esp-idf/components/app_trace/app_trace_util.c
Darian Leung daa950d9ed freertos: Replace portSET_INTERRUPT_MASK_FROM_ISR() call for SMP
The behavior of portSET_INTERRUPT_MASK_FROM_ISR() has changed in SMP FreeRTOS. It's
previous behavior is now implemented in portDISABLE_INTERRUPTS() and portRESTORE_INTERRUPTS().

This commit replaces all portSET_INTERRUPT_MASK_FROM_ISR() and portCLEAR_INTERRUPT_MASK_FROM_ISR()
calls with portDISABLE_INTERRUPTS() and portRESTORE_INTERRUPTS() respectively
2022-05-30 06:11:24 +08:00

204 lines
5.9 KiB
C

/*
* SPDX-FileCopyrightText: 2017-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
//
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_app_trace_util.h"
#include "sdkconfig.h"
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////// Locks /////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#if ESP_APPTRACE_PRINT_LOCK
static esp_apptrace_lock_t s_log_lock = {.irq_stat = 0, .portmux = portMUX_INITIALIZER_UNLOCKED};
#endif
int esp_apptrace_log_lock(void)
{
#if ESP_APPTRACE_PRINT_LOCK
esp_apptrace_tmo_t tmo;
esp_apptrace_tmo_init(&tmo, ESP_APPTRACE_TMO_INFINITE);
int ret = esp_apptrace_lock_take(&s_log_lock, &tmo);
return ret;
#else
return 0;
#endif
}
void esp_apptrace_log_unlock(void)
{
#if ESP_APPTRACE_PRINT_LOCK
esp_apptrace_lock_give(&s_log_lock);
#endif
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////// TIMEOUT /////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
esp_err_t esp_apptrace_tmo_check(esp_apptrace_tmo_t *tmo)
{
if (tmo->tmo != (int64_t)-1) {
tmo->elapsed = esp_timer_get_time() - tmo->start;
if (tmo->elapsed >= tmo->tmo) {
return ESP_ERR_TIMEOUT;
}
}
return ESP_OK;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////// LOCK ////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
esp_err_t esp_apptrace_lock_take(esp_apptrace_lock_t *lock, esp_apptrace_tmo_t *tmo)
{
int res;
while (1) {
//Todo: Replace the current locking mechanism and int_state with portTRY_ENTER_CRITICAL() instead.
// do not overwrite lock->int_state before we actually acquired the mux
#if CONFIG_FREERTOS_SMP
unsigned int_state = portDISABLE_INTERRUPTS();
#else
unsigned int_state = portSET_INTERRUPT_MASK_FROM_ISR();
#endif
bool success = spinlock_acquire(&lock->mux, 0);
if (success) {
lock->int_state = int_state;
return ESP_OK;
}
#if CONFIG_FREERTOS_SMP
portRESTORE_INTERRUPTS(int_state);
#else
portCLEAR_INTERRUPT_MASK_FROM_ISR(int_state);
#endif
// we can be preempted from this place till the next call (above) to portSET_INTERRUPT_MASK_FROM_ISR()
res = esp_apptrace_tmo_check(tmo);
if (res != ESP_OK) {
break;
}
}
return res;
}
esp_err_t esp_apptrace_lock_give(esp_apptrace_lock_t *lock)
{
// save lock's irq state value for this CPU
unsigned int_state = lock->int_state;
// after call to the following func we can not be sure that lock->int_state
// is not overwritten by other CPU who has acquired the mux just after we released it. See esp_apptrace_lock_take().
spinlock_release(&lock->mux);
#if CONFIG_FREERTOS_SMP
portRESTORE_INTERRUPTS(int_state);
#else
portCLEAR_INTERRUPT_MASK_FROM_ISR(int_state);
#endif
return ESP_OK;
}
///////////////////////////////////////////////////////////////////////////////
////////////////////////////// RING BUFFER ////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
uint8_t *esp_apptrace_rb_produce(esp_apptrace_rb_t *rb, uint32_t size)
{
uint8_t *ptr = rb->data + rb->wr;
// check for avalable space
if (rb->rd <= rb->wr) {
// |?R......W??|
if (rb->wr + size >= rb->size) {
if (rb->rd == 0) {
return NULL; // cannot wrap wr
}
if (rb->wr + size == rb->size) {
rb->wr = 0;
} else {
// check if we can wrap wr earlier to get space for requested size
if (size > rb->rd - 1) {
return NULL; // cannot wrap wr
}
// shrink buffer a bit, full size will be restored at rd wrapping
rb->cur_size = rb->wr;
rb->wr = 0;
ptr = rb->data;
if (rb->rd == rb->cur_size) {
rb->rd = 0;
if (rb->cur_size < rb->size) {
rb->cur_size = rb->size;
}
}
rb->wr += size;
}
} else {
rb->wr += size;
}
} else {
// |?W......R??|
if (size > rb->rd - rb->wr - 1) {
return NULL;
}
rb->wr += size;
}
return ptr;
}
uint8_t *esp_apptrace_rb_consume(esp_apptrace_rb_t *rb, uint32_t size)
{
uint8_t *ptr = rb->data + rb->rd;
if (rb->rd <= rb->wr) {
// |?R......W??|
if (rb->rd + size > rb->wr) {
return NULL;
}
rb->rd += size;
} else {
// |?W......R??|
if (rb->rd + size > rb->cur_size) {
return NULL;
} else if (rb->rd + size == rb->cur_size) {
// restore full size usage
if (rb->cur_size < rb->size) {
rb->cur_size = rb->size;
}
rb->rd = 0;
} else {
rb->rd += size;
}
}
return ptr;
}
uint32_t esp_apptrace_rb_read_size_get(esp_apptrace_rb_t *rb)
{
uint32_t size = 0;
if (rb->rd <= rb->wr) {
// |?R......W??|
size = rb->wr - rb->rd;
} else {
// |?W......R??|
size = rb->cur_size - rb->rd;
}
return size;
}
uint32_t esp_apptrace_rb_write_size_get(esp_apptrace_rb_t *rb)
{
uint32_t size = 0;
if (rb->rd <= rb->wr) {
// |?R......W??|
size = rb->size - rb->wr;
if (size && rb->rd == 0) {
size--;
}
} else {
// |?W......R??|
size = rb->rd - rb->wr - 1;
}
return size;
}