mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
885 lines
30 KiB
C
885 lines
30 KiB
C
// Copyright 2016-2020 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <esp_types.h>
|
|
#include <stdlib.h>
|
|
#include <ctype.h>
|
|
#include <string.h>
|
|
#include "sdkconfig.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "esp_log.h"
|
|
#include "sys/lock.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/semphr.h"
|
|
#include "freertos/timers.h"
|
|
#include "freertos/ringbuf.h"
|
|
#include "esp32c3/rom/ets_sys.h"
|
|
#include "driver/periph_ctrl.h"
|
|
#include "driver/gpio.h"
|
|
#include "driver/adc.h"
|
|
#include "hal/adc_types.h"
|
|
#include "hal/adc_hal.h"
|
|
#include "hal/dma_types.h"
|
|
#include "esp32c3/esp_efuse_rtc_calib.h"
|
|
#include "esp_private/gdma.h"
|
|
|
|
#define ADC_CHECK_RET(fun_ret) ({ \
|
|
if (fun_ret != ESP_OK) { \
|
|
ESP_LOGE(ADC_TAG,"%s:%d\n",__FUNCTION__,__LINE__); \
|
|
return ESP_FAIL; \
|
|
} \
|
|
})
|
|
|
|
static const char *ADC_TAG = "ADC";
|
|
|
|
#define ADC_CHECK(a, str, ret_val) ({ \
|
|
if (!(a)) { \
|
|
ESP_LOGE(ADC_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \
|
|
return (ret_val); \
|
|
} \
|
|
})
|
|
|
|
#define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
|
|
|
|
#define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG)
|
|
|
|
extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
|
|
#define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock)
|
|
#define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock)
|
|
|
|
/*---------------------------------------------------------------
|
|
Digital Controller Context
|
|
---------------------------------------------------------------*/
|
|
/**
|
|
* 1. adc_digi_mutex: this mutex lock is used for ADC digital controller. On ESP32-C3, the ADC single read APIs (unit1 & unit2)
|
|
* and ADC DMA continuous read APIs share the ``apb_saradc_struct.h`` regs.
|
|
*
|
|
* 2. sar_adc_mutex: this mutex lock is used for SARADC2 module. On ESP32C-C3, the ADC single read APIs (unit2), ADC DMA
|
|
* continuous read APIs and WIFI share the SARADC2 analog IP.
|
|
*
|
|
* Sequence:
|
|
* Acquire: 1. sar_adc_mutex; 2. adc_digi_mutex;
|
|
* Release: 1. adc_digi_mutex; 2. sar_adc_mutex;
|
|
*/
|
|
static _lock_t adc_digi_mutex;
|
|
#define ADC_DIGI_LOCK_ACQUIRE() _lock_acquire(&adc_digi_mutex)
|
|
#define ADC_DIGI_LOCK_RELEASE() _lock_release(&adc_digi_mutex)
|
|
static _lock_t sar_adc2_mutex;
|
|
#define SAC_ADC2_LOCK_ACQUIRE() _lock_acquire(&sar_adc2_mutex)
|
|
#define SAC_ADC2_LOCK_RELEASE() _lock_release(&sar_adc2_mutex)
|
|
|
|
#define INTERNAL_BUF_NUM 5
|
|
#define IN_SUC_EOF_BIT GDMA_LL_EVENT_RX_SUC_EOF
|
|
|
|
typedef struct adc_digi_context_t {
|
|
intr_handle_t dma_intr_hdl; //MD interrupt handle
|
|
uint32_t bytes_between_intr; //bytes between in suc eof intr
|
|
uint8_t *rx_dma_buf; //dma buffer
|
|
adc_dma_hal_context_t hal_dma; //dma context (hal)
|
|
adc_dma_hal_config_t hal_dma_config; //dma config (hal)
|
|
gdma_channel_handle_t rx_dma_channel; //dma rx channel handle
|
|
RingbufHandle_t ringbuf_hdl; //RX ringbuffer handler
|
|
bool ringbuf_overflow_flag; //1: ringbuffer overflow
|
|
bool driver_start_flag; //1: driver is started; 0: driver is stoped
|
|
bool use_adc1; //1: ADC unit1 will be used; 0: ADC unit1 won't be used.
|
|
bool use_adc2; //1: ADC unit2 will be used; 0: ADC unit2 won't be used. This determines whether to acquire sar_adc2_mutex lock or not.
|
|
adc_atten_t adc1_atten; //Attenuation for ADC1. On this chip each ADC can only support one attenuation.
|
|
adc_atten_t adc2_atten; //Attenuation for ADC2. On this chip each ADC can only support one attenuation.
|
|
adc_digi_config_t digi_controller_config; //Digital Controller Configuration
|
|
} adc_digi_context_t;
|
|
|
|
static adc_digi_context_t *s_adc_digi_ctx = NULL;
|
|
|
|
static uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t chan, adc_atten_t atten);
|
|
|
|
/*---------------------------------------------------------------
|
|
ADC Continuous Read Mode (via DMA)
|
|
---------------------------------------------------------------*/
|
|
static IRAM_ATTR bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data);
|
|
|
|
static int8_t adc_digi_get_io_num(uint8_t adc_unit, uint8_t adc_channel)
|
|
{
|
|
return adc_channel_io_map[adc_unit][adc_channel];
|
|
}
|
|
|
|
static esp_err_t adc_digi_gpio_init(adc_unit_t adc_unit, uint16_t channel_mask)
|
|
{
|
|
esp_err_t ret = ESP_OK;
|
|
uint64_t gpio_mask = 0;
|
|
uint32_t n = 0;
|
|
int8_t io = 0;
|
|
|
|
while (channel_mask) {
|
|
if (channel_mask & 0x1) {
|
|
io = adc_digi_get_io_num(adc_unit, n);
|
|
if (io < 0) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
gpio_mask |= BIT64(io);
|
|
}
|
|
channel_mask = channel_mask >> 1;
|
|
n++;
|
|
}
|
|
|
|
gpio_config_t cfg = {
|
|
.pin_bit_mask = gpio_mask,
|
|
.mode = GPIO_MODE_DISABLE,
|
|
};
|
|
ret = gpio_config(&cfg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t adc_digi_initialize(const adc_digi_init_config_t *init_config)
|
|
{
|
|
esp_err_t ret = ESP_OK;
|
|
|
|
s_adc_digi_ctx = calloc(1, sizeof(adc_digi_context_t));
|
|
if (s_adc_digi_ctx == NULL) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto cleanup;
|
|
}
|
|
|
|
//ringbuffer
|
|
s_adc_digi_ctx->ringbuf_hdl = xRingbufferCreate(init_config->max_store_buf_size, RINGBUF_TYPE_BYTEBUF);
|
|
if (!s_adc_digi_ctx->ringbuf_hdl) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto cleanup;
|
|
}
|
|
|
|
//malloc internal buffer used by DMA
|
|
s_adc_digi_ctx->bytes_between_intr = init_config->conv_num_each_intr;
|
|
s_adc_digi_ctx->rx_dma_buf = heap_caps_calloc(1, s_adc_digi_ctx->bytes_between_intr * INTERNAL_BUF_NUM, MALLOC_CAP_INTERNAL);
|
|
if (!s_adc_digi_ctx->rx_dma_buf) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto cleanup;
|
|
}
|
|
|
|
//malloc dma descriptor
|
|
s_adc_digi_ctx->hal_dma_config.rx_desc = heap_caps_calloc(1, (sizeof(dma_descriptor_t)) * INTERNAL_BUF_NUM, MALLOC_CAP_DMA);
|
|
if (!s_adc_digi_ctx->hal_dma_config.rx_desc) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto cleanup;
|
|
}
|
|
s_adc_digi_ctx->hal_dma_config.desc_max_num = INTERNAL_BUF_NUM;
|
|
|
|
//malloc pattern table
|
|
s_adc_digi_ctx->digi_controller_config.adc_pattern = calloc(1, SOC_ADC_PATT_LEN_MAX * sizeof(adc_digi_pattern_table_t));
|
|
if (!s_adc_digi_ctx->digi_controller_config.adc_pattern) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto cleanup;
|
|
}
|
|
|
|
//init gpio pins
|
|
if (init_config->adc1_chan_mask) {
|
|
ret = adc_digi_gpio_init(ADC_NUM_1, init_config->adc1_chan_mask);
|
|
if (ret != ESP_OK) {
|
|
goto cleanup;
|
|
}
|
|
}
|
|
if (init_config->adc2_chan_mask) {
|
|
ret = adc_digi_gpio_init(ADC_NUM_2, init_config->adc2_chan_mask);
|
|
if (ret != ESP_OK) {
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
//alloc rx gdma channel
|
|
gdma_channel_alloc_config_t rx_alloc_config = {
|
|
.direction = GDMA_CHANNEL_DIRECTION_RX,
|
|
};
|
|
ret = gdma_new_channel(&rx_alloc_config, &s_adc_digi_ctx->rx_dma_channel);
|
|
if (ret != ESP_OK) {
|
|
goto cleanup;
|
|
}
|
|
gdma_connect(s_adc_digi_ctx->rx_dma_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_ADC, 0));
|
|
|
|
gdma_strategy_config_t strategy_config = {
|
|
.auto_update_desc = true,
|
|
.owner_check = true
|
|
};
|
|
gdma_apply_strategy(s_adc_digi_ctx->rx_dma_channel, &strategy_config);
|
|
|
|
gdma_rx_event_callbacks_t cbs = {
|
|
.on_recv_eof = adc_dma_in_suc_eof_callback
|
|
};
|
|
gdma_register_rx_event_callbacks(s_adc_digi_ctx->rx_dma_channel, &cbs, s_adc_digi_ctx);
|
|
|
|
int dma_chan;
|
|
gdma_get_channel_id(s_adc_digi_ctx->rx_dma_channel, &dma_chan);
|
|
s_adc_digi_ctx->hal_dma_config.dma_chan = dma_chan;
|
|
|
|
//enable SARADC module clock
|
|
periph_module_enable(PERIPH_SARADC_MODULE);
|
|
|
|
adc_hal_calibration_init(ADC_NUM_1);
|
|
adc_hal_calibration_init(ADC_NUM_2);
|
|
|
|
return ret;
|
|
|
|
cleanup:
|
|
adc_digi_deinitialize();
|
|
return ret;
|
|
|
|
}
|
|
|
|
static IRAM_ATTR bool adc_dma_intr(adc_digi_context_t *adc_digi_ctx);
|
|
|
|
static IRAM_ATTR bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
|
|
{
|
|
adc_digi_context_t *adc_digi_ctx = (adc_digi_context_t *)user_data;
|
|
return adc_dma_intr(adc_digi_ctx);
|
|
}
|
|
|
|
static IRAM_ATTR bool adc_dma_intr(adc_digi_context_t *adc_digi_ctx)
|
|
{
|
|
portBASE_TYPE taskAwoken = 0;
|
|
BaseType_t ret;
|
|
|
|
while (adc_digi_ctx->hal_dma_config.cur_desc_ptr->dw0.owner == 0) {
|
|
dma_descriptor_t *current_desc = adc_digi_ctx->hal_dma_config.cur_desc_ptr;
|
|
ret = xRingbufferSendFromISR(adc_digi_ctx->ringbuf_hdl, current_desc->buffer, current_desc->dw0.length, &taskAwoken);
|
|
if (ret == pdFALSE) {
|
|
//ringbuffer overflow
|
|
adc_digi_ctx->ringbuf_overflow_flag = 1;
|
|
}
|
|
|
|
adc_digi_ctx->hal_dma_config.desc_cnt += 1;
|
|
//cycle the dma descriptor and buffers
|
|
adc_digi_ctx->hal_dma_config.cur_desc_ptr = adc_digi_ctx->hal_dma_config.cur_desc_ptr->next;
|
|
if (!adc_digi_ctx->hal_dma_config.cur_desc_ptr) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!adc_digi_ctx->hal_dma_config.cur_desc_ptr) {
|
|
|
|
assert(adc_digi_ctx->hal_dma_config.desc_cnt == adc_digi_ctx->hal_dma_config.desc_max_num);
|
|
//reset the current descriptor status
|
|
adc_digi_ctx->hal_dma_config.cur_desc_ptr = adc_digi_ctx->hal_dma_config.rx_desc;
|
|
adc_digi_ctx->hal_dma_config.desc_cnt = 0;
|
|
|
|
//start next turns of dma operation
|
|
adc_hal_digi_dma_multi_descriptor(&adc_digi_ctx->hal_dma_config, adc_digi_ctx->rx_dma_buf, adc_digi_ctx->bytes_between_intr, adc_digi_ctx->hal_dma_config.desc_max_num);
|
|
adc_hal_digi_rxdma_start(&adc_digi_ctx->hal_dma, &adc_digi_ctx->hal_dma_config);
|
|
}
|
|
|
|
if(taskAwoken == pdTRUE) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
esp_err_t adc_digi_start(void)
|
|
{
|
|
if (s_adc_digi_ctx->driver_start_flag != 0) {
|
|
ESP_LOGE(ADC_TAG, "The driver is already started");
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
//reset flags
|
|
s_adc_digi_ctx->ringbuf_overflow_flag = 0;
|
|
s_adc_digi_ctx->driver_start_flag = 1;
|
|
|
|
//When using SARADC2 module, this task needs to be protected from WIFI
|
|
if (s_adc_digi_ctx->use_adc2) {
|
|
SAC_ADC2_LOCK_ACQUIRE();
|
|
}
|
|
ADC_DIGI_LOCK_ACQUIRE();
|
|
|
|
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
|
|
if (s_adc_digi_ctx->use_adc1) {
|
|
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc1_atten);
|
|
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
|
|
}
|
|
if (s_adc_digi_ctx->use_adc2) {
|
|
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc2_atten);
|
|
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
|
|
}
|
|
|
|
adc_hal_init();
|
|
|
|
adc_hal_arbiter_config(&config);
|
|
adc_hal_digi_init(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config);
|
|
adc_hal_digi_controller_config(&s_adc_digi_ctx->digi_controller_config);
|
|
|
|
//create dma descriptors
|
|
adc_hal_digi_dma_multi_descriptor(&s_adc_digi_ctx->hal_dma_config, s_adc_digi_ctx->rx_dma_buf, s_adc_digi_ctx->bytes_between_intr, s_adc_digi_ctx->hal_dma_config.desc_max_num);
|
|
adc_hal_digi_set_eof_num(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config, (s_adc_digi_ctx->bytes_between_intr)/4);
|
|
//set the current descriptor pointer
|
|
s_adc_digi_ctx->hal_dma_config.cur_desc_ptr = s_adc_digi_ctx->hal_dma_config.rx_desc;
|
|
s_adc_digi_ctx->hal_dma_config.desc_cnt = 0;
|
|
|
|
//enable in suc eof intr
|
|
adc_hal_digi_ena_intr(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config, IN_SUC_EOF_BIT);
|
|
|
|
//start ADC
|
|
adc_hal_digi_start(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config);
|
|
|
|
//start DMA
|
|
adc_hal_digi_rxdma_start(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config);
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t adc_digi_stop(void)
|
|
{
|
|
if (s_adc_digi_ctx->driver_start_flag != 1) {
|
|
ESP_LOGE(ADC_TAG, "The driver is already stopped");
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
s_adc_digi_ctx->driver_start_flag = 0;
|
|
|
|
//disable the in suc eof intrrupt
|
|
adc_hal_digi_dis_intr(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config, IN_SUC_EOF_BIT);
|
|
//clear the in suc eof interrupt
|
|
adc_hal_digi_clr_intr(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config, IN_SUC_EOF_BIT);
|
|
//stop DMA
|
|
adc_hal_digi_rxdma_stop(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config);
|
|
//stop ADC
|
|
adc_hal_digi_stop(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config);
|
|
adc_hal_digi_deinit();
|
|
|
|
ADC_DIGI_LOCK_RELEASE();
|
|
//When using SARADC2 module, this task needs to be protected from WIFI
|
|
if (s_adc_digi_ctx->use_adc2) {
|
|
SAC_ADC2_LOCK_RELEASE();
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t adc_digi_read_bytes(uint8_t *buf, uint32_t length_max, uint32_t *out_length, uint32_t timeout_ms)
|
|
{
|
|
TickType_t ticks_to_wait;
|
|
esp_err_t ret = ESP_OK;
|
|
uint8_t *data = NULL;
|
|
size_t size = 0;
|
|
|
|
ticks_to_wait = timeout_ms / portTICK_RATE_MS;
|
|
if (timeout_ms == ADC_MAX_DELAY) {
|
|
ticks_to_wait = portMAX_DELAY;
|
|
}
|
|
|
|
data = xRingbufferReceiveUpTo(s_adc_digi_ctx->ringbuf_hdl, &size, ticks_to_wait, length_max);
|
|
if (!data) {
|
|
ESP_LOGV(ADC_TAG, "No data, increase timeout or reduce conv_num_each_intr");
|
|
ret = ESP_ERR_TIMEOUT;
|
|
*out_length = 0;
|
|
return ret;
|
|
}
|
|
|
|
memcpy(buf, data, size);
|
|
vRingbufferReturnItem(s_adc_digi_ctx->ringbuf_hdl, data);
|
|
assert((size % 4) == 0);
|
|
*out_length = size;
|
|
|
|
if (s_adc_digi_ctx->ringbuf_overflow_flag) {
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t adc_digi_deinitialize(void)
|
|
{
|
|
if (!s_adc_digi_ctx) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
if (s_adc_digi_ctx->driver_start_flag != 0) {
|
|
ESP_LOGE(ADC_TAG, "The driver is not stopped");
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
if (s_adc_digi_ctx->dma_intr_hdl) {
|
|
esp_intr_free(s_adc_digi_ctx->dma_intr_hdl);
|
|
}
|
|
|
|
if(s_adc_digi_ctx->ringbuf_hdl) {
|
|
vRingbufferDelete(s_adc_digi_ctx->ringbuf_hdl);
|
|
s_adc_digi_ctx->ringbuf_hdl = NULL;
|
|
}
|
|
|
|
free(s_adc_digi_ctx->rx_dma_buf);
|
|
free(s_adc_digi_ctx->hal_dma_config.rx_desc);
|
|
free(s_adc_digi_ctx->digi_controller_config.adc_pattern);
|
|
gdma_disconnect(s_adc_digi_ctx->rx_dma_channel);
|
|
gdma_del_channel(s_adc_digi_ctx->rx_dma_channel);
|
|
|
|
free(s_adc_digi_ctx);
|
|
s_adc_digi_ctx = NULL;
|
|
|
|
periph_module_disable(PERIPH_SARADC_MODULE);
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
/*---------------------------------------------------------------
|
|
ADC Single Read Mode
|
|
---------------------------------------------------------------*/
|
|
static adc_atten_t s_atten1_single[ADC1_CHANNEL_MAX]; //Array saving attenuate of each channel of ADC1, used by single read API
|
|
static adc_atten_t s_atten2_single[ADC2_CHANNEL_MAX]; //Array saving attenuate of each channel of ADC2, used by single read API
|
|
|
|
esp_err_t adc1_config_width(adc_bits_width_t width_bit)
|
|
{
|
|
//On ESP32C3, the data width is always 12-bits.
|
|
if (width_bit != ADC_WIDTH_BIT_12) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
|
|
{
|
|
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
|
|
ADC_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG);
|
|
|
|
esp_err_t ret = ESP_OK;
|
|
s_atten1_single[channel] = atten;
|
|
ret = adc_digi_gpio_init(ADC_NUM_1, BIT(channel));
|
|
|
|
adc_hal_calibration_init(ADC_NUM_1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int adc1_get_raw(adc1_channel_t channel)
|
|
{
|
|
int raw_out = 0;
|
|
adc_digi_config_t dig_cfg = {
|
|
.conv_limit_en = 0,
|
|
.conv_limit_num = 250,
|
|
.sample_freq_hz = SOC_ADC_SAMPLE_FREQ_THRES_HIGH,
|
|
};
|
|
|
|
ADC_DIGI_LOCK_ACQUIRE();
|
|
|
|
periph_module_enable(PERIPH_SARADC_MODULE);
|
|
|
|
adc_atten_t atten = s_atten1_single[channel];
|
|
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, channel, atten);
|
|
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
|
|
|
|
adc_hal_digi_controller_config(&dig_cfg);
|
|
|
|
adc_hal_intr_clear(ADC_EVENT_ADC1_DONE);
|
|
|
|
adc_hal_adc1_onetime_sample_enable(true);
|
|
adc_hal_onetime_channel(ADC_NUM_1, channel);
|
|
adc_hal_set_onetime_atten(atten);
|
|
|
|
//Trigger single read.
|
|
adc_hal_onetime_start(&dig_cfg);
|
|
while (!adc_hal_intr_get_raw(ADC_EVENT_ADC1_DONE));
|
|
adc_hal_single_read(ADC_NUM_1, &raw_out);
|
|
|
|
adc_hal_intr_clear(ADC_EVENT_ADC1_DONE);
|
|
adc_hal_adc1_onetime_sample_enable(false);
|
|
|
|
adc_hal_digi_deinit();
|
|
periph_module_disable(PERIPH_SARADC_MODULE);
|
|
|
|
ADC_DIGI_LOCK_RELEASE();
|
|
|
|
return raw_out;
|
|
}
|
|
|
|
esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
|
|
{
|
|
ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
|
|
ADC_CHECK(atten <= ADC_ATTEN_11db, "ADC2 Atten Err", ESP_ERR_INVALID_ARG);
|
|
|
|
esp_err_t ret = ESP_OK;
|
|
s_atten2_single[channel] = atten;
|
|
ret = adc_digi_gpio_init(ADC_NUM_2, BIT(channel));
|
|
|
|
adc_hal_calibration_init(ADC_NUM_2);
|
|
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out)
|
|
{
|
|
//On ESP32C3, the data width is always 12-bits.
|
|
if (width_bit != ADC_WIDTH_BIT_12) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
esp_err_t ret = ESP_OK;
|
|
adc_digi_config_t dig_cfg = {
|
|
.conv_limit_en = 0,
|
|
.conv_limit_num = 250,
|
|
.sample_freq_hz = SOC_ADC_SAMPLE_FREQ_THRES_HIGH,
|
|
};
|
|
|
|
SAC_ADC2_LOCK_ACQUIRE();
|
|
ADC_DIGI_LOCK_ACQUIRE();
|
|
periph_module_enable(PERIPH_SARADC_MODULE);
|
|
|
|
adc_atten_t atten = s_atten2_single[channel];
|
|
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, channel, atten);
|
|
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
|
|
|
|
adc_hal_digi_controller_config(&dig_cfg);
|
|
|
|
adc_hal_intr_clear(ADC_EVENT_ADC2_DONE);
|
|
|
|
adc_hal_adc2_onetime_sample_enable(true);
|
|
adc_hal_onetime_channel(ADC_NUM_2, channel);
|
|
adc_hal_set_onetime_atten(atten);
|
|
|
|
//Trigger single read.
|
|
adc_hal_onetime_start(&dig_cfg);
|
|
while (!adc_hal_intr_get_raw(ADC_EVENT_ADC2_DONE));
|
|
ret = adc_hal_single_read(ADC_NUM_2, raw_out);
|
|
|
|
adc_hal_intr_clear(ADC_EVENT_ADC2_DONE);
|
|
adc_hal_adc2_onetime_sample_enable(false);
|
|
|
|
adc_hal_digi_deinit();
|
|
periph_module_disable(PERIPH_SARADC_MODULE);
|
|
|
|
ADC_DIGI_LOCK_RELEASE();
|
|
SAC_ADC2_LOCK_RELEASE();
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------
|
|
Digital controller setting
|
|
---------------------------------------------------------------*/
|
|
esp_err_t adc_digi_controller_config(const adc_digi_config_t *config)
|
|
{
|
|
if (!s_adc_digi_ctx) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
ADC_CHECK(config->sample_freq_hz <= SOC_ADC_SAMPLE_FREQ_THRES_HIGH && config->sample_freq_hz >= SOC_ADC_SAMPLE_FREQ_THRES_LOW, "ADC sampling frequency out of range", ESP_ERR_INVALID_ARG);
|
|
|
|
s_adc_digi_ctx->digi_controller_config.conv_limit_en = config->conv_limit_en;
|
|
s_adc_digi_ctx->digi_controller_config.conv_limit_num = config->conv_limit_num;
|
|
s_adc_digi_ctx->digi_controller_config.adc_pattern_len = config->adc_pattern_len;
|
|
s_adc_digi_ctx->digi_controller_config.sample_freq_hz = config->sample_freq_hz;
|
|
memcpy(s_adc_digi_ctx->digi_controller_config.adc_pattern, config->adc_pattern, config->adc_pattern_len * sizeof(adc_digi_pattern_table_t));
|
|
|
|
const int atten_uninitialised = 999;
|
|
s_adc_digi_ctx->adc1_atten = atten_uninitialised;
|
|
s_adc_digi_ctx->adc2_atten = atten_uninitialised;
|
|
s_adc_digi_ctx->use_adc1 = 0;
|
|
s_adc_digi_ctx->use_adc2 = 0;
|
|
for (int i = 0; i < config->adc_pattern_len; i++) {
|
|
const adc_digi_pattern_table_t* pat = &config->adc_pattern[i];
|
|
if (pat->unit == ADC_NUM_1) {
|
|
s_adc_digi_ctx->use_adc1 = 1;
|
|
|
|
if (s_adc_digi_ctx->adc1_atten == atten_uninitialised) {
|
|
s_adc_digi_ctx->adc1_atten = pat->atten;
|
|
} else if (s_adc_digi_ctx->adc1_atten != pat->atten) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
} else if (pat->unit == ADC_NUM_2) {
|
|
//See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver
|
|
s_adc_digi_ctx->use_adc2 = 1;
|
|
|
|
if (s_adc_digi_ctx->adc2_atten == atten_uninitialised) {
|
|
s_adc_digi_ctx->adc2_atten = pat->atten;
|
|
} else if (s_adc_digi_ctx->adc2_atten != pat->atten) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t adc_arbiter_config(adc_unit_t adc_unit, adc_arbiter_t *config)
|
|
{
|
|
if (adc_unit & ADC_UNIT_1) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
ADC_ENTER_CRITICAL();
|
|
adc_hal_arbiter_config(config);
|
|
ADC_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Set ADC module controller.
|
|
* There are five SAR ADC controllers:
|
|
* Two digital controller: Continuous conversion mode (DMA). High performance with multiple channel scan modes;
|
|
* Two RTC controller: Single conversion modes (Polling). For low power purpose working during deep sleep;
|
|
* the other is dedicated for Power detect (PWDET / PKDET), Only support ADC2.
|
|
*
|
|
* @note Only ADC2 support arbiter to switch controllers automatically. Access to the ADC is based on the priority of the controller.
|
|
* @note For ADC1, Controller access is mutually exclusive.
|
|
*
|
|
* @param adc_unit ADC unit.
|
|
* @param ctrl ADC controller, Refer to `adc_controller_t`.
|
|
*
|
|
* @return
|
|
* - ESP_OK Success
|
|
*/
|
|
esp_err_t adc_set_controller(adc_unit_t adc_unit, adc_controller_t ctrl)
|
|
{
|
|
adc_arbiter_t config = {0};
|
|
adc_arbiter_t cfg = ADC_ARBITER_CONFIG_DEFAULT();
|
|
|
|
if (adc_unit & ADC_UNIT_1) {
|
|
adc_hal_set_controller(ADC_NUM_1, ctrl);
|
|
}
|
|
if (adc_unit & ADC_UNIT_2) {
|
|
adc_hal_set_controller(ADC_NUM_2, ctrl);
|
|
switch (ctrl) {
|
|
case ADC2_CTRL_FORCE_PWDET:
|
|
config.pwdet_pri = 2;
|
|
config.mode = ADC_ARB_MODE_SHIELD;
|
|
adc_hal_arbiter_config(&config);
|
|
adc_hal_set_controller(ADC_NUM_2, ADC2_CTRL_PWDET);
|
|
break;
|
|
case ADC2_CTRL_FORCE_RTC:
|
|
config.rtc_pri = 2;
|
|
config.mode = ADC_ARB_MODE_SHIELD;
|
|
adc_hal_arbiter_config(&config);
|
|
adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_RTC);
|
|
break;
|
|
case ADC2_CTRL_FORCE_DIG:
|
|
config.dig_pri = 2;
|
|
config.mode = ADC_ARB_MODE_SHIELD;
|
|
adc_hal_arbiter_config(&config);
|
|
adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_DIG);
|
|
break;
|
|
default:
|
|
adc_hal_arbiter_config(&cfg);
|
|
break;
|
|
}
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Reset FSM of adc digital controller.
|
|
*
|
|
* @return
|
|
* - ESP_OK Success
|
|
*/
|
|
esp_err_t adc_digi_reset(void)
|
|
{
|
|
ADC_ENTER_CRITICAL();
|
|
adc_hal_digi_reset();
|
|
adc_hal_digi_clear_pattern_table(ADC_NUM_1);
|
|
adc_hal_digi_clear_pattern_table(ADC_NUM_2);
|
|
ADC_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|
|
|
|
/*************************************/
|
|
/* Digital controller filter setting */
|
|
/*************************************/
|
|
|
|
esp_err_t adc_digi_filter_reset(adc_digi_filter_idx_t idx)
|
|
{
|
|
ADC_ENTER_CRITICAL();
|
|
adc_hal_digi_filter_reset(idx);
|
|
ADC_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t adc_digi_filter_set_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config)
|
|
{
|
|
ADC_ENTER_CRITICAL();
|
|
adc_hal_digi_filter_set_factor(idx, config);
|
|
ADC_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t adc_digi_filter_get_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config)
|
|
{
|
|
ADC_ENTER_CRITICAL();
|
|
adc_hal_digi_filter_get_factor(idx, config);
|
|
ADC_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t adc_digi_filter_enable(adc_digi_filter_idx_t idx, bool enable)
|
|
{
|
|
ADC_ENTER_CRITICAL();
|
|
adc_hal_digi_filter_enable(idx, enable);
|
|
ADC_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|
|
|
|
/**************************************/
|
|
/* Digital controller monitor setting */
|
|
/**************************************/
|
|
|
|
esp_err_t adc_digi_monitor_set_config(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *config)
|
|
{
|
|
ADC_ENTER_CRITICAL();
|
|
adc_hal_digi_monitor_config(idx, config);
|
|
ADC_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t adc_digi_monitor_enable(adc_digi_monitor_idx_t idx, bool enable)
|
|
{
|
|
|
|
ADC_ENTER_CRITICAL();
|
|
adc_hal_digi_monitor_enable(idx, enable);
|
|
ADC_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|
|
|
|
/**************************************/
|
|
/* Digital controller intr setting */
|
|
/**************************************/
|
|
|
|
esp_err_t adc_digi_intr_enable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask)
|
|
{
|
|
ADC_ENTER_CRITICAL();
|
|
if (adc_unit & ADC_UNIT_1) {
|
|
adc_hal_digi_intr_enable(ADC_NUM_1, intr_mask);
|
|
}
|
|
if (adc_unit & ADC_UNIT_2) {
|
|
adc_hal_digi_intr_enable(ADC_NUM_2, intr_mask);
|
|
}
|
|
ADC_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t adc_digi_intr_disable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask)
|
|
{
|
|
ADC_ENTER_CRITICAL();
|
|
if (adc_unit & ADC_UNIT_1) {
|
|
adc_hal_digi_intr_disable(ADC_NUM_1, intr_mask);
|
|
}
|
|
if (adc_unit & ADC_UNIT_2) {
|
|
adc_hal_digi_intr_disable(ADC_NUM_2, intr_mask);
|
|
}
|
|
ADC_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t adc_digi_intr_clear(adc_unit_t adc_unit, adc_digi_intr_t intr_mask)
|
|
{
|
|
ADC_ENTER_CRITICAL();
|
|
if (adc_unit & ADC_UNIT_1) {
|
|
adc_hal_digi_intr_clear(ADC_NUM_1, intr_mask);
|
|
}
|
|
if (adc_unit & ADC_UNIT_2) {
|
|
adc_hal_digi_intr_clear(ADC_NUM_2, intr_mask);
|
|
}
|
|
ADC_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|
|
|
|
uint32_t adc_digi_intr_get_status(adc_unit_t adc_unit)
|
|
{
|
|
uint32_t ret = 0;
|
|
ADC_ENTER_CRITICAL();
|
|
if (adc_unit & ADC_UNIT_1) {
|
|
ret = adc_hal_digi_get_intr_status(ADC_NUM_1);
|
|
}
|
|
if (adc_unit & ADC_UNIT_2) {
|
|
ret = adc_hal_digi_get_intr_status(ADC_NUM_2);
|
|
}
|
|
ADC_EXIT_CRITICAL();
|
|
return ret;
|
|
}
|
|
|
|
static bool s_isr_registered = 0;
|
|
static intr_handle_t s_adc_isr_handle = NULL;
|
|
|
|
esp_err_t adc_digi_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags)
|
|
{
|
|
ADC_CHECK((fn != NULL), "Parameter error", ESP_ERR_INVALID_ARG);
|
|
ADC_CHECK(s_isr_registered == 0, "ADC ISR have installed, can not install again", ESP_FAIL);
|
|
|
|
esp_err_t ret = esp_intr_alloc(ETS_APB_ADC_INTR_SOURCE, intr_alloc_flags, fn, arg, &s_adc_isr_handle);
|
|
if (ret == ESP_OK) {
|
|
s_isr_registered = 1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t adc_digi_isr_deregister(void)
|
|
{
|
|
esp_err_t ret = ESP_FAIL;
|
|
if (s_isr_registered) {
|
|
ret = esp_intr_free(s_adc_isr_handle);
|
|
if (ret == ESP_OK) {
|
|
s_isr_registered = 0;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*---------------------------------------------------------------
|
|
RTC controller setting
|
|
---------------------------------------------------------------*/
|
|
|
|
static uint16_t s_adc_cali_param[ADC_UNIT_MAX][ADC_ATTEN_MAX] = {};
|
|
|
|
//NOTE: according to calibration version, different types of lock may be taken during the process:
|
|
// 1. Semaphore when reading efuse
|
|
// 2. Lock (Spinlock, or Mutex) if we actually do ADC calibration in the future
|
|
//This function shoudn't be called inside critical section or ISR
|
|
static uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
|
|
{
|
|
const bool no_cal = false;
|
|
if (s_adc_cali_param[adc_n][atten]) {
|
|
return (uint32_t)s_adc_cali_param[adc_n][atten];
|
|
}
|
|
|
|
if (no_cal) {
|
|
return 0; //indicating failure
|
|
}
|
|
|
|
// check if we can fetch the values from eFuse.
|
|
int version = esp_efuse_rtc_calib_get_ver();
|
|
|
|
uint32_t init_code = 0;
|
|
if (version == 1) {
|
|
//for calibration v1, both ADC units use the same init code (calibrated by ADC1)
|
|
init_code = esp_efuse_rtc_calib_get_init_code(version, atten);
|
|
ESP_LOGD(ADC_TAG, "Calib(V%d) ADC0, 1 atten=%d: %04X", version, atten, init_code);
|
|
s_adc_cali_param[0][atten] = init_code;
|
|
s_adc_cali_param[1][atten] = init_code;
|
|
} else {
|
|
adc_power_acquire();
|
|
ADC_ENTER_CRITICAL();
|
|
const bool internal_gnd = true;
|
|
init_code = adc_hal_self_calibration(adc_n, channel, atten, internal_gnd);
|
|
ADC_EXIT_CRITICAL();
|
|
adc_power_release();
|
|
|
|
ESP_LOGD(ADC_TAG, "Calib(V%d) ADC%d atten=%d: %04X", version, adc_n, atten, init_code);
|
|
s_adc_cali_param[adc_n][atten] = init_code;
|
|
}
|
|
|
|
return init_code;
|
|
}
|
|
|
|
// Internal function to calibrate PWDET for WiFi
|
|
esp_err_t adc_cal_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
|
|
{
|
|
adc_hal_calibration_init(adc_n);
|
|
uint32_t cal_val = adc_get_calibration_offset(adc_n, channel, atten);
|
|
ADC_ENTER_CRITICAL();
|
|
adc_hal_set_calibration_param(adc_n, cal_val);
|
|
ADC_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|