mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
236 lines
6.9 KiB
C
236 lines
6.9 KiB
C
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <errno.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
#include <reent.h>
|
|
#include <sys/types.h>
|
|
#include <sys/reent.h>
|
|
#include <sys/time.h>
|
|
#include <sys/times.h>
|
|
#include <sys/lock.h>
|
|
#include <rom/rtc.h>
|
|
#include "esp_attr.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "soc/soc.h"
|
|
#include "soc/rtc_cntl_reg.h"
|
|
#include "soc/frc_timer_reg.h"
|
|
#include "rom/ets_sys.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/xtensa_api.h"
|
|
#include "freertos/task.h"
|
|
#include "sdkconfig.h"
|
|
|
|
#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 )
|
|
#define WITH_RTC 1
|
|
#endif
|
|
|
|
#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_FRC1 ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 )
|
|
#define WITH_FRC1 1
|
|
#endif
|
|
|
|
#ifdef WITH_RTC
|
|
static uint64_t get_rtc_time_us()
|
|
{
|
|
SET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_UPDATE_M);
|
|
while (GET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_VALID_M) == 0) {
|
|
;
|
|
}
|
|
CLEAR_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_UPDATE_M);
|
|
uint64_t low = READ_PERI_REG(RTC_CNTL_TIME0_REG);
|
|
uint64_t high = READ_PERI_REG(RTC_CNTL_TIME1_REG);
|
|
uint64_t ticks = (high << 32) | low;
|
|
return ticks * 100 / (RTC_CNTL_SLOWCLK_FREQ / 10000); // scale RTC_CNTL_SLOWCLK_FREQ to avoid overflow
|
|
}
|
|
#endif // WITH_RTC
|
|
|
|
|
|
// s_boot_time: time from Epoch to the first boot time
|
|
#ifdef WITH_RTC
|
|
// when RTC is used to persist time, two RTC_STORE registers are used to store boot time
|
|
#elif defined(WITH_FRC1)
|
|
static uint64_t s_boot_time;
|
|
#endif
|
|
|
|
#if defined(WITH_RTC) || defined(WITH_FRC1)
|
|
static _lock_t s_boot_time_lock;
|
|
#endif
|
|
|
|
#ifdef WITH_FRC1
|
|
#define FRC1_PRESCALER 16
|
|
#define FRC1_PRESCALER_CTL 2
|
|
#define FRC1_TICK_FREQ (APB_CLK_FREQ / FRC1_PRESCALER)
|
|
#define FRC1_TICKS_PER_US (FRC1_TICK_FREQ / 1000000)
|
|
#define FRC1_ISR_PERIOD_US (FRC_TIMER_LOAD_VALUE(0) / FRC1_TICKS_PER_US)
|
|
// Counter frequency will be APB_CLK_FREQ / 16 = 5 MHz
|
|
// 1 tick = 0.2 us
|
|
// Timer has 23 bit counter, so interrupt will fire each 1677721.6 microseconds.
|
|
// This is not a whole number, so timer will drift by 0.3 ppm due to rounding error.
|
|
|
|
static volatile uint64_t s_microseconds = 0;
|
|
|
|
static void IRAM_ATTR frc_timer_isr()
|
|
{
|
|
// Write to FRC_TIMER_INT_REG may not take effect in some cases (root cause TBD)
|
|
// This extra write works around this issue.
|
|
// FRC_TIMER_LOAD_REG(0) is used here, but any other DPORT register address can also be used.
|
|
WRITE_PERI_REG(FRC_TIMER_LOAD_REG(0), FRC_TIMER_LOAD_VALUE(0));
|
|
WRITE_PERI_REG(FRC_TIMER_INT_REG(0), FRC_TIMER_INT_CLR);
|
|
s_microseconds += FRC1_ISR_PERIOD_US;
|
|
}
|
|
|
|
#endif // WITH_FRC1
|
|
|
|
#if defined(WITH_RTC) || defined(WITH_FRC1)
|
|
static void set_boot_time(uint64_t time_us)
|
|
{
|
|
_lock_acquire(&s_boot_time_lock);
|
|
#ifdef WITH_RTC
|
|
REG_WRITE(RTC_BOOT_TIME_LOW_REG, (uint32_t) (time_us & 0xffffffff));
|
|
REG_WRITE(RTC_BOOT_TIME_HIGH_REG, (uint32_t) (time_us >> 32));
|
|
#else
|
|
s_boot_time = time_us;
|
|
#endif
|
|
_lock_release(&s_boot_time_lock);
|
|
}
|
|
|
|
static uint64_t get_boot_time()
|
|
{
|
|
uint64_t result;
|
|
_lock_acquire(&s_boot_time_lock);
|
|
#ifdef WITH_RTC
|
|
result = ((uint64_t) REG_READ(RTC_BOOT_TIME_LOW_REG)) + (((uint64_t) REG_READ(RTC_BOOT_TIME_HIGH_REG)) << 32);
|
|
#else
|
|
result = s_boot_time;
|
|
#endif
|
|
_lock_release(&s_boot_time_lock);
|
|
return result;
|
|
}
|
|
#endif //defined(WITH_RTC) || defined(WITH_FRC1)
|
|
|
|
void esp_setup_time_syscalls()
|
|
{
|
|
#if defined( WITH_FRC1 )
|
|
#if defined( WITH_RTC )
|
|
// initialize time from RTC clock
|
|
s_microseconds = get_rtc_time_us();
|
|
#endif //WITH_RTC
|
|
|
|
// set up timer
|
|
WRITE_PERI_REG(FRC_TIMER_CTRL_REG(0), \
|
|
FRC_TIMER_AUTOLOAD | \
|
|
(FRC1_PRESCALER_CTL << FRC_TIMER_PRESCALER_S) | \
|
|
FRC_TIMER_EDGE_INT);
|
|
|
|
WRITE_PERI_REG(FRC_TIMER_LOAD_REG(0), FRC_TIMER_LOAD_VALUE(0));
|
|
SET_PERI_REG_MASK(FRC_TIMER_CTRL_REG(0),
|
|
FRC_TIMER_ENABLE | \
|
|
FRC_TIMER_INT_ENABLE);
|
|
esp_intr_alloc(ETS_TIMER1_INTR_SOURCE, 0, &frc_timer_isr, NULL, NULL);
|
|
#endif // WITH_FRC1
|
|
}
|
|
|
|
clock_t IRAM_ATTR _times_r(struct _reent *r, struct tms *ptms)
|
|
{
|
|
clock_t t = xTaskGetTickCount() * (portTICK_PERIOD_MS * CLK_TCK / 1000);
|
|
ptms->tms_cstime = 0;
|
|
ptms->tms_cutime = 0;
|
|
ptms->tms_stime = t;
|
|
ptms->tms_utime = 0;
|
|
struct timeval tv = {0, 0};
|
|
_gettimeofday_r(r, &tv, NULL);
|
|
return (clock_t) tv.tv_sec;
|
|
}
|
|
|
|
#if defined( WITH_FRC1 ) || defined( WITH_RTC )
|
|
static uint64_t get_time_since_boot()
|
|
{
|
|
uint64_t microseconds = 0;
|
|
#ifdef WITH_FRC1
|
|
uint32_t timer_ticks_before = READ_PERI_REG(FRC_TIMER_COUNT_REG(0));
|
|
microseconds = s_microseconds;
|
|
uint32_t timer_ticks_after = READ_PERI_REG(FRC_TIMER_COUNT_REG(0));
|
|
if (timer_ticks_after > timer_ticks_before) {
|
|
// overflow happened at some point between getting
|
|
// timer_ticks_before and timer_ticks_after
|
|
// microseconds value is ambiguous, get a new one
|
|
microseconds = s_microseconds;
|
|
}
|
|
microseconds += (FRC_TIMER_LOAD_VALUE(0) - timer_ticks_after) / FRC1_TICKS_PER_US;
|
|
#elif defined(WITH_RTC)
|
|
microseconds = get_rtc_time_us();
|
|
#endif
|
|
return microseconds;
|
|
}
|
|
#endif // defined( WITH_FRC1 ) || defined( WITH_RTC )
|
|
|
|
int IRAM_ATTR _gettimeofday_r(struct _reent *r, struct timeval *tv, void *tz)
|
|
{
|
|
(void) tz;
|
|
#if defined( WITH_FRC1 ) || defined( WITH_RTC )
|
|
if (tv) {
|
|
uint64_t microseconds = get_boot_time() + get_time_since_boot();
|
|
tv->tv_sec = microseconds / 1000000;
|
|
tv->tv_usec = microseconds % 1000000;
|
|
}
|
|
return 0;
|
|
#else
|
|
__errno_r(r) = ENOSYS;
|
|
return -1;
|
|
#endif // defined( WITH_FRC1 ) || defined( WITH_RTC )
|
|
}
|
|
|
|
int settimeofday(const struct timeval *tv, const struct timezone *tz)
|
|
{
|
|
(void) tz;
|
|
#if defined( WITH_FRC1 ) || defined( WITH_RTC )
|
|
if (tv) {
|
|
uint64_t now = ((uint64_t) tv->tv_sec) * 1000000LL + tv->tv_usec;
|
|
uint64_t since_boot = get_time_since_boot();
|
|
set_boot_time(now - since_boot);
|
|
}
|
|
return 0;
|
|
#else
|
|
errno = ENOSYS;
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
uint32_t system_get_time(void)
|
|
{
|
|
#if defined( WITH_FRC1 ) || defined( WITH_RTC )
|
|
return get_time_since_boot();
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
uint32_t system_get_current_time(void) __attribute__((alias("system_get_time")));
|
|
|
|
uint32_t system_relative_time(uint32_t current_time)
|
|
{
|
|
return system_get_time() - current_time;
|
|
}
|
|
|
|
uint64_t system_get_rtc_time(void)
|
|
{
|
|
#ifdef WITH_RTC
|
|
return get_rtc_time_us();
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|