced to internal memory, they will also use this memory pool;
|
|
be sure to keep this in mind when adjusting this value.
|
|
|
|
Note also that the DMA reserved pool may not be one single contiguous memory region, depending on the
|
|
configured size and the static memory usage of the app.
|
|
|
|
config SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY
|
|
bool "Allow external memory as an argument to xTaskCreateStatic"
|
|
default n
|
|
depends on SPIRAM_USE_MALLOC
|
|
help
|
|
Because some bits of the ESP32 code environment cannot be recompiled with the cache workaround,
|
|
normally tasks cannot be safely run with their stack residing in external memory; for this reason
|
|
xTaskCreate and friends always allocate stack in internal memory and xTaskCreateStatic will check if
|
|
the memory passed to it is in internal memory. If you have a task that needs a large amount of stack
|
|
and does not call on ROM code in any way (no direct calls, but also no Bluetooth/WiFi), you can try to
|
|
disable this and use xTaskCreateStatic to create the tasks stack in external memory.
|
|
|
|
endmenu
|
|
|
|
config ESP32S2_MEMMAP_TRACEMEM
|
|
bool
|
|
default "n"
|
|
|
|
config ESP32S2_TRAX
|
|
bool "Use TRAX tracing feature"
|
|
default "n"
|
|
select ESP32S2_MEMMAP_TRACEMEM
|
|
help
|
|
The ESP32S2 contains a feature which allows you to trace the execution path the processor
|
|
has taken through the program. This is stored in a chunk of 32K (16K for single-processor)
|
|
of memory that can't be used for general purposes anymore. Disable this if you do not know
|
|
what this is.
|
|
|
|
# Memory to reverse for trace, used in linker script
|
|
config ESP32S2_TRACEMEM_RESERVE_DRAM
|
|
hex
|
|
default 0x4000 if ESP32S2_MEMMAP_TRACEMEM
|
|
default 0x0
|
|
|
|
|
|
choice ESP32S2_UNIVERSAL_MAC_ADDRESSES
|
|
bool "Number of universally administered (by IEEE) MAC address"
|
|
default ESP32S2_UNIVERSAL_MAC_ADDRESSES_FOUR
|
|
help
|
|
Configure the number of universally administered (by IEEE) MAC addresses.
|
|
During initialisation, MAC addresses for each network interface are generated or derived from a
|
|
single base MAC address.
|
|
If the number of universal MAC addresses is four, all four interfaces (WiFi station, WiFi softap,
|
|
Bluetooth and Ethernet) receive a universally administered MAC address. These are generated
|
|
sequentially by adding 0, 1, 2 and 3 (respectively) to the final octet of the base MAC address.
|
|
If the number of universal MAC addresses is two, only two interfaces (WiFi station and Bluetooth)
|
|
receive a universally administered MAC address. These are generated sequentially by adding 0
|
|
and 1 (respectively) to the base MAC address. The remaining two interfaces (WiFi softap and Ethernet)
|
|
receive local MAC addresses. These are derived from the universal WiFi station and Bluetooth MAC
|
|
addresses, respectively.
|
|
When using the default (Espressif-assigned) base MAC address, either setting can be used. When using
|
|
a custom universal MAC address range, the correct setting will depend on the allocation of MAC
|
|
addresses in this range (either 2 or 4 per device.)
|
|
|
|
config ESP32S2_UNIVERSAL_MAC_ADDRESSES_TWO
|
|
bool "Two"
|
|
config ESP32S2_UNIVERSAL_MAC_ADDRESSES_FOUR
|
|
bool "Four"
|
|
endchoice
|
|
|
|
config ESP32S2_UNIVERSAL_MAC_ADDRESSES
|
|
int
|
|
default 2 if ESP32S2_UNIVERSAL_MAC_ADDRESSES_TWO
|
|
default 4 if ESP32S2_UNIVERSAL_MAC_ADDRESSES_FOUR
|
|
|
|
choice ESP32S2__PANIC
|
|
prompt "Panic handler behaviour"
|
|
default ESP32S2_PANIC_PRINT_REBOOT
|
|
help
|
|
If FreeRTOS detects unexpected behaviour or an unhandled exception, the panic handler is
|
|
invoked. Configure the panic handlers action here.
|
|
|
|
config ESP32S2_PANIC_PRINT_HALT
|
|
bool "Print registers and halt"
|
|
help
|
|
Outputs the relevant registers over the serial port and halt the
|
|
processor. Needs a manual reset to restart.
|
|
|
|
config ESP32S2_PANIC_PRINT_REBOOT
|
|
bool "Print registers and reboot"
|
|
help
|
|
Outputs the relevant registers over the serial port and immediately
|
|
reset the processor.
|
|
|
|
config ESP32S2_PANIC_SILENT_REBOOT
|
|
bool "Silent reboot"
|
|
help
|
|
Just resets the processor without outputting anything
|
|
|
|
config ESP32S2_PANIC_GDBSTUB
|
|
bool "Invoke GDBStub"
|
|
help
|
|
Invoke gdbstub on the serial port, allowing for gdb to attach to it to do a postmortem
|
|
of the crash.
|
|
endchoice
|
|
|
|
config ESP32S2_DEBUG_OCDAWARE
|
|
bool "Make exception and panic handlers JTAG/OCD aware"
|
|
default y
|
|
help
|
|
The FreeRTOS panic and unhandled exception handers can detect a JTAG OCD debugger and
|
|
instead of panicking, have the debugger stop on the offending instruction.
|
|
|
|
config ESP32S2_DEBUG_STUBS_ENABLE
|
|
bool "OpenOCD debug stubs"
|
|
default OPTIMIZATION_LEVEL_DEBUG
|
|
depends on !ESP32S2_TRAX
|
|
help
|
|
Debug stubs are used by OpenOCD to execute pre-compiled onboard code which does some useful debugging,
|
|
e.g. GCOV data dump.
|
|
|
|
config ESP32S2_BROWNOUT_DET
|
|
bool "Hardware brownout detect & reset"
|
|
default y
|
|
help
|
|
The ESP32S2 has a built-in brownout detector which can detect if the voltage is lower than
|
|
a specific value. If this happens, it will reset the chip in order to prevent unintended
|
|
behaviour.
|
|
|
|
choice BROWNOUT_DET_LVL_SEL
|
|
prompt "Brownout voltage level"
|
|
depends on BROWNOUT_DET
|
|
default BROWNOUT_DET_LVL_SEL_25
|
|
help
|
|
The brownout detector will reset the chip when the supply voltage is approximately
|
|
below this level. Note that there may be some variation of brownout voltage level
|
|
between each ESP32 chip.
|
|
|
|
#The voltage levels here are estimates, more work needs to be done to figure out the exact voltages
|
|
#of the brownout threshold levels.
|
|
config ESP32S2_BROWNOUT_DET_LVL_SEL_0
|
|
bool "2.43V +/- 0.05"
|
|
config ESP32S2_BROWNOUT_DET_LVL_SEL_1
|
|
bool "2.48V +/- 0.05"
|
|
config ESP32S2_BROWNOUT_DET_LVL_SEL_2
|
|
bool "2.58V +/- 0.05"
|
|
config ESP32S2_BROWNOUT_DET_LVL_SEL_3
|
|
bool "2.62V +/- 0.05"
|
|
config ESP32S2_BROWNOUT_DET_LVL_SEL_4
|
|
bool "2.67V +/- 0.05"
|
|
config ESP32S2_BROWNOUT_DET_LVL_SEL_5
|
|
bool "2.70V +/- 0.05"
|
|
config ESP32S2_BROWNOUT_DET_LVL_SEL_6
|
|
bool "2.77V +/- 0.05"
|
|
config ESP32S2_BROWNOUT_DET_LVL_SEL_7
|
|
bool "2.80V +/- 0.05"
|
|
endchoice
|
|
|
|
config ESP32S2_BROWNOUT_DET_LVL
|
|
int
|
|
default 0 if ESP32S2_BROWNOUT_DET_LVL_SEL_0
|
|
default 1 if ESP32S2_BROWNOUT_DET_LVL_SEL_1
|
|
default 2 if ESP32S2_BROWNOUT_DET_LVL_SEL_2
|
|
default 3 if ESP32S2_BROWNOUT_DET_LVL_SEL_3
|
|
default 4 if ESP32S2_BROWNOUT_DET_LVL_SEL_4
|
|
default 5 if ESP32S2_BROWNOUT_DET_LVL_SEL_5
|
|
default 6 if ESP32S2_BROWNOUT_DET_LVL_SEL_6
|
|
default 7 if ESP32S2_BROWNOUT_DET_LVL_SEL_7
|
|
|
|
|
|
# Note about the use of "FRC1" name: currently FRC1 timer is not used for
|
|
# high resolution timekeeping anymore. Instead the esp_timer API, implemented
|
|
# using FRC2 timer, is used.
|
|
# FRC1 name in the option name is kept for compatibility.
|
|
choice ESP32S2__TIME_SYSCALL
|
|
prompt "Timers used for gettimeofday function"
|
|
default ESP32S2_TIME_SYSCALL_USE_RTC_FRC1
|
|
help
|
|
This setting defines which hardware timers are used to
|
|
implement 'gettimeofday' and 'time' functions in C library.
|
|
|
|
- If both high-resolution and RTC timers are used, timekeeping will
|
|
continue in deep sleep. Time will be reported at 1 microsecond
|
|
resolution. This is the default, and the recommended option.
|
|
- If only high-resolution timer is used, gettimeofday will
|
|
provide time at microsecond resolution.
|
|
Time will not be preserved when going into deep sleep mode.
|
|
- If only RTC timer is used, timekeeping will continue in
|
|
deep sleep, but time will be measured at 6.(6) microsecond
|
|
resolution. Also the gettimeofday function itself may take
|
|
longer to run.
|
|
- If no timers are used, gettimeofday and time functions
|
|
return -1 and set errno to ENOSYS.
|
|
- When RTC is used for timekeeping, two RTC_STORE registers are
|
|
used to keep time in deep sleep mode.
|
|
|
|
config ESP32S2_TIME_SYSCALL_USE_RTC_FRC1
|
|
bool "RTC and high-resolution timer"
|
|
config ESP32S2_TIME_SYSCALL_USE_RTC
|
|
bool "RTC"
|
|
config ESP32S2_TIME_SYSCALL_USE_FRC1
|
|
bool "High-resolution timer"
|
|
config ESP32S2_TIME_SYSCALL_USE_NONE
|
|
bool "None"
|
|
endchoice
|
|
|
|
choice ESP32S2_RTC_CLK_SRC
|
|
prompt "RTC clock source"
|
|
default ESP32S2_RTC_CLK_SRC_INT_RC
|
|
help
|
|
Choose which clock is used as RTC clock source.
|
|
|
|
config ESP32S2_RTC_CLK_SRC_INT_RC
|
|
bool "Internal 150kHz RC oscillator"
|
|
config ESP32S2_RTC_CLK_SRC_EXT_CRYS
|
|
bool "External 32kHz crystal"
|
|
endchoice
|
|
|
|
config ESP32S2__RTC_CLK_CAL_CYCLES
|
|
int "Number of cycles for RTC_SLOW_CLK calibration"
|
|
default 3000 if ESP32S2_RTC_CLK_SRC_EXT_CRYS
|
|
default 1024 if ESP32S2_RTC_CLK_SRC_INT_RC
|
|
range 0 125000
|
|
help
|
|
When the startup code initializes RTC_SLOW_CLK, it can perform
|
|
calibration by comparing the RTC_SLOW_CLK frequency with main XTAL
|
|
frequency. This option sets the number of RTC_SLOW_CLK cycles measured
|
|
by the calibration routine. Higher numbers increase calibration
|
|
precision, which may be important for applications which spend a lot of
|
|
time in deep sleep. Lower numbers reduce startup time.
|
|
|
|
When this option is set to 0, clock calibration will not be performed at
|
|
startup, and approximate clock frequencies will be assumed:
|
|
|
|
- 150000 Hz if internal RC oscillator is used as clock source. For this use value 1024.
|
|
- 32768 Hz if the 32k crystal oscillator is used. For this use value 3000 or more.
|
|
In case more value will help improve the definition of the launch of the crystal.
|
|
If the crystal could not start, it will be switched to internal RC.
|
|
|
|
choice ESP32S2_XTAL_FREQ_SEL
|
|
prompt "Main XTAL frequency"
|
|
default ESP32S2_XTAL_FREQ_40
|
|
help
|
|
ESP32 currently supports the following XTAL frequencies:
|
|
|
|
- 26 MHz
|
|
- 40 MHz
|
|
|
|
Startup code can automatically estimate XTAL frequency. This feature
|
|
uses the internal 8MHz oscillator as a reference. Because the internal
|
|
oscillator frequency is temperature dependent, it is not recommended
|
|
to use automatic XTAL frequency detection in applications which need
|
|
to work at high ambient temperatures and use high-temperature
|
|
qualified chips and modules.
|
|
config ESP32S2_XTAL_FREQ_40
|
|
bool "40 MHz"
|
|
config ESP32S2_XTAL_FREQ_26
|
|
bool "26 MHz"
|
|
config ESP32S2_XTAL_FREQ_AUTO
|
|
bool "Autodetect"
|
|
endchoice
|
|
|
|
# Keep these values in sync with rtc_xtal_freq_t enum in soc/rtc.h
|
|
config ESP32S2_XTAL_FREQ
|
|
int
|
|
default 0 if ESP32S2_XTAL_FREQ_AUTO
|
|
default 40 if ESP32S2_XTAL_FREQ_40
|
|
default 26 if ESP32S2_XTAL_FREQ_26
|
|
|
|
config ESP32S2_DISABLE_BASIC_ROM_CONSOLE
|
|
bool "Permanently disable BASIC ROM Console"
|
|
default n
|
|
help
|
|
If set, the first time the app boots it will disable the BASIC ROM Console
|
|
permanently (by burning an eFuse).
|
|
|
|
Otherwise, the BASIC ROM Console starts on reset if no valid bootloader is
|
|
read from the flash.
|
|
|
|
(Enabling secure boot also disables the BASIC ROM Console by default.)
|
|
|
|
config ESP32S2_NO_BLOBS
|
|
bool "No Binary Blobs"
|
|
depends on !BT_ENABLED
|
|
default n
|
|
help
|
|
If enabled, this disables the linking of binary libraries in the application build. Note
|
|
that after enabling this Wi-Fi/Bluetooth will not work.
|
|
|
|
endmenu # ESP32S2-Specific
|
|
|
|
menu "Power Management"
|
|
|
|
config PM_ENABLE
|
|
bool "Support for power management"
|
|
default n
|
|
help
|
|
If enabled, application is compiled with support for power management.
|
|
This option has run-time overhead (increased interrupt latency,
|
|
longer time to enter idle state), and it also reduces accuracy of
|
|
RTOS ticks and timers used for timekeeping.
|
|
Enable this option if application uses power management APIs.
|
|
|
|
config PM_DFS_INIT_AUTO
|
|
bool "Enable dynamic frequency scaling (DFS) at startup"
|
|
depends on PM_ENABLE
|
|
default n
|
|
help
|
|
If enabled, startup code configures dynamic frequency scaling.
|
|
Max CPU frequency is set to CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ setting,
|
|
min frequency is set to XTAL frequency.
|
|
If disabled, DFS will not be active until the application
|
|
configures it using esp_pm_configure function.
|
|
|
|
config PM_USE_RTC_TIMER_REF
|
|
bool "Use RTC timer to prevent time drift (EXPERIMENTAL)"
|
|
depends on PM_ENABLE && (ESP32S2_TIME_SYSCALL_USE_RTC || ESP32S2_TIME_SYSCALL_USE_RTC_FRC1)
|
|
default n
|
|
help
|
|
When APB clock frequency changes, high-resolution timer (esp_timer)
|
|
scale and base value need to be adjusted. Each adjustment may cause
|
|
small error, and over time such small errors may cause time drift.
|
|
If this option is enabled, RTC timer will be used as a reference to
|
|
compensate for the drift.
|
|
It is recommended that this option is only used if 32k XTAL is selected
|
|
as RTC clock source.
|
|
|
|
config PM_PROFILING
|
|
bool "Enable profiling counters for PM locks"
|
|
depends on PM_ENABLE
|
|
default n
|
|
help
|
|
If enabled, esp_pm_* functions will keep track of the amount of time
|
|
each of the power management locks has been held, and esp_pm_dump_locks
|
|
function will print this information.
|
|
This feature can be used to analyze which locks are preventing the chip
|
|
from going into a lower power state, and see what time the chip spends
|
|
in each power saving mode. This feature does incur some run-time
|
|
overhead, so should typically be disabled in production builds.
|
|
|
|
config PM_TRACE
|
|
bool "Enable debug tracing of PM using GPIOs"
|
|
depends on PM_ENABLE
|
|
default n
|
|
help
|
|
If enabled, some GPIOs will be used to signal events such as RTOS ticks,
|
|
frequency switching, entry/exit from idle state. Refer to pm_trace.c
|
|
file for the list of GPIOs.
|
|
This feature is intended to be used when analyzing/debugging behavior
|
|
of power management implementation, and should be kept disabled in
|
|
applications.
|
|
|
|
|
|
endmenu # "Power Management"
|