mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
358 lines
13 KiB
C
358 lines
13 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
|
|
/*----------------------------------------------------------------------------------------------------
|
|
* Abstraction layer for PSRAM. PSRAM device related registers and MMU/Cache related code shouls be
|
|
* abstracted to lower layers.
|
|
*
|
|
* When we add more types of external RAM memory, this can be made into a more intelligent dispatcher.
|
|
*----------------------------------------------------------------------------------------------------*/
|
|
#include <sys/param.h>
|
|
#include "sdkconfig.h"
|
|
#include "esp_attr.h"
|
|
#include "esp_err.h"
|
|
#include "esp_log.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/xtensa_api.h"
|
|
#include "esp_heap_caps_init.h"
|
|
#include "hal/mmu_hal.h"
|
|
#include "hal/cache_ll.h"
|
|
#include "esp_private/esp_psram_io.h"
|
|
#include "esp_private/esp_psram_extram.h"
|
|
#include "esp_private/mmu.h"
|
|
#include "esp_psram_impl.h"
|
|
#include "esp_psram.h"
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#include "esp32/himem.h"
|
|
#include "esp32/rom/cache.h"
|
|
#endif
|
|
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#if CONFIG_FREERTOS_UNICORE
|
|
#define PSRAM_MODE PSRAM_VADDR_MODE_NORMAL
|
|
#else
|
|
#define PSRAM_MODE PSRAM_VADDR_MODE_LOWHIGH
|
|
#endif
|
|
#else
|
|
#define PSRAM_MODE PSRAM_VADDR_MODE_NORMAL
|
|
#endif
|
|
|
|
|
|
#if CONFIG_SPIRAM
|
|
|
|
#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
|
|
extern uint8_t _ext_ram_bss_start;
|
|
extern uint8_t _ext_ram_bss_end;
|
|
#endif //#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
|
|
|
|
#if CONFIG_SPIRAM_ALLOW_NOINIT_SEG_EXTERNAL_MEMORY
|
|
extern uint8_t _ext_ram_noinit_start;
|
|
extern uint8_t _ext_ram_noinit_end;
|
|
#endif //#if CONFIG_SPIRAM_ALLOW_NOINIT_SEG_EXTERNAL_MEMORY
|
|
|
|
//These variables are in bytes
|
|
static intptr_t s_allocable_vaddr_start;
|
|
static intptr_t s_allocable_vaddr_end;
|
|
static intptr_t s_mapped_vaddr_start;
|
|
static intptr_t s_mapped_vaddr_end;
|
|
|
|
static bool s_spiram_inited;
|
|
static const char* TAG = "esp_psram";
|
|
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
//If no function in esp_himem.c is used, this function will be linked into the
|
|
//binary instead of the one in esp_himem.c, automatically making sure no memory
|
|
//is reserved if no himem function is used.
|
|
size_t __attribute__((weak)) esp_himem_reserved_area_size(void) {
|
|
return 0;
|
|
}
|
|
|
|
static void IRAM_ATTR s_mapping(int v_start, int size)
|
|
{
|
|
//Enable external RAM in MMU
|
|
cache_sram_mmu_set(0, 0, v_start, 0, 32, (size / 1024 / 32));
|
|
//Flush and enable icache for APP CPU
|
|
#if !CONFIG_FREERTOS_UNICORE
|
|
DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DRAM1);
|
|
cache_sram_mmu_set(1, 0, v_start, 0, 32, (size / 1024 / 32));
|
|
#endif
|
|
}
|
|
#endif //CONFIG_IDF_TARGET_ESP32
|
|
|
|
esp_err_t esp_psram_init(void)
|
|
{
|
|
if (s_spiram_inited) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
esp_err_t ret;
|
|
ret = esp_psram_impl_enable(PSRAM_MODE);
|
|
if (ret != ESP_OK) {
|
|
#if CONFIG_SPIRAM_IGNORE_NOTFOUND
|
|
ESP_EARLY_LOGE(TAG, "SPI RAM enabled but initialization failed. Bailing out.");
|
|
#endif
|
|
return ret;
|
|
}
|
|
s_spiram_inited = true;
|
|
|
|
uint32_t psram_physical_size = 0;
|
|
ret = esp_psram_impl_get_physical_size(&psram_physical_size);
|
|
assert(ret == ESP_OK);
|
|
|
|
ESP_EARLY_LOGI(TAG, "Found %dMB SPI RAM device", psram_physical_size / (1024 * 1024));
|
|
ESP_EARLY_LOGI(TAG, "Speed: %dMHz", CONFIG_SPIRAM_SPEED);
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
ESP_EARLY_LOGI(TAG, "PSRAM initialized, cache is in %s mode.", \
|
|
(PSRAM_MODE==PSRAM_VADDR_MODE_EVENODD)?"even/odd (2-core)": \
|
|
(PSRAM_MODE==PSRAM_VADDR_MODE_LOWHIGH)?"low/high (2-core)": \
|
|
(PSRAM_MODE==PSRAM_VADDR_MODE_NORMAL)?"normal (1-core)":"ERROR");
|
|
#endif
|
|
|
|
uint32_t psram_available_size = 0;
|
|
ret = esp_psram_impl_get_available_size(&psram_available_size);
|
|
assert(ret == ESP_OK);
|
|
|
|
__attribute__((unused)) uint32_t total_available_size = psram_available_size;
|
|
/**
|
|
* `start_page` is the psram physical address in MMU page size.
|
|
* MMU page size on ESP32S2 is 64KB
|
|
* e.g.: psram physical address 16 is in page 0
|
|
*
|
|
* Here we plan to copy FLASH instructions to psram physical address 0, which is the No.0 page.
|
|
*/
|
|
__attribute__((unused)) uint32_t start_page = 0;
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
|
|
uint32_t used_page = 0;
|
|
#endif
|
|
|
|
//------------------------------------Copy Flash .text to PSRAM-------------------------------------//
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
|
ret = mmu_config_psram_text_segment(start_page, total_available_size, &used_page);
|
|
if (ret != ESP_OK) {
|
|
ESP_EARLY_LOGE(TAG, "No enough psram memory for instructon!");
|
|
abort();
|
|
}
|
|
start_page += used_page;
|
|
psram_available_size -= MMU_PAGE_TO_BYTES(used_page);
|
|
ESP_EARLY_LOGV(TAG, "after copy .text, used page is %d, start_page is %d, psram_available_size is %d B", used_page, start_page, psram_available_size);
|
|
#endif //#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
|
|
|
//------------------------------------Copy Flash .rodata to PSRAM-------------------------------------//
|
|
#if CONFIG_SPIRAM_RODATA
|
|
ret = mmu_config_psram_rodata_segment(start_page, total_available_size, &used_page);
|
|
if (ret != ESP_OK) {
|
|
ESP_EARLY_LOGE(TAG, "No enough psram memory for rodata!");
|
|
abort();
|
|
}
|
|
start_page += used_page;
|
|
psram_available_size -= MMU_PAGE_TO_BYTES(used_page);
|
|
ESP_EARLY_LOGV(TAG, "after copy .rodata, used page is %d, start_page is %d, psram_available_size is %d B", used_page, start_page, psram_available_size);
|
|
#endif //#if CONFIG_SPIRAM_RODATA
|
|
|
|
|
|
//----------------------------------Map the PSRAM physical range to MMU-----------------------------//
|
|
intptr_t vaddr_start = mmu_get_psram_vaddr_start();
|
|
if (vaddr_start + psram_available_size > mmu_get_psram_vaddr_end()) {
|
|
ESP_EARLY_LOGV(TAG, "Virtual address not enough for PSRAM!");
|
|
psram_available_size = mmu_get_psram_vaddr_end() - vaddr_start;
|
|
}
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
s_mapping(vaddr_start, psram_available_size);
|
|
#else
|
|
uint32_t actual_mapped_len = 0;
|
|
mmu_hal_map_region(0, MMU_TARGET_PSRAM0, vaddr_start, MMU_PAGE_TO_BYTES(start_page), psram_available_size, &actual_mapped_len);
|
|
ESP_EARLY_LOGV(TAG, "actual_mapped_len is 0x%x bytes", actual_mapped_len);
|
|
|
|
cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, vaddr_start, actual_mapped_len);
|
|
cache_ll_l1_enable_bus(0, bus_mask);
|
|
#if !CONFIG_FREERTOS_UNICORE
|
|
bus_mask = cache_ll_l1_get_bus(1, vaddr_start, actual_mapped_len);
|
|
cache_ll_l1_enable_bus(1, bus_mask);
|
|
#endif
|
|
#endif //#if CONFIG_IDF_TARGET_ESP32
|
|
|
|
/*------------------------------------------------------------------------------
|
|
* After mapping, we DON'T care about the PSRAM PHYSICAL ADDRESSS ANYMORE!
|
|
*----------------------------------------------------------------------------*/
|
|
s_mapped_vaddr_start = vaddr_start;
|
|
s_mapped_vaddr_end = vaddr_start + psram_available_size;
|
|
s_allocable_vaddr_start = vaddr_start;
|
|
s_allocable_vaddr_end = vaddr_start + psram_available_size;
|
|
|
|
//------------------------------------Configure .bss in PSRAM-------------------------------------//
|
|
#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
|
|
//should never be negative number
|
|
uint32_t ext_bss_size = ((intptr_t)&_ext_ram_bss_end - (intptr_t)&_ext_ram_bss_start);
|
|
ESP_EARLY_LOGV(TAG, "ext_bss_size is %d", ext_bss_size);
|
|
s_allocable_vaddr_start += ext_bss_size;
|
|
#endif //#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
|
|
|
|
#if CONFIG_SPIRAM_ALLOW_NOINIT_SEG_EXTERNAL_MEMORY
|
|
uint32_t ext_noinit_size = ((intptr_t)&_ext_ram_noinit_end - (intptr_t)&_ext_ram_noinit_start);
|
|
ESP_EARLY_LOGV(TAG, "ext_noinit_size is %d", ext_noinit_size);
|
|
s_allocable_vaddr_start += ext_noinit_size;
|
|
#endif
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
s_allocable_vaddr_end -= esp_himem_reserved_area_size() - 1;
|
|
#endif
|
|
|
|
ESP_EARLY_LOGV(TAG, "s_allocable_vaddr_start is 0x%x, s_allocable_vaddr_end is 0x%x", s_allocable_vaddr_start, s_allocable_vaddr_end);
|
|
return ESP_OK;
|
|
}
|
|
|
|
/**
|
|
* Add the PSRAM available region to heap allocator. Heap allocator knows the capabilities of this type of memory,
|
|
* so there's no need to explicitly specify them.
|
|
*/
|
|
esp_err_t esp_psram_extram_add_to_heap_allocator(void)
|
|
{
|
|
ESP_EARLY_LOGI(TAG, "Adding pool of %dK of external SPI memory to heap allocator", (s_allocable_vaddr_end - s_allocable_vaddr_start) / 1024);
|
|
return heap_caps_add_region(s_allocable_vaddr_start, s_allocable_vaddr_end);
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_psram_extram_get_mapped_range(intptr_t *out_vstart, intptr_t *out_vend)
|
|
{
|
|
if (!out_vstart || !out_vend) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
if (!s_spiram_inited) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
*out_vstart = s_mapped_vaddr_start;
|
|
*out_vend = s_mapped_vaddr_end;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_psram_extram_get_alloced_range(intptr_t *out_vstart, intptr_t *out_vend)
|
|
{
|
|
if (!out_vstart || !out_vend) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
if (!s_spiram_inited) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
*out_vstart = s_allocable_vaddr_start;
|
|
*out_vend = s_allocable_vaddr_end;
|
|
return ESP_OK;
|
|
}
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
esp_err_t esp_psram_extram_reserve_dma_pool(size_t size) {
|
|
ESP_EARLY_LOGI(TAG, "Reserving pool of %dK of internal memory for DMA/internal allocations", size/1024);
|
|
/* Pool may be allocated in multiple non-contiguous chunks, depending on available RAM */
|
|
while (size > 0) {
|
|
size_t next_size = heap_caps_get_largest_free_block(MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
|
|
next_size = MIN(next_size, size);
|
|
|
|
ESP_EARLY_LOGD(TAG, "Allocating block of size %d bytes", next_size);
|
|
uint8_t *dma_heap = heap_caps_malloc(next_size, MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
|
|
if (!dma_heap || next_size == 0) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
|
|
uint32_t caps[] = { 0, MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT|MALLOC_CAP_32BIT };
|
|
esp_err_t e = heap_caps_add_region_with_caps(caps, (intptr_t) dma_heap, (intptr_t) dma_heap+next_size-1);
|
|
if (e != ESP_OK) {
|
|
return e;
|
|
}
|
|
size -= next_size;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
#else
|
|
esp_err_t esp_psram_extram_reserve_dma_pool(size_t size)
|
|
{
|
|
if (size == 0) {
|
|
return ESP_OK; //no-op
|
|
}
|
|
ESP_EARLY_LOGI(TAG, "Reserving pool of %dK of internal memory for DMA/internal allocations", size/1024);
|
|
uint8_t *dma_heap = heap_caps_malloc(size, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
|
|
if (!dma_heap) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
uint32_t caps[] = {MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_8BIT | MALLOC_CAP_32BIT};
|
|
return heap_caps_add_region_with_caps(caps, (intptr_t) dma_heap, (intptr_t) dma_heap + size);
|
|
}
|
|
#endif
|
|
|
|
bool IRAM_ATTR esp_psram_is_initialized(void)
|
|
{
|
|
return s_spiram_inited;
|
|
}
|
|
|
|
size_t esp_psram_get_size(void)
|
|
{
|
|
uint32_t available_size = 0;
|
|
esp_err_t ret = esp_psram_impl_get_available_size(&available_size);
|
|
if (ret != ESP_OK) {
|
|
//This means PSRAM isn't initialised, to keep back-compatibility, set size to 0.
|
|
available_size = 0;
|
|
}
|
|
return (size_t)available_size;
|
|
}
|
|
|
|
uint8_t esp_psram_io_get_cs_io(void)
|
|
{
|
|
return esp_psram_impl_get_cs_io();
|
|
}
|
|
|
|
/*
|
|
Simple RAM test. Writes a word every 32 bytes. Takes about a second to complete for 4MiB. Returns
|
|
true when RAM seems OK, false when test fails. WARNING: Do not run this before the 2nd cpu has been
|
|
initialized (in a two-core system) or after the heap allocator has taken ownership of the memory.
|
|
*/
|
|
bool esp_psram_extram_test(void)
|
|
{
|
|
#if CONFIG_SPIRAM_ALLOW_NOINIT_SEG_EXTERNAL_MEMORY
|
|
const void *keepout_addr_low = (const void*)&_ext_ram_noinit_start;
|
|
const void *keepout_addr_high = (const void*)&_ext_ram_noinit_end;
|
|
#else
|
|
const void *keepout_addr_low = 0;
|
|
const void *keepout_addr_high = 0;
|
|
#endif
|
|
|
|
volatile int *spiram = (volatile int *)s_mapped_vaddr_start;
|
|
size_t p;
|
|
size_t s = s_mapped_vaddr_end - s_mapped_vaddr_start;
|
|
int errct=0;
|
|
int initial_err=-1;
|
|
for (p=0; p<(s/sizeof(int)); p+=8) {
|
|
const void *addr = (const void *)&spiram[p];
|
|
if ((keepout_addr_low <= addr) && (addr < keepout_addr_high)) {
|
|
continue;
|
|
}
|
|
spiram[p]=p^0xAAAAAAAA;
|
|
}
|
|
for (p=0; p<(s/sizeof(int)); p+=8) {
|
|
const void *addr = (const void *)&spiram[p];
|
|
if ((keepout_addr_low <= addr) && (addr < keepout_addr_high)) {
|
|
continue;
|
|
}
|
|
if (spiram[p]!=(p^0xAAAAAAAA)) {
|
|
errct++;
|
|
if (errct==1) initial_err=p*4;
|
|
}
|
|
}
|
|
if (errct) {
|
|
ESP_EARLY_LOGE(TAG, "SPI SRAM memory test fail. %d/%d writes failed, first @ %X\n", errct, s/32, initial_err + s_mapped_vaddr_start);
|
|
return false;
|
|
} else {
|
|
ESP_EARLY_LOGI(TAG, "SPI SRAM memory test OK");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
#endif //#if CONFIG_SPIRAM
|