mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
c6829fa5b8
- In SPI mode, the card will respond to the initial SDIO reset (done using CMD52) with “invalid command” error. Handle this correctly. - sdmmc_card_init had a hack where GO_IDLE_STATE (CMD0) command was sent twice. Add explanation why this is done, and don’t expect correct response from the card on first CMD0. - improve logs printed at debug level by adding CMD index
871 lines
30 KiB
C
871 lines
30 KiB
C
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <sys/param.h>
|
|
#include "esp_log.h"
|
|
#include "esp_heap_caps.h"
|
|
#include "driver/gpio.h"
|
|
#include "driver/sdmmc_defs.h"
|
|
#include "driver/sdspi_host.h"
|
|
#include "sdspi_private.h"
|
|
#include "sdspi_crc.h"
|
|
#include "esp_timer.h"
|
|
|
|
|
|
/// Max number of transactions in flight (used in start_command_write_blocks)
|
|
#define SDSPI_TRANSACTION_COUNT 4
|
|
#define SDSPI_MOSI_IDLE_VAL 0xff //!< Data value which causes MOSI to stay high
|
|
#define GPIO_UNUSED 0xff //!< Flag indicating that CD/WP is unused
|
|
/// Size of the buffer returned by get_block_buf
|
|
#define SDSPI_BLOCK_BUF_SIZE (SDSPI_MAX_DATA_LEN + 4)
|
|
/// Maximum number of dummy bytes between the request and response (minimum is 1)
|
|
#define SDSPI_RESPONSE_MAX_DELAY 8
|
|
|
|
|
|
/// Structure containing run time configuration for a single SD slot
|
|
typedef struct {
|
|
spi_device_handle_t handle; //!< SPI device handle, used for transactions
|
|
uint8_t gpio_cs; //!< CS GPIO
|
|
uint8_t gpio_cd; //!< Card detect GPIO, or GPIO_UNUSED
|
|
uint8_t gpio_wp; //!< Write protect GPIO, or GPIO_UNUSED
|
|
/// Set to 1 if the higher layer has asked the card to enable CRC checks
|
|
uint8_t data_crc_enabled : 1;
|
|
/// Number of transactions in 'transactions' array which are in use
|
|
uint8_t used_transaction_count: 3;
|
|
/// Intermediate buffer used when application buffer is not in DMA memory;
|
|
/// allocated on demand, SDSPI_BLOCK_BUF_SIZE bytes long. May be zero.
|
|
uint8_t* block_buf;
|
|
/// array with SDSPI_TRANSACTION_COUNT transaction structures
|
|
spi_transaction_t* transactions;
|
|
} slot_info_t;
|
|
|
|
static slot_info_t s_slots[3];
|
|
static const char *TAG = "sdspi_host";
|
|
|
|
/// Functions to send out different kinds of commands
|
|
static esp_err_t start_command_read_blocks(int slot, sdspi_hw_cmd_t *cmd,
|
|
uint8_t *data, uint32_t rx_length);
|
|
|
|
static esp_err_t start_command_write_blocks(int slot, sdspi_hw_cmd_t *cmd,
|
|
const uint8_t *data, uint32_t tx_length);
|
|
|
|
static esp_err_t start_command_default(int slot, int flags, sdspi_hw_cmd_t *cmd);
|
|
|
|
/// A few helper functions
|
|
|
|
/// Set CS high for given slot
|
|
static void cs_high(int slot)
|
|
{
|
|
gpio_set_level(s_slots[slot].gpio_cs, 1);
|
|
}
|
|
|
|
/// Set CS low for given slot
|
|
static void cs_low(int slot)
|
|
{
|
|
gpio_set_level(s_slots[slot].gpio_cs, 0);
|
|
}
|
|
|
|
/// Return true if WP pin is configured and is low
|
|
static bool card_write_protected(int slot)
|
|
{
|
|
if (s_slots[slot].gpio_wp == GPIO_UNUSED) {
|
|
return false;
|
|
}
|
|
return gpio_get_level(s_slots[slot].gpio_wp) == 0;
|
|
}
|
|
|
|
/// Return true if CD pin is configured and is high
|
|
static bool card_missing(int slot)
|
|
{
|
|
if (s_slots[slot].gpio_cd == GPIO_UNUSED) {
|
|
return false;
|
|
}
|
|
return gpio_get_level(s_slots[slot].gpio_cd) == 1;
|
|
}
|
|
|
|
/// Check if slot number is within bounds
|
|
static bool is_valid_slot(int slot)
|
|
{
|
|
return slot == VSPI_HOST || slot == HSPI_HOST;
|
|
}
|
|
|
|
static spi_device_handle_t spi_handle(int slot)
|
|
{
|
|
return s_slots[slot].handle;
|
|
}
|
|
|
|
static bool is_slot_initialized(int slot)
|
|
{
|
|
return spi_handle(slot) != NULL;
|
|
}
|
|
|
|
static bool data_crc_enabled(int slot)
|
|
{
|
|
return s_slots[slot].data_crc_enabled;
|
|
}
|
|
|
|
/// Get pointer to a block of DMA memory, allocate if necessary.
|
|
/// This is used if the application provided buffer is not in DMA capable memory.
|
|
static esp_err_t get_block_buf(int slot, uint8_t** out_buf)
|
|
{
|
|
if (s_slots[slot].block_buf == NULL) {
|
|
s_slots[slot].block_buf = heap_caps_malloc(SDSPI_BLOCK_BUF_SIZE, MALLOC_CAP_DMA);
|
|
if (s_slots[slot].block_buf == NULL) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
}
|
|
*out_buf = s_slots[slot].block_buf;
|
|
return ESP_OK;
|
|
}
|
|
|
|
static spi_transaction_t* get_transaction(int slot)
|
|
{
|
|
size_t used_transaction_count = s_slots[slot].used_transaction_count;
|
|
assert(used_transaction_count < SDSPI_TRANSACTION_COUNT);
|
|
spi_transaction_t* ret = &s_slots[slot].transactions[used_transaction_count];
|
|
++s_slots[slot].used_transaction_count;
|
|
return ret;
|
|
}
|
|
|
|
static void release_transaction(int slot)
|
|
{
|
|
--s_slots[slot].used_transaction_count;
|
|
}
|
|
|
|
static void wait_for_transactions(int slot)
|
|
{
|
|
size_t used_transaction_count = s_slots[slot].used_transaction_count;
|
|
for (size_t i = 0; i < used_transaction_count; ++i) {
|
|
spi_transaction_t* t_out;
|
|
spi_device_get_trans_result(spi_handle(slot), &t_out, portMAX_DELAY);
|
|
release_transaction(slot);
|
|
}
|
|
}
|
|
|
|
/// Clock out one byte (CS has to be high) to make the card release MISO
|
|
/// (clocking one bit would work as well, but that triggers a bug in SPI DMA)
|
|
static void release_bus(int slot)
|
|
{
|
|
spi_transaction_t t = {
|
|
.flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA,
|
|
.length = 8,
|
|
.tx_data = {0xff}
|
|
};
|
|
spi_device_transmit(spi_handle(slot), &t);
|
|
// don't care if this failed
|
|
}
|
|
|
|
/// Clock out 80 cycles (10 bytes) before GO_IDLE command
|
|
static void go_idle_clockout(int slot)
|
|
{
|
|
//actually we need 10, declare 12 to meet requirement of RXDMA
|
|
uint8_t data[12];
|
|
memset(data, 0xff, sizeof(data));
|
|
spi_transaction_t t = {
|
|
.length = 10*8,
|
|
.tx_buffer = data,
|
|
.rx_buffer = data,
|
|
};
|
|
spi_device_transmit(spi_handle(slot), &t);
|
|
// don't care if this failed
|
|
}
|
|
|
|
|
|
/// Return true if the pointer can be used for DMA
|
|
static bool ptr_dma_compatible(const void* ptr)
|
|
{
|
|
return (uintptr_t) ptr >= 0x3FFAE000 &&
|
|
(uintptr_t) ptr < 0x40000000;
|
|
}
|
|
|
|
/**
|
|
* Initialize SPI device. Used to change clock speed.
|
|
* @param slot SPI host number
|
|
* @param clock_speed_hz clock speed, Hz
|
|
* @return ESP_OK on success
|
|
*/
|
|
static esp_err_t init_spi_dev(int slot, int clock_speed_hz)
|
|
{
|
|
if (spi_handle(slot)) {
|
|
// Reinitializing
|
|
spi_bus_remove_device(spi_handle(slot));
|
|
s_slots[slot].handle = NULL;
|
|
}
|
|
spi_device_interface_config_t devcfg = {
|
|
.clock_speed_hz = clock_speed_hz,
|
|
.mode = 0,
|
|
// For SD cards, CS must stay low during the whole read/write operation,
|
|
// rather than a single SPI transaction.
|
|
.spics_io_num = -1,
|
|
.queue_size = SDSPI_TRANSACTION_COUNT,
|
|
};
|
|
return spi_bus_add_device((spi_host_device_t) slot, &devcfg, &s_slots[slot].handle);
|
|
}
|
|
|
|
esp_err_t sdspi_host_init()
|
|
{
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdspi_host_deinit()
|
|
{
|
|
for (size_t i = 0; i < sizeof(s_slots)/sizeof(s_slots[0]); ++i) {
|
|
if (s_slots[i].handle) {
|
|
spi_bus_remove_device(s_slots[i].handle);
|
|
free(s_slots[i].block_buf);
|
|
s_slots[i].block_buf = NULL;
|
|
free(s_slots[i].transactions);
|
|
s_slots[i].transactions = NULL;
|
|
spi_bus_free((spi_host_device_t) i);
|
|
s_slots[i].handle = NULL;
|
|
}
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdspi_host_set_card_clk(int slot, uint32_t freq_khz)
|
|
{
|
|
if (!is_valid_slot(slot)) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
if (!is_slot_initialized(slot)) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
ESP_LOGD(TAG, "Setting card clock to %d kHz", freq_khz);
|
|
return init_spi_dev(slot, freq_khz * 1000);
|
|
}
|
|
|
|
esp_err_t sdspi_host_init_slot(int slot, const sdspi_slot_config_t* slot_config)
|
|
{
|
|
ESP_LOGD(TAG, "%s: SPI%d miso=%d mosi=%d sck=%d cs=%d cd=%d wp=%d, dma_ch=%d",
|
|
__func__, slot + 1,
|
|
slot_config->gpio_miso, slot_config->gpio_mosi,
|
|
slot_config->gpio_sck, slot_config->gpio_cs,
|
|
slot_config->gpio_cd, slot_config->gpio_wp,
|
|
slot_config->dma_channel);
|
|
|
|
spi_host_device_t host = (spi_host_device_t) slot;
|
|
if (!is_valid_slot(slot)) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
spi_bus_config_t buscfg = {
|
|
.miso_io_num = slot_config->gpio_miso,
|
|
.mosi_io_num = slot_config->gpio_mosi,
|
|
.sclk_io_num = slot_config->gpio_sck,
|
|
.quadwp_io_num = -1,
|
|
.quadhd_io_num = -1
|
|
};
|
|
|
|
// Initialize SPI bus
|
|
esp_err_t ret = spi_bus_initialize((spi_host_device_t)slot, &buscfg,
|
|
slot_config->dma_channel);
|
|
if (ret != ESP_OK) {
|
|
ESP_LOGD(TAG, "spi_bus_initialize failed with rc=0x%x", ret);
|
|
return ret;
|
|
}
|
|
|
|
// Attach the SD card to the SPI bus
|
|
ret = init_spi_dev(slot, SDMMC_FREQ_PROBING * 1000);
|
|
if (ret != ESP_OK) {
|
|
ESP_LOGD(TAG, "spi_bus_add_device failed with rc=0x%x", ret);
|
|
spi_bus_free(host);
|
|
return ret;
|
|
}
|
|
|
|
// Configure CS pin
|
|
s_slots[slot].gpio_cs = (uint8_t) slot_config->gpio_cs;
|
|
gpio_config_t io_conf = {
|
|
.intr_type = GPIO_PIN_INTR_DISABLE,
|
|
.mode = GPIO_MODE_OUTPUT,
|
|
.pin_bit_mask = 1LL << slot_config->gpio_cs,
|
|
};
|
|
|
|
ret = gpio_config(&io_conf);
|
|
if (ret != ESP_OK) {
|
|
ESP_LOGD(TAG, "gpio_config (CS) failed with rc=0x%x", ret);
|
|
spi_bus_remove_device(spi_handle(slot));
|
|
s_slots[slot].handle = NULL;
|
|
spi_bus_free(host);
|
|
return ret;
|
|
}
|
|
cs_high(slot);
|
|
|
|
// Configure CD and WP pins
|
|
io_conf = (gpio_config_t) {
|
|
.intr_type = GPIO_PIN_INTR_DISABLE,
|
|
.mode = GPIO_MODE_OUTPUT,
|
|
.pin_bit_mask = 0,
|
|
.pull_up_en = true
|
|
};
|
|
if (slot_config->gpio_cd != SDSPI_SLOT_NO_CD) {
|
|
io_conf.pin_bit_mask |= (1 << slot_config->gpio_cd);
|
|
s_slots[slot].gpio_wp = slot_config->gpio_wp;
|
|
} else {
|
|
s_slots[slot].gpio_wp = GPIO_UNUSED;
|
|
}
|
|
|
|
if (slot_config->gpio_wp != SDSPI_SLOT_NO_WP) {
|
|
io_conf.pin_bit_mask |= (1 << slot_config->gpio_wp);
|
|
s_slots[slot].gpio_cd = slot_config->gpio_cd;
|
|
} else {
|
|
s_slots[slot].gpio_cd = GPIO_UNUSED;
|
|
}
|
|
|
|
if (io_conf.pin_bit_mask != 0) {
|
|
ret = gpio_config(&io_conf);
|
|
if (ret != ESP_OK) {
|
|
ESP_LOGD(TAG, "gpio_config (CD/WP) failed with rc=0x%x", ret);
|
|
spi_bus_remove_device(spi_handle(slot));
|
|
s_slots[slot].handle = NULL;
|
|
spi_bus_free(host);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
s_slots[slot].transactions = calloc(SDSPI_TRANSACTION_COUNT, sizeof(spi_transaction_t));
|
|
if (s_slots[slot].transactions == NULL) {
|
|
spi_bus_remove_device(spi_handle(slot));
|
|
s_slots[slot].handle = NULL;
|
|
spi_bus_free(host);
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
esp_err_t sdspi_host_start_command(int slot, sdspi_hw_cmd_t *cmd, void *data,
|
|
uint32_t data_size, int flags)
|
|
{
|
|
if (!is_valid_slot(slot)) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
if (!is_slot_initialized(slot)) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
if (card_missing(slot)) {
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
// save some parts of cmd, as its contents will be overwritten
|
|
int cmd_index = cmd->cmd_index;
|
|
uint32_t cmd_arg;
|
|
memcpy(&cmd_arg, cmd->arguments, sizeof(cmd_arg));
|
|
cmd_arg = __builtin_bswap32(cmd_arg);
|
|
ESP_LOGV(TAG, "%s: slot=%i, CMD%d, arg=0x%08x flags=0x%x, data=%p, data_size=%i crc=0x%02x",
|
|
__func__, slot, cmd_index, cmd_arg, flags, data, data_size, cmd->crc7);
|
|
|
|
|
|
// For CMD0, clock out 80 cycles to help the card enter idle state,
|
|
// *before* CS is asserted.
|
|
if (cmd_index == MMC_GO_IDLE_STATE) {
|
|
go_idle_clockout(slot);
|
|
}
|
|
// actual transaction
|
|
esp_err_t ret = ESP_OK;
|
|
cs_low(slot);
|
|
if (flags & SDSPI_CMD_FLAG_DATA) {
|
|
if (flags & SDSPI_CMD_FLAG_WRITE) {
|
|
ret = start_command_write_blocks(slot, cmd, data, data_size);
|
|
} else {
|
|
ret = start_command_read_blocks(slot, cmd, data, data_size);
|
|
}
|
|
} else {
|
|
ret = start_command_default(slot, flags, cmd);
|
|
}
|
|
cs_high(slot);
|
|
|
|
release_bus(slot);
|
|
|
|
if (ret != ESP_OK) {
|
|
ESP_LOGD(TAG, "%s: cmd=%d error=0x%x", __func__, cmd_index, ret);
|
|
} else {
|
|
// Update internal state when some commands are sent successfully
|
|
if (cmd_index == SD_CRC_ON_OFF) {
|
|
s_slots[slot].data_crc_enabled = (uint8_t) cmd_arg;
|
|
ESP_LOGD(TAG, "data CRC set=%d", s_slots[slot].data_crc_enabled);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static esp_err_t start_command_default(int slot, int flags, sdspi_hw_cmd_t *cmd)
|
|
{
|
|
size_t cmd_size = SDSPI_CMD_R1_SIZE;
|
|
if ((flags & SDSPI_CMD_FLAG_RSP_R1) ||
|
|
(flags & SDSPI_CMD_FLAG_NORSP)) {
|
|
cmd_size = SDSPI_CMD_R1_SIZE;
|
|
} else if (flags & SDSPI_CMD_FLAG_RSP_R2) {
|
|
cmd_size = SDSPI_CMD_R2_SIZE;
|
|
} else if (flags & SDSPI_CMD_FLAG_RSP_R3) {
|
|
cmd_size = SDSPI_CMD_R3_SIZE;
|
|
} else if (flags & SDSPI_CMD_FLAG_RSP_R7) {
|
|
cmd_size = SDSPI_CMD_R7_SIZE;
|
|
}
|
|
spi_transaction_t t = {
|
|
.flags = 0,
|
|
.length = cmd_size * 8,
|
|
.tx_buffer = cmd,
|
|
.rx_buffer = cmd
|
|
};
|
|
esp_err_t ret = spi_device_transmit(spi_handle(slot), &t);
|
|
if (cmd->cmd_index == MMC_STOP_TRANSMISSION) {
|
|
/* response is a stuff byte from previous transfer, ignore it */
|
|
cmd->r1 = 0xff;
|
|
}
|
|
if (flags & SDSPI_CMD_FLAG_NORSP) {
|
|
/* no (correct) response expected from the card, so skip polling loop */
|
|
ESP_LOGV(TAG, "%s: ignoring response byte", __func__);
|
|
cmd->r1 = 0x00;
|
|
}
|
|
int response_delay_bytes = SDSPI_RESPONSE_MAX_DELAY;
|
|
while ((cmd->r1 & SD_SPI_R1_NO_RESPONSE) != 0 && response_delay_bytes-- > 0) {
|
|
spi_transaction_t* t = get_transaction(slot);
|
|
*t = (spi_transaction_t) {
|
|
.flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA,
|
|
.length = 8,
|
|
};
|
|
t->tx_data[0] = 0xff;
|
|
ret = spi_device_transmit(spi_handle(slot), t);
|
|
uint8_t r1 = t->rx_data[0];
|
|
release_transaction(slot);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
cmd->r1 = r1;
|
|
}
|
|
if (cmd->r1 & SD_SPI_R1_NO_RESPONSE) {
|
|
ESP_LOGD(TAG, "%s: no response token found", __func__);
|
|
return ESP_ERR_TIMEOUT;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// Wait until MISO goes high
|
|
static esp_err_t poll_busy(int slot, spi_transaction_t* t, int timeout_ms)
|
|
{
|
|
uint8_t t_rx;
|
|
*t = (spi_transaction_t) {
|
|
.tx_buffer = &t_rx,
|
|
.flags = SPI_TRANS_USE_RXDATA, //data stored in rx_data
|
|
.length = 8,
|
|
};
|
|
esp_err_t ret;
|
|
|
|
uint64_t t_end = esp_timer_get_time() + timeout_ms * 1000;
|
|
int nonzero_count = 0;
|
|
do {
|
|
t_rx = SDSPI_MOSI_IDLE_VAL;
|
|
t->rx_data[0] = 0;
|
|
ret = spi_device_transmit(spi_handle(slot), t);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
if (t->rx_data[0] != 0) {
|
|
if (++nonzero_count == 2) {
|
|
return ESP_OK;
|
|
}
|
|
}
|
|
} while(esp_timer_get_time() < t_end);
|
|
ESP_LOGD(TAG, "%s: timeout", __func__);
|
|
return ESP_ERR_TIMEOUT;
|
|
}
|
|
|
|
// Wait for response token
|
|
static esp_err_t poll_response_token(int slot, spi_transaction_t* t, int timeout_ms)
|
|
{
|
|
uint8_t t_rx;
|
|
*t = (spi_transaction_t) {
|
|
.tx_buffer = &t_rx,
|
|
.flags = SPI_TRANS_USE_RXDATA,
|
|
.length = 8,
|
|
};
|
|
esp_err_t ret;
|
|
uint64_t t_end = esp_timer_get_time() + timeout_ms * 1000;
|
|
do {
|
|
t_rx = SDSPI_MOSI_IDLE_VAL;
|
|
t->rx_data[0] = 0;
|
|
ret = spi_device_transmit(spi_handle(slot), t);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
if ((t->rx_data[0] & TOKEN_RSP_MASK) == TOKEN_RSP_OK) {
|
|
return ESP_OK;
|
|
}
|
|
if ((t->rx_data[0] & TOKEN_RSP_MASK) == TOKEN_RSP_CRC_ERR) {
|
|
return ESP_ERR_INVALID_CRC;
|
|
}
|
|
if ((t->rx_data[0] & TOKEN_RSP_MASK) == TOKEN_RSP_WRITE_ERR) {
|
|
return ESP_ERR_INVALID_RESPONSE;
|
|
}
|
|
} while (esp_timer_get_time() < t_end);
|
|
|
|
ESP_LOGD(TAG, "%s: timeout", __func__);
|
|
return ESP_ERR_TIMEOUT;
|
|
}
|
|
|
|
// Wait for data token, reading 8 bytes at a time.
|
|
// If the token is found, write all subsequent bytes to extra_ptr,
|
|
// and store the number of bytes written to extra_size.
|
|
static esp_err_t poll_data_token(int slot, spi_transaction_t* t,
|
|
uint8_t* extra_ptr, size_t* extra_size, int timeout_ms)
|
|
{
|
|
uint8_t t_rx[8];
|
|
*t = (spi_transaction_t) {
|
|
.tx_buffer = &t_rx,
|
|
.rx_buffer = &t_rx,
|
|
.length = sizeof(t_rx) * 8,
|
|
};
|
|
esp_err_t ret;
|
|
uint64_t t_end = esp_timer_get_time() + timeout_ms * 1000;
|
|
do {
|
|
memset(t_rx, SDSPI_MOSI_IDLE_VAL, sizeof(t_rx));
|
|
ret = spi_device_transmit(spi_handle(slot), t);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
bool found = false;
|
|
for (int byte_idx = 0; byte_idx < sizeof(t_rx); byte_idx++) {
|
|
uint8_t rd_data = t_rx[byte_idx];
|
|
if (rd_data == TOKEN_BLOCK_START) {
|
|
found = true;
|
|
memcpy(extra_ptr, t_rx + byte_idx + 1, sizeof(t_rx) - byte_idx - 1);
|
|
*extra_size = sizeof(t_rx) - byte_idx - 1;
|
|
break;
|
|
}
|
|
if (rd_data != 0xff && rd_data != 0) {
|
|
ESP_LOGD(TAG, "%s: received 0x%02x while waiting for data",
|
|
__func__, rd_data);
|
|
return ESP_ERR_INVALID_RESPONSE;
|
|
}
|
|
}
|
|
if (found) {
|
|
return ESP_OK;
|
|
}
|
|
} while (esp_timer_get_time() < t_end);
|
|
ESP_LOGD(TAG, "%s: timeout", __func__);
|
|
return ESP_ERR_TIMEOUT;
|
|
}
|
|
|
|
|
|
/**
|
|
* Receiving one or more blocks of data happens as follows:
|
|
* 1. send command + receive r1 response (SDSPI_CMD_R1_SIZE bytes total)
|
|
* 2. keep receiving bytes until TOKEN_BLOCK_START is encountered (this may
|
|
* take a while, depending on card's read speed)
|
|
* 3. receive up to SDSPI_MAX_DATA_LEN = 512 bytes of actual data
|
|
* 4. receive 2 bytes of CRC
|
|
* 5. for multi block transfers, go to step 2
|
|
*
|
|
* These steps can be done separately, but that leads to a less than optimal
|
|
* performance on large transfers because of delays between each step.
|
|
* For example, if steps 3 and 4 are separate SPI transactions queued one after
|
|
* another, there will be ~16 microseconds of dead time between end of step 3
|
|
* and the beginning of step 4. A delay between two blocking SPI transactions
|
|
* in step 2 is even higher (~60 microseconds).
|
|
*
|
|
* To improve read performance the following sequence is adopted:
|
|
* 1. Do the first transfer: command + r1 response + 8 extra bytes.
|
|
* Set pre_scan_data_ptr to point to the 8 extra bytes, and set
|
|
* pre_scan_data_size to 8.
|
|
* 2. Search pre_scan_data_size bytes for TOKEN_BLOCK_START.
|
|
* If found, the rest of the bytes contain part of the actual data.
|
|
* Store pointer to and size of that extra data as extra_data_{ptr,size}.
|
|
* If not found, fall back to polling for TOKEN_BLOCK_START, 8 bytes at a
|
|
* time (in poll_data_token function). Deal with extra data in the same way,
|
|
* by setting extra_data_{ptr,size}.
|
|
* 3. Receive the remaining 512 - extra_data_size bytes, plus 4 extra bytes
|
|
* (i.e. 516 - extra_data_size). Of the 4 extra bytes, first two will capture
|
|
* the CRC value, and the other two will capture 0xff 0xfe sequence
|
|
* indicating the start of the next block. Actual scanning is done by
|
|
* setting pre_scan_data_ptr to point to these last 2 bytes, and setting
|
|
* pre_scan_data_size = 2, then going to step 2 to receive the next block.
|
|
* When the final block is being received, the number of extra bytes is 2
|
|
* (only for CRC), because we don't need to wait for start token of the
|
|
* next block, and some cards are getting confused by these two extra bytes.
|
|
*
|
|
* With this approach the delay between blocks of a multi-block transfer is
|
|
* ~95 microseconds, out of which 35 microseconds are spend doing the CRC check.
|
|
* Further speedup is possible by pipelining transfers and CRC checks, at an
|
|
* expense of one extra temporary buffer.
|
|
*/
|
|
static esp_err_t start_command_read_blocks(int slot, sdspi_hw_cmd_t *cmd,
|
|
uint8_t *data, uint32_t rx_length)
|
|
{
|
|
bool need_stop_command = rx_length > SDSPI_MAX_DATA_LEN;
|
|
spi_transaction_t* t_command = get_transaction(slot);
|
|
*t_command = (spi_transaction_t) {
|
|
.length = (SDSPI_CMD_R1_SIZE + SDSPI_RESPONSE_MAX_DELAY) * 8,
|
|
.tx_buffer = cmd,
|
|
.rx_buffer = cmd,
|
|
};
|
|
esp_err_t ret = spi_device_transmit(spi_handle(slot), t_command);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
release_transaction(slot);
|
|
|
|
uint8_t* cmd_u8 = (uint8_t*) cmd;
|
|
size_t pre_scan_data_size = SDSPI_RESPONSE_MAX_DELAY;
|
|
uint8_t* pre_scan_data_ptr = cmd_u8 + SDSPI_CMD_R1_SIZE;
|
|
|
|
/* R1 response is delayed by 1-8 bytes from the request.
|
|
* This loop searches for the response and writes it to cmd->r1.
|
|
*/
|
|
while ((cmd->r1 & SD_SPI_R1_NO_RESPONSE) != 0 && pre_scan_data_size > 0) {
|
|
cmd->r1 = *pre_scan_data_ptr;
|
|
++pre_scan_data_ptr;
|
|
--pre_scan_data_size;
|
|
}
|
|
if (cmd->r1 & SD_SPI_R1_NO_RESPONSE) {
|
|
ESP_LOGD(TAG, "no response token found");
|
|
return ESP_ERR_TIMEOUT;
|
|
}
|
|
|
|
while (rx_length > 0) {
|
|
size_t extra_data_size = 0;
|
|
const uint8_t* extra_data_ptr = NULL;
|
|
bool need_poll = true;
|
|
|
|
for (int i = 0; i < pre_scan_data_size; ++i) {
|
|
if (pre_scan_data_ptr[i] == TOKEN_BLOCK_START) {
|
|
extra_data_size = pre_scan_data_size - i - 1;
|
|
extra_data_ptr = pre_scan_data_ptr + i + 1;
|
|
need_poll = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (need_poll) {
|
|
// Wait for data to be ready
|
|
spi_transaction_t* t_poll = get_transaction(slot);
|
|
ret = poll_data_token(slot, t_poll, cmd_u8 + SDSPI_CMD_R1_SIZE, &extra_data_size, cmd->timeout_ms);
|
|
release_transaction(slot);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
if (extra_data_size) {
|
|
extra_data_ptr = cmd_u8 + SDSPI_CMD_R1_SIZE;
|
|
}
|
|
}
|
|
|
|
// Arrange RX buffer
|
|
size_t will_receive = MIN(rx_length, SDSPI_MAX_DATA_LEN) - extra_data_size;
|
|
uint8_t* rx_data;
|
|
ret = get_block_buf(slot, &rx_data);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
|
|
// receive actual data
|
|
const size_t receive_extra_bytes = (rx_length > SDSPI_MAX_DATA_LEN) ? 4 : 2;
|
|
memset(rx_data, 0xff, will_receive + receive_extra_bytes);
|
|
spi_transaction_t* t_data = get_transaction(slot);
|
|
*t_data = (spi_transaction_t) {
|
|
.length = (will_receive + receive_extra_bytes) * 8,
|
|
.rx_buffer = rx_data,
|
|
.tx_buffer = rx_data
|
|
};
|
|
|
|
ret = spi_device_transmit(spi_handle(slot), t_data);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
release_transaction(slot);
|
|
|
|
// CRC bytes need to be received even if CRC is not enabled
|
|
uint16_t crc = UINT16_MAX;
|
|
memcpy(&crc, rx_data + will_receive, sizeof(crc));
|
|
|
|
// Bytes to scan for the start token
|
|
pre_scan_data_size = receive_extra_bytes - sizeof(crc);
|
|
pre_scan_data_ptr = rx_data + will_receive + sizeof(crc);
|
|
|
|
// Copy data to the destination buffer
|
|
memcpy(data + extra_data_size, rx_data, will_receive);
|
|
if (extra_data_size) {
|
|
memcpy(data, extra_data_ptr, extra_data_size);
|
|
}
|
|
|
|
// compute CRC of the received data
|
|
uint16_t crc_of_data = 0;
|
|
if (data_crc_enabled(slot)) {
|
|
crc_of_data = sdspi_crc16(data, will_receive + extra_data_size);
|
|
if (crc_of_data != crc) {
|
|
ESP_LOGE(TAG, "data CRC failed, got=0x%04x expected=0x%04x", crc_of_data, crc);
|
|
esp_log_buffer_hex(TAG, data, 16);
|
|
return ESP_ERR_INVALID_CRC;
|
|
}
|
|
}
|
|
|
|
data += will_receive + extra_data_size;
|
|
rx_length -= will_receive + extra_data_size;
|
|
extra_data_size = 0;
|
|
extra_data_ptr = NULL;
|
|
}
|
|
|
|
if (need_stop_command) {
|
|
// To end multi block transfer, send stop command and wait for the
|
|
// card to process it
|
|
sdspi_hw_cmd_t stop_cmd;
|
|
make_hw_cmd(MMC_STOP_TRANSMISSION, 0, cmd->timeout_ms, &stop_cmd);
|
|
ret = start_command_default(slot, SDSPI_CMD_FLAG_RSP_R1, &stop_cmd);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
if (stop_cmd.r1 != 0) {
|
|
ESP_LOGD(TAG, "%s: STOP_TRANSMISSION response 0x%02x", __func__, stop_cmd.r1);
|
|
}
|
|
spi_transaction_t* t_poll = get_transaction(slot);
|
|
ret = poll_busy(slot, t_poll, cmd->timeout_ms);
|
|
release_transaction(slot);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t start_command_write_blocks(int slot, sdspi_hw_cmd_t *cmd,
|
|
const uint8_t *data, uint32_t tx_length)
|
|
{
|
|
if (card_write_protected(slot)) {
|
|
ESP_LOGW(TAG, "%s: card write protected", __func__);
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
spi_transaction_t* t_command = get_transaction(slot);
|
|
*t_command = (spi_transaction_t) {
|
|
.length = SDSPI_CMD_R1_SIZE * 8,
|
|
.tx_buffer = cmd,
|
|
.rx_buffer = cmd,
|
|
};
|
|
esp_err_t ret = spi_device_queue_trans(spi_handle(slot), t_command, 0);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
uint8_t start_token = tx_length <= SDSPI_MAX_DATA_LEN ?
|
|
TOKEN_BLOCK_START : TOKEN_BLOCK_START_WRITE_MULTI;
|
|
wait_for_transactions(slot);
|
|
|
|
while (tx_length > 0) {
|
|
|
|
// Write block start token
|
|
spi_transaction_t* t_start_token = get_transaction(slot);
|
|
*t_start_token = (spi_transaction_t) {
|
|
.length = sizeof(start_token) * 8,
|
|
.tx_buffer = &start_token
|
|
};
|
|
esp_err_t ret = spi_device_queue_trans(spi_handle(slot), t_start_token, 0);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
|
|
// Prepare data to be sent
|
|
size_t will_send = MIN(tx_length, SDSPI_MAX_DATA_LEN);
|
|
const uint8_t* tx_data = data;
|
|
if (!ptr_dma_compatible(tx_data)) {
|
|
// If the pointer can't be used with DMA, copy data into a new buffer
|
|
uint8_t* tmp;
|
|
ret = get_block_buf(slot, &tmp);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
memcpy(tmp, tx_data, will_send);
|
|
tx_data = tmp;
|
|
}
|
|
|
|
// Write data
|
|
spi_transaction_t* t_data = get_transaction(slot);
|
|
*t_data = (spi_transaction_t) {
|
|
.length = will_send * 8,
|
|
.tx_buffer = tx_data,
|
|
};
|
|
ret = spi_device_queue_trans(spi_handle(slot), t_data, 0);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
|
|
// Write CRC
|
|
uint16_t crc = sdspi_crc16(data, will_send);
|
|
spi_transaction_t* t_crc = get_transaction(slot);
|
|
*t_crc = (spi_transaction_t) {
|
|
.length = sizeof(crc) * 8,
|
|
.tx_buffer = (uint8_t*) &crc,
|
|
};
|
|
ret = spi_device_queue_trans(spi_handle(slot), t_crc, 0);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
|
|
// Wait for data to be sent
|
|
wait_for_transactions(slot);
|
|
|
|
// Check if R1 response for the command was correct
|
|
if (cmd->r1 != 0) {
|
|
ESP_LOGD(TAG, "%s: invalid R1 response: 0x%02x", __func__, cmd->r1);
|
|
return ESP_ERR_INVALID_RESPONSE;
|
|
}
|
|
|
|
// Poll for response
|
|
spi_transaction_t* t_poll = get_transaction(slot);
|
|
ret = poll_response_token(slot, t_poll, cmd->timeout_ms);
|
|
release_transaction(slot);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
|
|
// Wait for the card to finish writing data
|
|
t_poll = get_transaction(slot);
|
|
ret = poll_busy(slot, t_poll, cmd->timeout_ms);
|
|
release_transaction(slot);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
|
|
tx_length -= will_send;
|
|
data += will_send;
|
|
}
|
|
|
|
if (start_token == TOKEN_BLOCK_START_WRITE_MULTI) {
|
|
uint8_t stop_token[2] = {
|
|
TOKEN_BLOCK_STOP_WRITE_MULTI,
|
|
SDSPI_MOSI_IDLE_VAL
|
|
};
|
|
spi_transaction_t* t_stop_token = get_transaction(slot);
|
|
*t_stop_token = (spi_transaction_t) {
|
|
.length = sizeof(stop_token) * 8,
|
|
.tx_buffer = &stop_token,
|
|
};
|
|
ret = spi_device_queue_trans(spi_handle(slot), t_stop_token, 0);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
wait_for_transactions(slot);
|
|
|
|
spi_transaction_t* t_poll = get_transaction(slot);
|
|
ret = poll_busy(slot, t_poll, cmd->timeout_ms);
|
|
release_transaction(slot);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|