esp-idf/components/driver/test/test_pwm.c

535 lines
22 KiB
C

/*
* SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdio.h>
#include <unistd.h>
#include "unity.h"
#include "test_utils.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "soc/soc_caps.h"
#include "hal/gpio_hal.h"
#include "esp_rom_gpio.h"
#include "soc/rtc.h"
#if SOC_MCPWM_SUPPORTED
#include "soc/mcpwm_periph.h"
#include "driver/pcnt.h"
#include "driver/mcpwm.h"
#include "driver/gpio.h"
#define TEST_PWMA_PCNT_UNIT (0)
#define TEST_PWMB_PCNT_UNIT (1)
#define TEST_PWMA_GPIO (2)
#define TEST_PWMB_GPIO (4)
#define TEST_FAULT_GPIO (21)
#define TEST_SYNC_GPIO_0 (21)
#define TEST_SYNC_GPIO_1 (18)
#define TEST_SYNC_GPIO_2 (19)
#define TEST_CAP_GPIO (21)
#define MCPWM_TEST_GROUP_CLK_HZ (SOC_MCPWM_BASE_CLK_HZ / 16)
#define MCPWM_TEST_TIMER_CLK_HZ (MCPWM_TEST_GROUP_CLK_HZ / 10)
const static mcpwm_io_signals_t pwma[] = {MCPWM0A, MCPWM1A, MCPWM2A};
const static mcpwm_io_signals_t pwmb[] = {MCPWM0B, MCPWM1B, MCPWM2B};
const static mcpwm_fault_signal_t fault_sig_array[] = {MCPWM_SELECT_F0, MCPWM_SELECT_F1, MCPWM_SELECT_F2};
const static mcpwm_io_signals_t fault_io_sig_array[] = {MCPWM_FAULT_0, MCPWM_FAULT_1, MCPWM_FAULT_2};
const static mcpwm_sync_signal_t sync_sig_array[] = {MCPWM_SELECT_GPIO_SYNC0, MCPWM_SELECT_GPIO_SYNC1, MCPWM_SELECT_GPIO_SYNC2};
const static mcpwm_io_signals_t sync_io_sig_array[] = {MCPWM_SYNC_0, MCPWM_SYNC_1, MCPWM_SYNC_2};
const static mcpwm_capture_signal_t cap_sig_array[] = {MCPWM_SELECT_CAP0, MCPWM_SELECT_CAP1, MCPWM_SELECT_CAP2};
const static mcpwm_io_signals_t cap_io_sig_array[] = {MCPWM_CAP_0, MCPWM_CAP_1, MCPWM_CAP_2};
// This GPIO init function is almost the same to public API `mcpwm_gpio_init()`, except that
// this function will configure all MCPWM GPIOs into output and input capable
// which is useful to simulate a trigger source
static esp_err_t test_mcpwm_gpio_init(mcpwm_unit_t mcpwm_num, mcpwm_io_signals_t io_signal, int gpio_num)
{
if (gpio_num < 0) { // ignore on minus gpio number
return ESP_OK;
}
if (io_signal <= MCPWM2B) { // Generator output signal
gpio_set_direction(gpio_num, GPIO_MODE_INPUT_OUTPUT);
int operator_id = io_signal / 2;
int generator_id = io_signal % 2;
esp_rom_gpio_connect_out_signal(gpio_num, mcpwm_periph_signals.groups[mcpwm_num].operators[operator_id].generators[generator_id].pwm_sig, 0, 0);
} else if (io_signal <= MCPWM_SYNC_2) { // External sync input signal
gpio_set_direction(gpio_num, GPIO_MODE_INPUT_OUTPUT);
int gpio_sync_id = io_signal - MCPWM_SYNC_0;
esp_rom_gpio_connect_in_signal(gpio_num, mcpwm_periph_signals.groups[mcpwm_num].gpio_synchros[gpio_sync_id].sync_sig, 0);
} else if (io_signal <= MCPWM_FAULT_2) { // Fault input signal
gpio_set_direction(gpio_num, GPIO_MODE_INPUT_OUTPUT);
int fault_id = io_signal - MCPWM_FAULT_0;
esp_rom_gpio_connect_in_signal(gpio_num, mcpwm_periph_signals.groups[mcpwm_num].gpio_faults[fault_id].fault_sig, 0);
} else if (io_signal >= MCPWM_CAP_0 && io_signal <= MCPWM_CAP_2) { // Capture input signal
gpio_set_direction(gpio_num, GPIO_MODE_INPUT_OUTPUT);
int capture_id = io_signal - MCPWM_CAP_0;
esp_rom_gpio_connect_in_signal(gpio_num, mcpwm_periph_signals.groups[mcpwm_num].captures[capture_id].cap_sig, 0);
}
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
return ESP_OK;
}
static void mcpwm_setup_testbench(mcpwm_unit_t group, mcpwm_timer_t timer, uint32_t pwm_freq, float pwm_duty,
unsigned long int group_resolution, unsigned long int timer_resolution)
{
// PWMA <--> PCNT UNIT0
pcnt_config_t pcnt_config = {
.pulse_gpio_num = TEST_PWMA_GPIO,
.ctrl_gpio_num = -1, // don't care level signal
.channel = PCNT_CHANNEL_0,
.unit = TEST_PWMA_PCNT_UNIT,
.pos_mode = PCNT_COUNT_INC,
.neg_mode = PCNT_COUNT_DIS,
.lctrl_mode = PCNT_MODE_KEEP,
.hctrl_mode = PCNT_MODE_KEEP,
.counter_h_lim = 10000,
.counter_l_lim = -10000,
};
TEST_ESP_OK(pcnt_unit_config(&pcnt_config));
mcpwm_io_signals_t mcpwm_a = pwma[timer];
TEST_ESP_OK(test_mcpwm_gpio_init(group, mcpwm_a, TEST_PWMA_GPIO));
// PWMB <--> PCNT UNIT1
pcnt_config.pulse_gpio_num = TEST_PWMB_GPIO;
pcnt_config.unit = TEST_PWMB_PCNT_UNIT;
TEST_ESP_OK(pcnt_unit_config(&pcnt_config));
mcpwm_io_signals_t mcpwm_b = pwmb[timer];
TEST_ESP_OK(test_mcpwm_gpio_init(group, mcpwm_b, TEST_PWMB_GPIO));
// Set PWM freq and duty, start immediately
mcpwm_config_t pwm_config = {
.frequency = pwm_freq,
.cmpr_a = pwm_duty,
.cmpr_b = pwm_duty,
.counter_mode = MCPWM_UP_COUNTER,
.duty_mode = MCPWM_DUTY_MODE_0,
};
mcpwm_group_set_resolution(group, group_resolution);
mcpwm_timer_set_resolution(group, timer, timer_resolution);
TEST_ESP_OK(mcpwm_init(group, timer, &pwm_config));
}
static uint32_t mcpwm_pcnt_get_pulse_number(pcnt_unit_t pwm_pcnt_unit, int capture_window_ms)
{
int16_t count_value = 0;
TEST_ESP_OK(pcnt_counter_pause(pwm_pcnt_unit));
TEST_ESP_OK(pcnt_counter_clear(pwm_pcnt_unit));
TEST_ESP_OK(pcnt_counter_resume(pwm_pcnt_unit));
usleep(capture_window_ms * 1000);
TEST_ESP_OK(pcnt_get_counter_value(pwm_pcnt_unit, &count_value));
printf("count value: %d\r\n", count_value);
return (uint32_t)count_value;
}
static void mcpwm_timer_duty_test(mcpwm_unit_t unit, mcpwm_timer_t timer, unsigned long int group_resolution, unsigned long int timer_resolution)
{
mcpwm_setup_testbench(unit, timer, 1000, 50.0, group_resolution, timer_resolution);
vTaskDelay(pdMS_TO_TICKS(100));
TEST_ESP_OK(mcpwm_set_duty(unit, timer, MCPWM_OPR_A, 10.0));
TEST_ESP_OK(mcpwm_set_duty(unit, timer, MCPWM_OPR_B, 20.0));
TEST_ASSERT_FLOAT_WITHIN(0.1, 10.0, mcpwm_get_duty(unit, timer, MCPWM_OPR_A));
TEST_ASSERT_FLOAT_WITHIN(0.1, 20.0, mcpwm_get_duty(unit, timer, MCPWM_OPR_B));
vTaskDelay(pdMS_TO_TICKS(100));
TEST_ESP_OK(mcpwm_set_duty(unit, timer, MCPWM_OPR_A, 55.5f));
TEST_ESP_OK(mcpwm_set_duty_type(unit, timer, MCPWM_OPR_A, MCPWM_DUTY_MODE_0));
TEST_ASSERT_FLOAT_WITHIN(0.1, 55.5, mcpwm_get_duty(unit, timer, MCPWM_OPR_A));
vTaskDelay(pdMS_TO_TICKS(100));
TEST_ESP_OK(mcpwm_set_duty_in_us(unit, timer, MCPWM_OPR_B, 500));
TEST_ASSERT_INT_WITHIN(5, 500, mcpwm_get_duty_in_us(unit, timer, MCPWM_OPR_B));
vTaskDelay(pdMS_TO_TICKS(100));
TEST_ESP_OK(mcpwm_stop(unit, timer));
vTaskDelay(pdMS_TO_TICKS(100));
}
TEST_CASE("MCPWM duty test", "[mcpwm]")
{
for (int i = 0; i < SOC_MCPWM_GROUPS; i++) {
for (int j = 0; j < SOC_MCPWM_TIMERS_PER_GROUP; j++) {
mcpwm_timer_duty_test(i, j, MCPWM_TEST_GROUP_CLK_HZ, MCPWM_TEST_TIMER_CLK_HZ);
mcpwm_timer_duty_test(i, j, MCPWM_TEST_GROUP_CLK_HZ / 2, MCPWM_TEST_TIMER_CLK_HZ * 2);
}
}
}
// -------------------------------------------------------------------------------------
static void mcpwm_start_stop_test(mcpwm_unit_t unit, mcpwm_timer_t timer)
{
uint32_t pulse_number = 0;
mcpwm_setup_testbench(unit, timer, 1000, 50.0, MCPWM_TEST_GROUP_CLK_HZ, MCPWM_TEST_TIMER_CLK_HZ); // Period: 1000us, 1ms
// count the pulse number within 100ms
pulse_number = mcpwm_pcnt_get_pulse_number(TEST_PWMA_PCNT_UNIT, 100);
TEST_ASSERT_INT_WITHIN(2, 100, pulse_number);
pulse_number = mcpwm_pcnt_get_pulse_number(TEST_PWMB_PCNT_UNIT, 100);
TEST_ASSERT_INT_WITHIN(2, 100, pulse_number);
TEST_ESP_OK(mcpwm_set_frequency(unit, timer, 100));
pulse_number = mcpwm_pcnt_get_pulse_number(TEST_PWMB_PCNT_UNIT, 100);
TEST_ASSERT_INT_WITHIN(2, 10, pulse_number);
// stop timer, then no pwm pulse should be generating
TEST_ESP_OK(mcpwm_stop(unit, timer));
usleep(10000); // wait until timer stopped
pulse_number = mcpwm_pcnt_get_pulse_number(TEST_PWMA_PCNT_UNIT, 100);
TEST_ASSERT_INT_WITHIN(2, 0, pulse_number);
pulse_number = mcpwm_pcnt_get_pulse_number(TEST_PWMB_PCNT_UNIT, 100);
TEST_ASSERT_INT_WITHIN(2, 0, pulse_number);
}
TEST_CASE("MCPWM start and stop test", "[mcpwm]")
{
for (int i = 0; i < SOC_MCPWM_GROUPS; i++) {
for (int j = 0; j < SOC_MCPWM_TIMERS_PER_GROUP; j++) {
mcpwm_start_stop_test(i, j);
}
}
}
// -------------------------------------------------------------------------------------
static void mcpwm_deadtime_test(mcpwm_unit_t unit, mcpwm_timer_t timer)
{
mcpwm_setup_testbench(unit, timer, 1000, 50.0, MCPWM_TEST_GROUP_CLK_HZ, MCPWM_TEST_TIMER_CLK_HZ); // Period: 1000us, 1ms
mcpwm_deadtime_type_t deadtime_type[] = {MCPWM_BYPASS_RED, MCPWM_BYPASS_FED, MCPWM_ACTIVE_HIGH_MODE,
MCPWM_ACTIVE_LOW_MODE, MCPWM_ACTIVE_HIGH_COMPLIMENT_MODE, MCPWM_ACTIVE_LOW_COMPLIMENT_MODE,
MCPWM_ACTIVE_RED_FED_FROM_PWMXA, MCPWM_ACTIVE_RED_FED_FROM_PWMXB
};
for (size_t i = 0; i < sizeof(deadtime_type) / sizeof(deadtime_type[0]); i++) {
mcpwm_stop(unit, timer);
usleep(10000);
mcpwm_deadtime_enable(unit, timer, deadtime_type[i], 1000, 1000);
mcpwm_start(unit, timer);
vTaskDelay(pdMS_TO_TICKS(100));
mcpwm_deadtime_disable(unit, timer);
}
mcpwm_stop(unit, timer);
}
TEST_CASE("MCPWM deadtime test", "[mcpwm]")
{
for (int i = 0; i < SOC_MCPWM_GROUPS; i++) {
for (int j = 0; j < SOC_MCPWM_TIMERS_PER_GROUP; j++) {
mcpwm_deadtime_test(i, j);
}
}
}
// -------------------------------------------------------------------------------------
static void mcpwm_carrier_test(mcpwm_unit_t unit, mcpwm_timer_t timer, mcpwm_carrier_out_ivt_t invert_or_not,
uint8_t period, uint8_t duty, uint8_t os_width)
{
uint32_t pulse_number = 0;
mcpwm_setup_testbench(unit, timer, 1000, 50.0, MCPWM_TEST_GROUP_CLK_HZ, MCPWM_TEST_TIMER_CLK_HZ);
mcpwm_set_signal_high(unit, timer, MCPWM_GEN_A);
mcpwm_set_signal_high(unit, timer, MCPWM_GEN_B);
TEST_ESP_OK(mcpwm_carrier_enable(unit, timer));
TEST_ESP_OK(mcpwm_carrier_set_period(unit, timer, period)); //carrier revolution
TEST_ESP_OK(mcpwm_carrier_set_duty_cycle(unit, timer, duty)); // carrier duty
TEST_ESP_OK(mcpwm_carrier_output_invert(unit, timer, invert_or_not));
TEST_ESP_OK(mcpwm_carrier_oneshot_mode_enable(unit, timer, os_width));
vTaskDelay(pdMS_TO_TICKS(100));
pulse_number = mcpwm_pcnt_get_pulse_number(TEST_PWMA_PCNT_UNIT, 10);
TEST_ASSERT_INT_WITHIN(50, 2500, pulse_number);
usleep(10000);
pulse_number = mcpwm_pcnt_get_pulse_number(TEST_PWMB_PCNT_UNIT, 10);
TEST_ASSERT_INT_WITHIN(50, 2500, pulse_number);
TEST_ESP_OK(mcpwm_carrier_disable(unit, timer));
TEST_ESP_OK(mcpwm_stop(unit, timer));
}
TEST_CASE("MCPWM carrier test", "[mcpwm]")
{
for (int i = 0; i < SOC_MCPWM_GROUPS; i++) {
for (int j = 0; j < SOC_MCPWM_TIMERS_PER_GROUP; j++) {
// carrier should be 10MHz/8/(4+1) = 250KHz, (10MHz is the group resolution, it's fixed in the driver), carrier duty cycle is 4/8 = 50%
mcpwm_carrier_test(i, j, MCPWM_CARRIER_OUT_IVT_DIS, 4, 4, 3);
mcpwm_carrier_test(i, j, MCPWM_CARRIER_OUT_IVT_EN, 4, 4, 3);
}
}
}
// -------------------------------------------------------------------------------------
static void mcpwm_check_generator_level_on_fault(mcpwm_action_on_pwmxa_t action_a, mcpwm_action_on_pwmxb_t action_b)
{
if (action_a == MCPWM_ACTION_FORCE_LOW) {
TEST_ASSERT_EQUAL(0, gpio_get_level(TEST_PWMA_GPIO));
} else if (action_a == MCPWM_ACTION_FORCE_HIGH) {
TEST_ASSERT_EQUAL(1, gpio_get_level(TEST_PWMA_GPIO));
}
if (action_b == MCPWM_ACTION_FORCE_LOW) {
TEST_ASSERT_EQUAL(0, gpio_get_level(TEST_PWMB_GPIO));
} else if (action_b == MCPWM_ACTION_FORCE_HIGH) {
TEST_ASSERT_EQUAL(1, gpio_get_level(TEST_PWMB_GPIO));
}
}
static void mcpwm_fault_cbc_test(mcpwm_unit_t unit, mcpwm_timer_t timer)
{
mcpwm_action_on_pwmxa_t action_a[] = {MCPWM_ACTION_FORCE_LOW, MCPWM_ACTION_FORCE_HIGH};
mcpwm_action_on_pwmxb_t action_b[] = {MCPWM_ACTION_FORCE_LOW, MCPWM_ACTION_FORCE_HIGH};
mcpwm_fault_signal_t fault_sig = fault_sig_array[timer];
mcpwm_io_signals_t fault_io_sig = fault_io_sig_array[timer];
mcpwm_setup_testbench(unit, timer, 1000, 50.0, MCPWM_TEST_GROUP_CLK_HZ, MCPWM_TEST_TIMER_CLK_HZ);
TEST_ESP_OK(test_mcpwm_gpio_init(unit, fault_io_sig, TEST_FAULT_GPIO));
gpio_set_level(TEST_FAULT_GPIO, 0);
TEST_ESP_OK(mcpwm_fault_init(unit, MCPWM_HIGH_LEVEL_TGR, fault_sig));
for (int i = 0; i < sizeof(action_a) / sizeof(action_a[0]); i++) {
for (int j = 0; j < sizeof(action_b) / sizeof(action_b[0]); j++) {
TEST_ESP_OK(mcpwm_fault_set_cyc_mode(unit, timer, fault_sig, action_a[i], action_b[j]));
gpio_set_level(TEST_FAULT_GPIO, 1); // trigger the fault event
usleep(10000);
mcpwm_check_generator_level_on_fault(action_a[i], action_b[j]);
gpio_set_level(TEST_FAULT_GPIO, 0); // remove the fault signal
usleep(10000);
}
}
TEST_ESP_OK(mcpwm_fault_deinit(unit, fault_sig));
}
TEST_CASE("MCPWM fault cbc test", "[mcpwm]")
{
for (int i = 0; i < SOC_MCPWM_GROUPS; i++) {
for (int j = 0; j < SOC_MCPWM_TIMERS_PER_GROUP; j++) {
mcpwm_fault_cbc_test(i, j);
}
}
}
// -------------------------------------------------------------------------------------
static void mcpwm_fault_ost_test(mcpwm_unit_t unit, mcpwm_timer_t timer)
{
mcpwm_action_on_pwmxa_t action_a[] = {MCPWM_ACTION_FORCE_LOW, MCPWM_ACTION_FORCE_HIGH};
mcpwm_action_on_pwmxb_t action_b[] = {MCPWM_ACTION_FORCE_LOW, MCPWM_ACTION_FORCE_HIGH};
mcpwm_fault_signal_t fault_sig = fault_sig_array[timer];
mcpwm_io_signals_t fault_io_sig = fault_io_sig_array[timer];
mcpwm_setup_testbench(unit, timer, 1000, 50.0, MCPWM_TEST_GROUP_CLK_HZ, MCPWM_TEST_TIMER_CLK_HZ);
TEST_ESP_OK(test_mcpwm_gpio_init(unit, fault_io_sig, TEST_FAULT_GPIO));
gpio_set_level(TEST_FAULT_GPIO, 0);
TEST_ESP_OK(mcpwm_fault_init(unit, MCPWM_HIGH_LEVEL_TGR, fault_sig));
for (int i = 0; i < sizeof(action_a) / sizeof(action_a[0]); i++) {
for (int j = 0; j < sizeof(action_b) / sizeof(action_b[0]); j++) {
TEST_ESP_OK(mcpwm_fault_set_oneshot_mode(unit, timer, fault_sig, action_a[i], action_b[j]));
gpio_set_level(TEST_FAULT_GPIO, 1); // trigger the fault event
usleep(10000);
mcpwm_check_generator_level_on_fault(action_a[i], action_b[j]);
gpio_set_level(TEST_FAULT_GPIO, 0); // remove the fault signal
usleep(10000);
}
}
TEST_ESP_OK(mcpwm_fault_deinit(unit, fault_sig));
}
TEST_CASE("MCPWM fault ost test", "[mcpwm]")
{
for (int i = 0; i < SOC_MCPWM_GROUPS; i++) {
for (int j = 0; j < SOC_MCPWM_TIMERS_PER_GROUP; j++) {
mcpwm_fault_ost_test(i, j);
}
}
}
// -------------------------------------------------------------------------------------
static void mcpwm_sync_test(mcpwm_unit_t unit, mcpwm_timer_t timer)
{
mcpwm_sync_signal_t sync_sig = sync_sig_array[timer];
mcpwm_io_signals_t sync_io_sig = sync_io_sig_array[timer];
mcpwm_setup_testbench(unit, timer, 1000, 50.0, MCPWM_TEST_GROUP_CLK_HZ, MCPWM_TEST_TIMER_CLK_HZ);
TEST_ESP_OK(test_mcpwm_gpio_init(unit, sync_io_sig, TEST_SYNC_GPIO_0));
gpio_set_level(TEST_SYNC_GPIO_0, 0);
mcpwm_sync_config_t sync_conf = {
.sync_sig = sync_sig,
.timer_val = 200,
.count_direction = MCPWM_TIMER_DIRECTION_UP,
};
TEST_ESP_OK(mcpwm_sync_configure(unit, timer, &sync_conf));
vTaskDelay(pdMS_TO_TICKS(50));
gpio_set_level(TEST_SYNC_GPIO_0, 1); // trigger an external sync event
vTaskDelay(pdMS_TO_TICKS(50));
mcpwm_timer_trigger_soft_sync(unit, timer); // trigger a software sync event
vTaskDelay(pdMS_TO_TICKS(50));
TEST_ESP_OK(mcpwm_sync_disable(unit, timer));
TEST_ESP_OK(mcpwm_stop(unit, timer));
}
TEST_CASE("MCPWM timer GPIO sync test", "[mcpwm]")
{
for (int i = 0; i < SOC_MCPWM_GROUPS; i++) {
for (int j = 0; j < SOC_MCPWM_TIMERS_PER_GROUP; j++) {
mcpwm_sync_test(i, j);
}
}
}
static void mcpwm_swsync_test(mcpwm_unit_t unit) {
const uint32_t test_sync_phase = 20;
// used only in this area but need to be reset every time. mutex is not needed
// store timestamps captured from ISR callback
static uint64_t cap_timestamp[3];
cap_timestamp[0] = 0;
cap_timestamp[1] = 0;
cap_timestamp[2] = 0;
// control the start of capture to avoid unstable data
static volatile bool log_cap;
log_cap = false;
// cb function, to update capture value
// only log when channel1 comes at first, then channel2, and do not log further more.
bool capture_callback(mcpwm_unit_t mcpwm, mcpwm_capture_channel_id_t cap_channel, const cap_event_data_t *edata,
void *user_data) {
if (log_cap && (cap_timestamp[1] == 0 || cap_timestamp[2] == 0)) {
if (cap_channel == MCPWM_SELECT_CAP1 && cap_timestamp[1] == 0) {
cap_timestamp[1] = edata->cap_value;
}
if (cap_channel == MCPWM_SELECT_CAP2 && cap_timestamp[1] != 0) {
cap_timestamp[2] = edata->cap_value;
}
}
return false;
}
// configure all timer output 10% PWM
for (int i = 0; i < 3; ++i) {
mcpwm_setup_testbench(unit, i, 1000, 10.0, MCPWM_TEST_GROUP_CLK_HZ, MCPWM_TEST_TIMER_CLK_HZ);
}
vTaskDelay(pdMS_TO_TICKS(10));
// configure capture for verification
mcpwm_capture_config_t conf = {
.cap_edge = MCPWM_POS_EDGE,
.cap_prescale = 1,
.capture_cb = capture_callback,
.user_data = NULL,
};
TEST_ESP_OK(test_mcpwm_gpio_init(unit, MCPWM_CAP_0, TEST_SYNC_GPIO_0));
TEST_ESP_OK(test_mcpwm_gpio_init(unit, MCPWM_CAP_1, TEST_SYNC_GPIO_1));
TEST_ESP_OK(test_mcpwm_gpio_init(unit, MCPWM_CAP_2, TEST_SYNC_GPIO_2));
TEST_ESP_OK(mcpwm_capture_enable_channel(unit, MCPWM_SELECT_CAP0, &conf));
TEST_ESP_OK(mcpwm_capture_enable_channel(unit, MCPWM_SELECT_CAP1, &conf));
TEST_ESP_OK(mcpwm_capture_enable_channel(unit, MCPWM_SELECT_CAP2, &conf));
// timer0 produce sync sig at TEZ, timer1 and timer2 consume, to make sure last two can be synced precisely
// timer1 and timer2 will be synced with TEZ of timer0 at a known phase.
mcpwm_sync_config_t sync_conf = {
.sync_sig = MCPWM_SELECT_TIMER0_SYNC,
.timer_val = 0,
.count_direction = MCPWM_TIMER_DIRECTION_UP,
};
TEST_ESP_OK(mcpwm_sync_configure(unit, MCPWM_TIMER_1, &sync_conf));
sync_conf.timer_val = 1000 - test_sync_phase;
TEST_ESP_OK(mcpwm_sync_configure(unit, MCPWM_TIMER_2, &sync_conf));
TEST_ESP_OK(mcpwm_set_timer_sync_output(unit, MCPWM_TIMER_0, MCPWM_SWSYNC_SOURCE_TEZ));
// init gpio at the end
TEST_ESP_OK(test_mcpwm_gpio_init(unit, MCPWM0A, TEST_SYNC_GPIO_0));
TEST_ESP_OK(test_mcpwm_gpio_init(unit, MCPWM1A, TEST_SYNC_GPIO_1));
TEST_ESP_OK(test_mcpwm_gpio_init(unit, MCPWM2A, TEST_SYNC_GPIO_2));
vTaskDelay(pdMS_TO_TICKS(100));
log_cap = true;
vTaskDelay(pdMS_TO_TICKS(100));
uint32_t delta_timestamp_us = (cap_timestamp[2] - cap_timestamp[1]) * 1000000 / rtc_clk_apb_freq_get();
uint32_t expected_phase_us = 1000000 / mcpwm_get_frequency(unit, MCPWM_TIMER_0) * test_sync_phase / 1000;
// accept +-2 error
TEST_ASSERT_UINT32_WITHIN(2, expected_phase_us, delta_timestamp_us);
// tear down
for (int i = 0; i < 3; ++i) {
TEST_ESP_OK(mcpwm_capture_disable_channel(unit, i));
TEST_ESP_OK(mcpwm_sync_disable(unit, i));
TEST_ESP_OK(mcpwm_stop(unit, i));
}
}
TEST_CASE("MCPWM timer swsync test", "[mcpwm]")
{
for (int i = 0; i < SOC_MCPWM_GROUPS; i++) {
mcpwm_swsync_test(i);
}
}
// -------------------------------------------------------------------------------------
typedef struct {
mcpwm_unit_t unit;
TaskHandle_t task_hdl;
} test_capture_callback_data_t;
static bool test_mcpwm_intr_handler(mcpwm_unit_t mcpwm, mcpwm_capture_channel_id_t cap_sig, const cap_event_data_t *edata, void *arg) {
BaseType_t high_task_wakeup = pdFALSE;
test_capture_callback_data_t *cb_data = (test_capture_callback_data_t *)arg;
vTaskNotifyGiveFromISR(cb_data->task_hdl, &high_task_wakeup);
return high_task_wakeup == pdTRUE;
}
static void mcpwm_capture_test(mcpwm_unit_t unit, mcpwm_capture_signal_t cap_chan)
{
test_capture_callback_data_t callback_data = {
.unit = unit,
.task_hdl = xTaskGetCurrentTaskHandle(),
};
//each timer test the capture sig with the same id with it.
mcpwm_io_signals_t cap_io = cap_io_sig_array[cap_chan];
mcpwm_capture_channel_id_t cap_channel = cap_sig_array[cap_chan];
TEST_ESP_OK(test_mcpwm_gpio_init(unit, cap_io, TEST_CAP_GPIO));
mcpwm_capture_config_t conf = {
.cap_edge = MCPWM_POS_EDGE,
.cap_prescale = 1,
.capture_cb = test_mcpwm_intr_handler,
.user_data = &callback_data
};
TEST_ESP_OK(mcpwm_capture_enable_channel(unit, cap_channel, &conf));
// generate an posage
gpio_set_level(TEST_CAP_GPIO, 0);
gpio_set_level(TEST_CAP_GPIO, 1);
vTaskDelay(pdMS_TO_TICKS(100));
TEST_ASSERT_NOT_EQUAL(0, ulTaskNotifyTake(pdFALSE, pdMS_TO_TICKS(40)));
uint32_t cap_val0 = mcpwm_capture_signal_get_value(unit, cap_chan);
// generate another posage
gpio_set_level(TEST_CAP_GPIO, 0);
gpio_set_level(TEST_CAP_GPIO, 1);
TEST_ASSERT_NOT_EQUAL(0, ulTaskNotifyTake(pdFALSE, pdMS_TO_TICKS(40)));
uint32_t cap_val1 = mcpwm_capture_signal_get_value(unit, cap_chan);
// capture clock source is APB (80MHz), 100ms means 8000000 ticks
TEST_ASSERT_UINT_WITHIN(100000, 8000000, cap_val1 - cap_val0);
TEST_ESP_OK(mcpwm_capture_disable_channel(unit, cap_channel));
}
TEST_CASE("MCPWM capture test", "[mcpwm]")
{
// we assume each group has one capture timer
for (int i = 0; i < SOC_MCPWM_GROUPS; i++) {
for (int j = 0; j < SOC_MCPWM_CAPTURE_CHANNELS_PER_TIMER; j++) {
mcpwm_capture_test(i, j);
}
}
}
#endif // SOC_MCPWM_SUPPORTED