esp-idf/components/hal/esp32s3/include/hal/mmu_ll.h

327 lines
8.6 KiB
C

/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// The LL layer for MMU register operations
#pragma once
#include "esp_types.h"
#include "soc/extmem_reg.h"
#include "soc/ext_mem_defs.h"
#include "hal/assert.h"
#include "hal/mmu_types.h"
#ifdef __cplusplus
extern "C" {
#endif
#define MMU_LL_END_DROM_ENTRY_VADDR (SOC_DRAM_FLASH_ADDRESS_HIGH - 0x10000)
#define MMU_LL_END_DROM_ENTRY_ID (SOC_MMU_ENTRY_NUM - 1)
/**
* Convert MMU virtual address to linear address
*
* @param vaddr virtual address
*
* @return linear address
*/
static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
{
return vaddr & SOC_MMU_LINEAR_ADDR_MASK;
}
/**
* Convert MMU linear address to virtual address
*
* @param laddr linear address
* @param vaddr_type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
* @param target virtual address aimed physical memory target, not used
*
* @return virtual address
*/
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
{
(void)target;
uint32_t vaddr_base = 0;
if (vaddr_type == MMU_VADDR_DATA) {
vaddr_base = SOC_MMU_DBUS_VADDR_BASE;
} else {
vaddr_base = SOC_MMU_IBUS_VADDR_BASE;
}
return vaddr_base | laddr;
}
/**
* Get MMU page size
*
* @param mmu_id MMU ID
*
* @return MMU page size code
*/
__attribute__((always_inline))
static inline mmu_page_size_t mmu_ll_get_page_size(uint32_t mmu_id)
{
//On esp32s3, MMU Page size is always 64KB
(void)mmu_id;
return MMU_PAGE_64KB;
}
/**
* Set MMU page size
*
* @param size MMU page size
*
* @note On esp32s3, only supports `MMU_PAGE_64KB`
*/
__attribute__((always_inline))
static inline void mmu_ll_set_page_size(uint32_t mmu_id, uint32_t size)
{
HAL_ASSERT(size == MMU_PAGE_64KB);
}
/**
* Check if the external memory vaddr region is valid
*
* @param mmu_id MMU ID
* @param vaddr_start start of the virtual address
* @param len length, in bytes
* @param type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
*
* @return
* True for valid
*/
__attribute__((always_inline))
static inline bool mmu_ll_check_valid_ext_vaddr_region(uint32_t mmu_id, uint32_t vaddr_start, uint32_t len, mmu_vaddr_t type)
{
(void)mmu_id;
uint32_t vaddr_end = vaddr_start + len - 1;
bool valid = false;
if (type & MMU_VADDR_INSTRUCTION) {
valid |= (SOC_ADDRESS_IN_IRAM0_CACHE(vaddr_start) && SOC_ADDRESS_IN_IRAM0_CACHE(vaddr_end));
}
if (type & MMU_VADDR_DATA) {
valid |= (SOC_ADDRESS_IN_DRAM0_CACHE(vaddr_start) && SOC_ADDRESS_IN_DRAM0_CACHE(vaddr_end));
}
return valid;
}
/**
* Check if the paddr region is valid
*
* @param mmu_id MMU ID
* @param paddr_start start of the physical address
* @param len length, in bytes
*
* @return
* True for valid
*/
static inline bool mmu_ll_check_valid_paddr_region(uint32_t mmu_id, uint32_t paddr_start, uint32_t len)
{
(void)mmu_id;
return (paddr_start < (mmu_ll_get_page_size(mmu_id) * SOC_MMU_MAX_PADDR_PAGE_NUM)) &&
(len < (mmu_ll_get_page_size(mmu_id) * SOC_MMU_MAX_PADDR_PAGE_NUM)) &&
((paddr_start + len - 1) < (mmu_ll_get_page_size(mmu_id) * SOC_MMU_MAX_PADDR_PAGE_NUM));
}
/**
* To get the MMU table entry id to be mapped
*
* @param mmu_id MMU ID
* @param vaddr virtual address to be mapped
*
* @return
* MMU table entry id
*/
__attribute__((always_inline))
static inline uint32_t mmu_ll_get_entry_id(uint32_t mmu_id, uint32_t vaddr)
{
(void)mmu_id;
return ((vaddr & SOC_MMU_VADDR_MASK) >> 16);
}
/**
* Format the paddr to be mappable
*
* @param mmu_id MMU ID
* @param paddr physical address to be mapped
* @param target paddr memory target, not used
*
* @return
* mmu_val - paddr in MMU table supported format
*/
__attribute__((always_inline))
static inline uint32_t mmu_ll_format_paddr(uint32_t mmu_id, uint32_t paddr, mmu_target_t target)
{
(void)mmu_id;
(void)target;
return paddr >> 16;
}
/**
* Write to the MMU table to map the virtual memory and the physical memory
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
* @param mmu_val Value to be set into an MMU entry, for physical address
* @param target MMU target physical memory.
*/
__attribute__((always_inline))
static inline void mmu_ll_write_entry(uint32_t mmu_id, uint32_t entry_id, uint32_t mmu_val, mmu_target_t target)
{
(void)mmu_id;
HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM);
uint32_t target_code = (target == MMU_TARGET_FLASH0) ? SOC_MMU_ACCESS_FLASH : SOC_MMU_ACCESS_SPIRAM;
*(uint32_t *)(DR_REG_MMU_TABLE + entry_id * 4) = mmu_val | target_code | SOC_MMU_VALID;
}
/**
* Read the raw value from MMU table
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
* @param mmu_val Value to be read from MMU table
*/
__attribute__((always_inline))
static inline uint32_t mmu_ll_read_entry(uint32_t mmu_id, uint32_t entry_id)
{
(void)mmu_id;
HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM);
return *(uint32_t *)(DR_REG_MMU_TABLE + entry_id * 4);
}
/**
* Set MMU table entry as invalid
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
*/
__attribute__((always_inline))
static inline void mmu_ll_set_entry_invalid(uint32_t mmu_id, uint32_t entry_id)
{
(void)mmu_id;
HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM);
*(uint32_t *)(DR_REG_MMU_TABLE + entry_id * 4) = SOC_MMU_INVALID;
}
/**
* Unmap all the items in the MMU table
*
* @param mmu_id MMU ID
*/
__attribute__((always_inline))
static inline void mmu_ll_unmap_all(uint32_t mmu_id)
{
for (int i = 0; i < SOC_MMU_ENTRY_NUM; i++) {
mmu_ll_set_entry_invalid(mmu_id, i);
}
}
/**
* Check MMU table entry value is valid
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
*
* @return True for MMU entry is valid; False for invalid
*/
static inline bool mmu_ll_check_entry_valid(uint32_t mmu_id, uint32_t entry_id)
{
(void)mmu_id;
HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM);
return (*(uint32_t *)(DR_REG_MMU_TABLE + entry_id * 4) & SOC_MMU_INVALID) ? false : true;
}
/**
* Get the MMU table entry target
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
*
* @return Target, see `mmu_target_t`
*/
static inline mmu_target_t mmu_ll_get_entry_target(uint32_t mmu_id, uint32_t entry_id)
{
(void)mmu_id;
HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM);
bool target_code = (*(uint32_t *)(DR_REG_MMU_TABLE + entry_id * 4)) & SOC_MMU_TYPE;
return (target_code == SOC_MMU_ACCESS_FLASH) ? MMU_TARGET_FLASH0 : MMU_TARGET_PSRAM0;
}
/**
* Convert MMU entry ID to paddr base
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
*
* @return paddr base
*/
static inline uint32_t mmu_ll_entry_id_to_paddr_base(uint32_t mmu_id, uint32_t entry_id)
{
(void)mmu_id;
HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM);
return ((*(uint32_t *)(DR_REG_MMU_TABLE + entry_id * 4)) & SOC_MMU_VALID_VAL_MASK) << 16;
}
/**
* Find the MMU table entry ID based on table map value
* @note This function can only find the first match entry ID. However it is possible that a physical address
* is mapped to multiple virtual addresses
*
* @param mmu_id MMU ID
* @param mmu_val map value to be read from MMU table standing for paddr
* @param target physical memory target, see `mmu_target_t`
*
* @return MMU entry ID, -1 for invalid
*/
static inline int mmu_ll_find_entry_id_based_on_map_value(uint32_t mmu_id, uint32_t mmu_val, mmu_target_t target)
{
(void)mmu_id;
for (int i = 0; i < SOC_MMU_ENTRY_NUM; i++) {
if (mmu_ll_check_entry_valid(mmu_id, i)) {
if (mmu_ll_get_entry_target(mmu_id, i) == target) {
if (((*(uint32_t *)(DR_REG_MMU_TABLE + i * 4)) & SOC_MMU_VALID_VAL_MASK) == mmu_val) {
return i;
}
}
}
}
return -1;
}
/**
* Convert MMU entry ID to vaddr base
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
* @param type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
*/
static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t entry_id, mmu_vaddr_t type)
{
(void)mmu_id;
uint32_t laddr = entry_id << 16;
/**
* For `mmu_ll_laddr_to_vaddr`, target is for compatibility on this chip.
* Here we just pass MMU_TARGET_FLASH0 to get vaddr
*/
return mmu_ll_laddr_to_vaddr(laddr, type, MMU_TARGET_FLASH0);
}
#ifdef __cplusplus
}
#endif