esp-idf/components/hal/esp32c3/include/hal/adc_ll.h

879 lines
30 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdbool.h>
#include <stdlib.h>
#include "esp_attr.h"
#include "soc/adc_periph.h"
#include "soc/apb_saradc_struct.h"
#include "soc/apb_saradc_reg.h"
#include "soc/rtc_cntl_struct.h"
#include "soc/rtc_cntl_reg.h"
#include "hal/misc.h"
#include "hal/assert.h"
#include "hal/adc_types.h"
#include "hal/adc_types_private.h"
#include "hal/regi2c_ctrl.h"
#include "soc/regi2c_saradc.h"
#ifdef __cplusplus
extern "C" {
#endif
#define ADC_LL_CLKM_DIV_NUM_DEFAULT 15
#define ADC_LL_CLKM_DIV_B_DEFAULT 1
#define ADC_LL_CLKM_DIV_A_DEFAULT 0
#define ADC_LL_EVENT_ADC1_ONESHOT_DONE BIT(31)
#define ADC_LL_EVENT_ADC2_ONESHOT_DONE BIT(30)
#define ADC_LL_EVENT_THRES0_HIGH BIT(29)
#define ADC_LL_event_THRES1_HIGH BIT(28)
#define ADC_LL_event_THRES0_LOW BIT(27)
#define ADC_LL_EVENT_THRES1_LOW BIT(26)
typedef enum {
ADC_POWER_BY_FSM, /*!< ADC XPD controled by FSM. Used for polling mode */
ADC_POWER_SW_ON, /*!< ADC XPD controled by SW. power on. Used for DMA mode */
ADC_POWER_SW_OFF, /*!< ADC XPD controled by SW. power off. */
ADC_POWER_MAX, /*!< For parameter check. */
} adc_ll_power_t;
typedef enum {
ADC_RTC_DATA_OK = 0,
ADC_RTC_CTRL_UNSELECTED = 1,
ADC_RTC_CTRL_BREAK = 2,
ADC_RTC_DATA_FAIL = -1,
} adc_ll_rtc_raw_data_t;
typedef enum {
ADC_LL_CTRL_DIG = 0, ///< For ADC1. Select DIG controller.
ADC_LL_CTRL_ARB = 1, ///< For ADC2. The controller is selected by the arbiter.
} adc_ll_controller_t;
/**
* @brief ADC digital controller (DMA mode) work mode.
*
* @note The conversion mode affects the sampling frequency:
* ESP32C3 only support ALTER_UNIT mode
* ALTER_UNIT : When the measurement is triggered, ADC1 or ADC2 samples alternately.
*/
typedef enum {
ADC_LL_DIGI_CONV_ALTER_UNIT = 0, // Use both ADC1 and ADC2 for conversion by turn. e.g. ADC1 -> ADC2 -> ADC1 -> ADC2 .....
} adc_ll_digi_convert_mode_t;
typedef struct {
union {
struct {
uint8_t atten: 2;
uint8_t channel: 3;
uint8_t unit: 1;
uint8_t reserved: 2;
};
uint8_t val;
};
} __attribute__((packed)) adc_ll_digi_pattern_table_t;
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
/**
* Set adc fsm interval parameter for digital controller. These values are fixed for same platforms.
*
* @param rst_wait cycles between DIG ADC controller reset ADC sensor and start ADC sensor.
* @param start_wait Delay time after open xpd.
* @param standby_wait Delay time to close xpd.
*/
static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wait, uint32_t standby_wait)
{
// Internal FSM reset wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.fsm_wait, rstb_wait, rst_wait);
// Internal FSM start wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.fsm_wait, xpd_wait, start_wait);
// Internal FSM standby wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.fsm_wait, standby_wait, standby_wait);
}
/**
* Set adc sample cycle for digital controller.
*
* @note Normally, please use default value.
* @param sample_cycle Cycles between DIG ADC controller start ADC sensor and beginning to receive data from sensor.
* Range: 2 ~ 0xFF.
*/
static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
{
/* Should be called before writing I2C registers. */
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_SAMPLE_CYCLE_ADDR, sample_cycle);
}
/**
* Set SAR ADC module clock division factor.
* SAR ADC clock divided from digital controller clock.
*
* @param div Division factor.
*/
static inline void adc_ll_digi_set_clk_div(uint32_t div)
{
/* ADC clock devided from digital controller clock clk */
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.ctrl, sar_clk_div, div);
}
/**
* Set adc max conversion number for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*
* @param meas_num Max conversion number. Range: 0 ~ 255.
*/
static inline void adc_ll_digi_set_convert_limit_num(uint32_t meas_num)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.ctrl2, max_meas_num, meas_num);
}
/**
* Enable max conversion number detection for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*/
static inline void adc_ll_digi_convert_limit_enable(void)
{
APB_SARADC.ctrl2.meas_num_limit = 1;
}
/**
* Disable max conversion number detection for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*/
static inline void adc_ll_digi_convert_limit_disable(void)
{
APB_SARADC.ctrl2.meas_num_limit = 0;
}
/**
* Set adc conversion mode for digital controller.
*
* @note ESP32C3 only support ADC1 single mode.
*
* @param mode Conversion mode select.
*/
static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)
{
//ESP32C3 only supports ADC_CONV_ALTER_UNIT mode
}
/**
* Set pattern table length for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 8 items, in which channel selection,
* and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param patt_len Items range: 1 ~ 8.
*/
static inline void adc_ll_digi_set_pattern_table_len(adc_unit_t adc_n, uint32_t patt_len)
{
APB_SARADC.ctrl.sar_patt_len = patt_len - 1;
}
/**
* Set pattern table for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 8 items, in which channel selection,
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param pattern_index Items index. Range: 0 ~ 7.
* @param pattern Stored conversion rules.
*/
static inline void adc_ll_digi_set_pattern_table(adc_unit_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
{
uint32_t tab;
uint8_t index = pattern_index / 4;
uint8_t offset = (pattern_index % 4) * 6;
adc_ll_digi_pattern_table_t pattern = {0};
pattern.val = (table.atten & 0x3) | ((table.channel & 0x7) << 2) | ((table.unit & 0x1) << 5);
tab = APB_SARADC.sar_patt_tab[index].sar_patt_tab1; // Read old register value
tab &= (~(0xFC0000 >> offset)); // Clear old data
tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; // Fill in the new data
APB_SARADC.sar_patt_tab[index].sar_patt_tab1 = tab; // Write back
}
/**
* Reset the pattern table pointer, then take the measurement rule from table header in next measurement.
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_clear_pattern_table(adc_unit_t adc_n)
{
APB_SARADC.ctrl.sar_patt_p_clear = 1;
APB_SARADC.ctrl.sar_patt_p_clear = 0;
}
/**
* Sets the number of cycles required for the conversion to complete and wait for the arbiter to stabilize.
*
* @note Only ADC2 have arbiter function.
* @param cycle range: 0 ~ 4.
*/
static inline void adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle)
{
APB_SARADC.ctrl.wait_arb_cycle = cycle;
}
/**
* ADC Digital controller output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_ll_digi_output_invert(adc_unit_t adc_n, bool inv_en)
{
if (adc_n == ADC_UNIT_1) {
APB_SARADC.ctrl2.sar1_inv = inv_en; // Enable / Disable ADC data invert
} else { // adc_n == ADC_UNIT_2
APB_SARADC.ctrl2.sar2_inv = inv_en; // Enable / Disable ADC data invert
}
}
/**
* Set the interval clock cycle for the digital controller to trigger the measurement.
* Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval.
*
* @note The trigger interval should not be smaller than the sampling time of the SAR ADC.
* @param cycle The clock cycle (trigger interval) of the measurement. Range: 30 ~ 4095.
*/
static inline void adc_ll_digi_set_trigger_interval(uint32_t cycle)
{
APB_SARADC.ctrl2.timer_target = cycle;
}
/**
* Enable digital controller timer to trigger the measurement.
*/
static inline void adc_ll_digi_trigger_enable(void)
{
APB_SARADC.ctrl2.timer_en = 1;
}
/**
* Disable digital controller timer to trigger the measurement.
*/
static inline void adc_ll_digi_trigger_disable(void)
{
APB_SARADC.ctrl2.timer_en = 0;
}
/**
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
* Expression: controller_clk = (APLL or APB) / (div_num + div_a / div_b + 1).
*
* @param div_num Division factor. Range: 0 ~ 255.
* @param div_b Division factor. Range: 1 ~ 63.
* @param div_a Division factor. Range: 0 ~ 63.
*/
static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.apb_adc_clkm_conf, clkm_div_num, div_num);
APB_SARADC.apb_adc_clkm_conf.clkm_div_b = div_b;
APB_SARADC.apb_adc_clkm_conf.clkm_div_a = div_a;
}
/**
* Enable clock and select clock source for ADC digital controller.
*
* @param use_apll true: use APLL clock; false: use APB clock.
*/
static inline void adc_ll_digi_clk_sel(bool use_apll)
{
if (use_apll) {
APB_SARADC.apb_adc_clkm_conf.clk_sel = 1; // APLL clock
} else {
APB_SARADC.apb_adc_clkm_conf.clk_sel = 2; // APB clock
}
APB_SARADC.ctrl.sar_clk_gated = 1;
}
/**
* Disable clock for ADC digital controller.
*/
static inline void adc_ll_digi_controller_clk_disable(void)
{
APB_SARADC.ctrl.sar_clk_gated = 0;
}
/**
* Reset adc digital controller filter.
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_reset(adc_unit_t adc_n)
{
APB_SARADC.filter_ctrl0.filter_reset = 1;
}
/**
* Set adc digital controller filter factor.
*
* @note If the channel info is not supported, the filter function will not be enabled.
* @param idx ADC filter unit.
* @param filter Filter config. Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
static inline void adc_ll_digi_filter_set_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter)
{
if (idx == ADC_DIGI_FILTER_IDX0) {
APB_SARADC.filter_ctrl0.filter_channel0 = (filter->adc_unit << 3) | (filter->channel & 0x7);
APB_SARADC.filter_ctrl1.filter_factor0 = filter->mode;
} else if (idx == ADC_DIGI_FILTER_IDX1) {
APB_SARADC.filter_ctrl0.filter_channel1 = (filter->adc_unit << 3) | (filter->channel & 0x7);
APB_SARADC.filter_ctrl1.filter_factor1 = filter->mode;
}
}
/**
* Get adc digital controller filter factor.
*
* @param adc_n ADC unit.
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
static inline void adc_ll_digi_filter_get_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter)
{
if (idx == ADC_DIGI_FILTER_IDX0) {
filter->adc_unit = (APB_SARADC.filter_ctrl0.filter_channel0 >> 3) & 0x1;
filter->channel = APB_SARADC.filter_ctrl0.filter_channel0 & 0x7;
filter->mode = APB_SARADC.filter_ctrl1.filter_factor0;
} else if (idx == ADC_DIGI_FILTER_IDX1) {
filter->adc_unit = (APB_SARADC.filter_ctrl0.filter_channel1 >> 3) & 0x1;
filter->channel = APB_SARADC.filter_ctrl0.filter_channel1 & 0x7;
filter->mode = APB_SARADC.filter_ctrl1.filter_factor1;
}
}
/**
* Disable adc digital controller filter.
* Filtering the ADC data to obtain smooth data at higher sampling rates.
*
* @note If the channel info is not supported, the filter function will not be enabled.
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_disable(adc_digi_filter_idx_t idx)
{
if (idx == ADC_DIGI_FILTER_IDX0) {
APB_SARADC.filter_ctrl0.filter_channel0 = 0xF;
APB_SARADC.filter_ctrl1.filter_factor0 = 0;
} else if (idx == ADC_DIGI_FILTER_IDX1) {
APB_SARADC.filter_ctrl0.filter_channel1 = 0xF;
APB_SARADC.filter_ctrl1.filter_factor1 = 0;
}
}
/**
* Set monitor mode of adc digital controller.
*
* @note If the channel info is not supported, the monitor function will not be enabled.
* @param adc_n ADC unit.
* @param is_larger true: If ADC_OUT > threshold, Generates monitor interrupt.
* false: If ADC_OUT < threshold, Generates monitor interrupt.
*/
static inline void adc_ll_digi_monitor_set_mode(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *cfg)
{
if (idx == ADC_DIGI_MONITOR_IDX0) {
APB_SARADC.thres0_ctrl.thres0_channel = (cfg->adc_unit << 3) | (cfg->channel & 0x7);
APB_SARADC.thres0_ctrl.thres0_high = cfg->h_threshold;
APB_SARADC.thres0_ctrl.thres0_low = cfg->l_threshold;
} else { // ADC_DIGI_MONITOR_IDX1
APB_SARADC.thres1_ctrl.thres1_channel = (cfg->adc_unit << 3) | (cfg->channel & 0x7);
APB_SARADC.thres1_ctrl.thres1_high = cfg->h_threshold;
APB_SARADC.thres1_ctrl.thres1_low = cfg->l_threshold;
}
}
/**
* Enable/disable monitor of adc digital controller.
*
* @note If the channel info is not supported, the monitor function will not be enabled.
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_monitor_disable(adc_digi_monitor_idx_t idx)
{
if (idx == ADC_DIGI_MONITOR_IDX0) {
APB_SARADC.thres0_ctrl.thres0_channel = 0xF;
} else { // ADC_DIGI_MONITOR_IDX1
APB_SARADC.thres1_ctrl.thres1_channel = 0xF;
}
}
/**
* Set DMA eof num of adc digital controller.
* If the number of measurements reaches `dma_eof_num`, then `dma_in_suc_eof` signal is generated.
*
* @param num eof num of DMA.
*/
static inline void adc_ll_digi_dma_set_eof_num(uint32_t num)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.dma_conf, apb_adc_eof_num, num);
}
/**
* Enable output data to DMA from adc digital controller.
*/
static inline void adc_ll_digi_dma_enable(void)
{
APB_SARADC.dma_conf.apb_adc_trans = 1;
}
/**
* Disable output data to DMA from adc digital controller.
*/
static inline void adc_ll_digi_dma_disable(void)
{
APB_SARADC.dma_conf.apb_adc_trans = 0;
}
/**
* Reset adc digital controller.
*/
static inline void adc_ll_digi_reset(void)
{
APB_SARADC.dma_conf.apb_adc_reset_fsm = 1;
APB_SARADC.dma_conf.apb_adc_reset_fsm = 0;
}
/*---------------------------------------------------------------
PWDET(Power detect) controller setting
---------------------------------------------------------------*/
/**
* Set adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @param cct Range: 0 ~ 7.
*/
static inline void adc_ll_pwdet_set_cct(uint32_t cct)
{
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
RTCCNTL.sensor_ctrl.sar2_pwdet_cct = cct;
}
/**
* Get adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @return cct Range: 0 ~ 7.
*/
static inline uint32_t adc_ll_pwdet_get_cct(void)
{
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
return RTCCNTL.sensor_ctrl.sar2_pwdet_cct;
}
/*---------------------------------------------------------------
Common setting
---------------------------------------------------------------*/
/**
* Set ADC module power management.
*
* @param manage Set ADC power status.
*/
static inline void adc_ll_set_power_manage(adc_ll_power_t manage)
{
/* Bit1 0:Fsm 1: SW mode
Bit0 0:SW mode power down 1: SW mode power on */
if (manage == ADC_POWER_SW_ON) {
APB_SARADC.ctrl.sar_clk_gated = 1;
APB_SARADC.ctrl.xpd_sar_force = 3;
} else if (manage == ADC_POWER_BY_FSM) {
APB_SARADC.ctrl.sar_clk_gated = 1;
APB_SARADC.ctrl.xpd_sar_force = 0;
} else if (manage == ADC_POWER_SW_OFF) {
APB_SARADC.ctrl.sar_clk_gated = 0;
APB_SARADC.ctrl.xpd_sar_force = 2;
}
}
static inline void adc_ll_set_controller(adc_unit_t adc_n, adc_ll_controller_t ctrl)
{
//Not used on ESP32C3
}
/**
* Set ADC2 module arbiter work mode.
* The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority,
* the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data.
*
* @note Only ADC2 support arbiter.
* @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
*
* @param mode Refer to `adc_arbiter_mode_t`.
*/
static inline void adc_ll_set_arbiter_work_mode(adc_arbiter_mode_t mode)
{
if (mode == ADC_ARB_MODE_FIX) {
APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 0;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_fix_priority = 1;
} else if (mode == ADC_ARB_MODE_LOOP) {
APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 0;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_fix_priority = 0;
} else {
APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 1; // Shield arbiter.
}
}
/**
* Set ADC2 module controller priority in arbiter.
* The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority,
* the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data.
*
* @note Only ADC2 support arbiter.
* @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
* @note Default priority: Wi-Fi(2) > RTC(1) > Digital(0);
*
* @param pri_rtc RTC controller priority. Range: 0 ~ 2.
* @param pri_dig Digital controller priority. Range: 0 ~ 2.
* @param pri_pwdet Wi-Fi controller priority. Range: 0 ~ 2.
*/
static inline void adc_ll_set_arbiter_priority(uint8_t pri_rtc, uint8_t pri_dig, uint8_t pri_pwdet)
{
if (pri_rtc != pri_dig && pri_rtc != pri_pwdet && pri_dig != pri_pwdet) {
APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_priority = pri_rtc;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_priority = pri_dig;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_priority = pri_pwdet;
}
/* Should select highest priority controller. */
if (pri_rtc > pri_dig) {
if (pri_rtc > pri_pwdet) {
APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 1;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 0;
} else {
APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 1;
}
} else {
if (pri_dig > pri_pwdet) {
APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 1;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 0;
} else {
APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0;
APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 1;
}
}
}
/* ADC calibration code. */
/**
* @brief Set common calibration configuration. Should be shared with other parts (PWDET).
*/
static inline void adc_ll_calibration_init(adc_unit_t adc_n)
{
if (adc_n == ADC_UNIT_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_DREF_ADDR, 1);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_DREF_ADDR, 1);
}
}
/**
* Configure the registers for ADC calibration. You need to call the ``adc_ll_calibration_finish`` interface to resume after calibration.
*
* @note Different ADC units and different attenuation options use different calibration data (initial data).
*
* @param adc_n ADC index number.
* @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage.
* false: Use IO external voltage as calibration voltage.
*/
static inline void adc_ll_calibration_prepare(adc_unit_t adc_n, bool internal_gnd)
{
/* Enable/disable internal connect GND (for calibration). */
if (adc_n == ADC_UNIT_1) {
if (internal_gnd) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 1);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
}
} else {
if (internal_gnd) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 1);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0);
}
}
}
/**
* Resume register status after calibration.
*
* @param adc_n ADC index number.
*/
static inline void adc_ll_calibration_finish(adc_unit_t adc_n)
{
if (adc_n == ADC_UNIT_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0);
}
}
/**
* Set the calibration result to ADC.
*
* @note Different ADC units and different attenuation options use different calibration data (initial data).
*
* @param adc_n ADC index number.
*/
static inline void adc_ll_set_calibration_param(adc_unit_t adc_n, uint32_t param)
{
uint8_t msb = param >> 8;
uint8_t lsb = param & 0xFF;
if (adc_n == ADC_UNIT_1) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, msb);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, lsb);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_HIGH_ADDR, msb);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_LOW_ADDR, lsb);
}
}
/* Temp code end. */
/**
* Output ADCn inter reference voltage to ADC2 channels.
*
* This function routes the internal reference voltage of ADCn to one of
* ADC1's channels. This reference voltage can then be manually measured
* for calibration purposes.
*
* @param[in] adc ADC unit select
* @param[in] channel ADC1 channel number
* @param[in] en Enable/disable the reference voltage output
*/
static inline void adc_ll_vref_output(adc_unit_t adc, adc_channel_t channel, bool en)
{
if (en) {
REG_SET_FIELD(RTC_CNTL_SENSOR_CTRL_REG, RTC_CNTL_FORCE_XPD_SAR, 3);
SET_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_REGULATOR_FORCE_PU);
REG_SET_FIELD(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_SEL, 2);
SET_PERI_REG_MASK(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_EN);
SET_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_GRANT_FORCE);
SET_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_APB_FORCE);
APB_SARADC.sar_patt_tab[0].sar_patt_tab1 = 0xFFFFFF;
APB_SARADC.sar_patt_tab[1].sar_patt_tab1 = 0xFFFFFF;
APB_SARADC.onetime_sample.adc1_onetime_sample = 1;
APB_SARADC.onetime_sample.onetime_channel = channel;
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU);
if (adc == ADC_UNIT_1) {
/* Config test mux to route v_ref to ADC1 Channels */
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC1_ENCAL_REF_ADDR, 1);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 1);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_TSENS_ADDR, 0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 1);
} else {
/* Config test mux to route v_ref to ADC2 Channels */
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC2_ENCAL_REF_ADDR, 1);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_TSENS_ADDR, 0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 0);
}
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC2_ENCAL_REF_ADDR, 0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC1_ENCAL_REF_ADDR, 0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 0);
APB_SARADC.onetime_sample.adc1_onetime_sample = 0;
APB_SARADC.onetime_sample.onetime_channel = 0xf;
REG_SET_FIELD(RTC_CNTL_SENSOR_CTRL_REG, RTC_CNTL_FORCE_XPD_SAR, 0);
REG_SET_FIELD(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_SEL, 0);
CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_EN);
CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_GRANT_FORCE);
CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_APB_FORCE);
}
}
/*---------------------------------------------------------------
Oneshot Read
---------------------------------------------------------------*/
/**
* Set adc output data format for oneshot mode
*
* @note ESP32C3 Oneshot mode only supports 12bit.
* @param adc_n ADC unit.
* @param bits Output data bits width option.
*/
static inline void adc_oneshot_ll_set_output_bits(adc_unit_t adc_n, adc_bitwidth_t bits)
{
//ESP32C3 only supports 12bit, leave here for compatibility
HAL_ASSERT(bits == ADC_BITWIDTH_12);
}
/**
* Enable adc channel to start convert.
*
* @note Only one channel can be selected for measurement.
*
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_oneshot_ll_set_channel(adc_unit_t adc_n, adc_channel_t channel)
{
APB_SARADC.onetime_sample.onetime_channel = ((adc_n << 3) | channel);
}
/**
* Disable adc channel to start convert.
*
* @note Only one channel can be selected in once measurement.
*
* @param adc_n ADC unit.
*/
static inline void adc_oneshot_ll_disable_channel(adc_unit_t adc_n)
{
if (adc_n == ADC_UNIT_1) {
APB_SARADC.onetime_sample.onetime_channel = ((adc_n << 3) | 0xF);
} else { // adc_n == ADC_UNIT_2
APB_SARADC.onetime_sample.onetime_channel = ((adc_n << 3) | 0x1);
}
}
/**
* Start oneshot conversion by software
*
* @param val Usage: set to 1 to start the ADC conversion. The step signal should at least keep 3 ADC digital controller clock cycle,
* otherwise the step signal may not be captured by the ADC digital controller when its frequency is slow.
* This hardware limitation will be removed in future versions.
*/
static inline void adc_oneshot_ll_start(bool val)
{
APB_SARADC.onetime_sample.onetime_start = val;
}
/**
* Clear the event for each ADCn for Oneshot mode
*
* @param event ADC event
*/
static inline void adc_oneshot_ll_clear_event(uint32_t event_mask)
{
APB_SARADC.int_clr.val |= event_mask;
}
/**
* Check the event for each ADCn for Oneshot mode
*
* @param event ADC event
*
* @return
* -true : The conversion process is finish.
* -false : The conversion process is not finish.
*/
static inline bool adc_oneshot_ll_get_event(uint32_t event_mask)
{
return (APB_SARADC.int_raw.val & event_mask);
}
/**
* Get the converted value for each ADCn for RTC controller.
*
* @param adc_n ADC unit.
* @return
* - Converted value.
*/
static inline uint32_t adc_oneshot_ll_get_raw_result(adc_unit_t adc_n)
{
uint32_t ret_val = 0;
if (adc_n == ADC_UNIT_1) {
ret_val = APB_SARADC.apb_saradc1_data_status.adc1_data & 0xfff;
} else { // adc_n == ADC_UNIT_2
ret_val = APB_SARADC.apb_saradc2_data_status.adc2_data & 0xfff;
}
return ret_val;
}
/**
* Analyze whether the obtained raw data is correct.
* ADC2 can use arbiter. The arbitration result is stored in the channel information of the returned data.
*
* @param adc_n ADC unit.
* @param raw_data ADC raw data input (convert value).
* @return
* - 1: The data is correct to use.
* - 0: The data is invalid.
*/
static inline bool adc_oneshot_ll_raw_check_valid(adc_unit_t adc_n, uint32_t raw_data)
{
if (adc_n == ADC_UNIT_1) {
return true;
}
//The raw data API returns value without channel information. Read value directly from the register
if (((APB_SARADC.apb_saradc2_data_status.adc2_data >> 13) & 0xF) > 9) {
return false;
}
return true;
}
/**
* ADC module RTC output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_oneshot_ll_output_invert(adc_unit_t adc_n, bool inv_en)
{
(void)adc_n;
(void)inv_en;
//For compatibility
}
/**
* Enable oneshot conversion trigger
*
* @param adc_n ADC unit
*/
static inline void adc_oneshot_ll_enable(adc_unit_t adc_n)
{
if (adc_n == ADC_UNIT_1) {
APB_SARADC.onetime_sample.adc1_onetime_sample = 1;
} else {
APB_SARADC.onetime_sample.adc2_onetime_sample = 1;
}
}
/**
* Disable oneshot conversion trigger for all the ADC units
*/
static inline void adc_oneshot_ll_disable_all_unit(void)
{
APB_SARADC.onetime_sample.adc1_onetime_sample = 0;
APB_SARADC.onetime_sample.adc2_onetime_sample = 0;
}
/**
* Set attenuation
*
* @note Attenuation is for all channels
*
* @param adc_n ADC unit
* @param channel ADC channel
* @param atten ADC attenuation
*/
static inline void adc_oneshot_ll_set_atten(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
(void)adc_n;
(void)channel;
// Attenuation is for all channels, unit and channel are for compatibility
APB_SARADC.onetime_sample.onetime_atten = atten;
}
#ifdef __cplusplus
}
#endif