mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
185 lines
6.9 KiB
C
185 lines
6.9 KiB
C
// Copyright 2017 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
/* Unit tests need to have access to reliable timestamps even if CPU and APB
|
|
* clock frequencies change over time. This reference clock is built upon two
|
|
* peripherals: one RMT channel and one PCNT channel, plus one GPIO to connect
|
|
* these peripherals.
|
|
*
|
|
* RMT channel is configured to use REF_TICK as clock source, which is a 1 MHz
|
|
* clock derived from APB_CLK using a set of dividers. The divider is changed
|
|
* automatically by hardware depending on the current clock source of APB_CLK.
|
|
* For example, if APB_CLK is derived from PLL, one divider is used, and when
|
|
* APB_CLK is derived from XTAL, another divider is used. RMT channel clocked
|
|
* by REF_TICK is configured to generate a continuous 0.5 MHz signal, which is
|
|
* connected to a GPIO. PCNT takes the input signal from this GPIO and counts
|
|
* the edges (which occur at 1MHz frequency). PCNT counter is only 16 bit wide,
|
|
* so an interrupt is configured to trigger when the counter reaches 30000,
|
|
* incrementing a 32-bit millisecond counter maintained by software.
|
|
* Together these two counters may be used at any time to obtain the timestamp.
|
|
*/
|
|
|
|
#include "test_utils.h"
|
|
#include "soc/soc.h"
|
|
#include "hal/rmt_hal.h"
|
|
#include "hal/rmt_ll.h"
|
|
#include "soc/pcnt_caps.h"
|
|
#include "hal/pcnt_hal.h"
|
|
#include "soc/gpio_periph.h"
|
|
#include "soc/dport_reg.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "driver/periph_ctrl.h"
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#include "esp32/rom/gpio.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
#include "esp32s2/rom/gpio.h"
|
|
#endif
|
|
#include "sdkconfig.h"
|
|
|
|
/* Select which RMT and PCNT channels, and GPIO to use */
|
|
#define REF_CLOCK_RMT_CHANNEL RMT_CHANNELS_NUM - 1
|
|
#define REF_CLOCK_PCNT_UNIT 0
|
|
#define REF_CLOCK_GPIO 21
|
|
|
|
#define REF_CLOCK_PRESCALER_MS 30
|
|
|
|
static void IRAM_ATTR pcnt_isr(void* arg);
|
|
|
|
static intr_handle_t s_intr_handle;
|
|
static portMUX_TYPE s_lock = portMUX_INITIALIZER_UNLOCKED;
|
|
static volatile uint32_t s_milliseconds;
|
|
|
|
|
|
static int get_pcnt_sig(void)
|
|
{
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
return (REF_CLOCK_PCNT_UNIT < 5) ?
|
|
PCNT_SIG_CH0_IN0_IDX + 4 * REF_CLOCK_PCNT_UNIT :
|
|
PCNT_SIG_CH0_IN5_IDX + 4 * (REF_CLOCK_PCNT_UNIT - 5);
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
return PCNT_SIG_CH0_IN0_IDX + 4 * REF_CLOCK_PCNT_UNIT;
|
|
#endif
|
|
}
|
|
|
|
static rmt_hal_context_t s_rmt;
|
|
static pcnt_hal_context_t s_pcnt;
|
|
|
|
void ref_clock_init()
|
|
{
|
|
assert(s_intr_handle == NULL && "already initialized");
|
|
|
|
// Route RMT output to GPIO matrix
|
|
gpio_matrix_out(REF_CLOCK_GPIO, RMT_SIG_OUT0_IDX + REF_CLOCK_RMT_CHANNEL, false, false);
|
|
|
|
// Initialize RMT
|
|
periph_module_enable(PERIPH_RMT_MODULE);
|
|
rmt_hal_init(&s_rmt);
|
|
rmt_ll_enable_mem_access(s_rmt.regs, true);
|
|
rmt_item32_t data = {
|
|
.duration0 = 1,
|
|
.level0 = 1,
|
|
.duration1 = 0,
|
|
.level1 = 0
|
|
};
|
|
rmt_hal_transmit(&s_rmt, REF_CLOCK_RMT_CHANNEL, &data, 1, 0);
|
|
rmt_ll_start_tx(s_rmt.regs, REF_CLOCK_RMT_CHANNEL);
|
|
rmt_ll_set_mem_owner(s_rmt.regs, REF_CLOCK_RMT_CHANNEL, 0);
|
|
rmt_ll_reset_tx_pointer(s_rmt.regs, REF_CLOCK_RMT_CHANNEL);
|
|
rmt_ll_enable_carrier(s_rmt.regs, REF_CLOCK_RMT_CHANNEL, false);
|
|
rmt_ll_set_counter_clock_div(s_rmt.regs, REF_CLOCK_RMT_CHANNEL, 1);
|
|
rmt_ll_set_mem_blocks(s_rmt.regs, REF_CLOCK_RMT_CHANNEL, 1);
|
|
rmt_ll_set_counter_clock_src(s_rmt.regs, REF_CLOCK_RMT_CHANNEL, 0);
|
|
rmt_ll_enable_tx_cyclic(s_rmt.regs, REF_CLOCK_RMT_CHANNEL, true);
|
|
rmt_ll_start_tx(s_rmt.regs, REF_CLOCK_RMT_CHANNEL);
|
|
|
|
// Route signal to PCNT
|
|
int pcnt_sig_idx = get_pcnt_sig();
|
|
gpio_matrix_in(REF_CLOCK_GPIO, pcnt_sig_idx, false);
|
|
if (REF_CLOCK_GPIO != 20) {
|
|
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[REF_CLOCK_GPIO]);
|
|
} else {
|
|
PIN_INPUT_ENABLE(PERIPHS_IO_MUX_GPIO20_U);
|
|
}
|
|
|
|
// Initialize PCNT
|
|
periph_module_enable(PERIPH_PCNT_MODULE);
|
|
pcnt_hal_init(&s_pcnt, REF_CLOCK_PCNT_UNIT);
|
|
|
|
pcnt_ll_set_mode(s_pcnt.dev, REF_CLOCK_PCNT_UNIT, PCNT_CHANNEL_0,
|
|
PCNT_COUNT_INC, PCNT_COUNT_INC,
|
|
PCNT_MODE_KEEP, PCNT_MODE_KEEP);
|
|
pcnt_ll_event_disable(s_pcnt.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_L_LIM);
|
|
pcnt_ll_event_enable(s_pcnt.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_H_LIM);
|
|
pcnt_ll_event_disable(s_pcnt.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_ZERO);
|
|
pcnt_ll_event_disable(s_pcnt.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_THRES_0);
|
|
pcnt_ll_event_disable(s_pcnt.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_THRES_1);
|
|
pcnt_ll_set_event_value(s_pcnt.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_H_LIM, REF_CLOCK_PRESCALER_MS * 1000);
|
|
|
|
// Enable PCNT and wait for it to start counting
|
|
pcnt_ll_counter_resume(s_pcnt.dev, REF_CLOCK_PCNT_UNIT);
|
|
pcnt_ll_counter_clear(s_pcnt.dev, REF_CLOCK_PCNT_UNIT);
|
|
|
|
ets_delay_us(10000);
|
|
|
|
// Enable interrupt
|
|
s_milliseconds = 0;
|
|
ESP_ERROR_CHECK(esp_intr_alloc(ETS_PCNT_INTR_SOURCE, ESP_INTR_FLAG_IRAM, pcnt_isr, NULL, &s_intr_handle));
|
|
pcnt_ll_clear_intr_status(s_pcnt.dev, BIT(REF_CLOCK_PCNT_UNIT));
|
|
pcnt_ll_intr_enable(s_pcnt.dev, REF_CLOCK_PCNT_UNIT);
|
|
}
|
|
|
|
static void IRAM_ATTR pcnt_isr(void* arg)
|
|
{
|
|
portENTER_CRITICAL_ISR(&s_lock);
|
|
pcnt_ll_clear_intr_status(s_pcnt.dev, BIT(REF_CLOCK_PCNT_UNIT));
|
|
s_milliseconds += REF_CLOCK_PRESCALER_MS;
|
|
portEXIT_CRITICAL_ISR(&s_lock);
|
|
}
|
|
|
|
void ref_clock_deinit()
|
|
{
|
|
assert(s_intr_handle && "deinit called without init");
|
|
|
|
// Disable interrupt
|
|
pcnt_ll_intr_disable(s_pcnt.dev, REF_CLOCK_PCNT_UNIT);
|
|
esp_intr_free(s_intr_handle);
|
|
s_intr_handle = NULL;
|
|
|
|
// Disable RMT
|
|
rmt_ll_stop_tx(s_rmt.regs, REF_CLOCK_RMT_CHANNEL);
|
|
periph_module_disable(PERIPH_RMT_MODULE);
|
|
|
|
// Disable PCNT
|
|
pcnt_ll_counter_pause(s_pcnt.dev, REF_CLOCK_PCNT_UNIT);
|
|
periph_module_disable(PERIPH_PCNT_MODULE);
|
|
}
|
|
|
|
uint64_t ref_clock_get()
|
|
{
|
|
portENTER_CRITICAL(&s_lock);
|
|
int16_t microseconds = 0;
|
|
pcnt_ll_get_counter_value(s_pcnt.dev, REF_CLOCK_PCNT_UNIT, µseconds);
|
|
uint32_t milliseconds = s_milliseconds;
|
|
uint32_t intr_status = 0;
|
|
pcnt_ll_get_intr_status(s_pcnt.dev, &intr_status);
|
|
if (intr_status & BIT(REF_CLOCK_PCNT_UNIT)) {
|
|
// refresh counter value, in case the overflow has happened after reading cnt_val
|
|
pcnt_ll_get_counter_value(s_pcnt.dev, REF_CLOCK_PCNT_UNIT, µseconds);
|
|
milliseconds += REF_CLOCK_PRESCALER_MS;
|
|
}
|
|
portEXIT_CRITICAL(&s_lock);
|
|
return 1000 * (uint64_t) milliseconds + (uint64_t) microseconds;
|
|
}
|