esp-idf/components/ethernet/emac_main.c

1256 lines
37 KiB
C

// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "rom/ets_sys.h"
#include "rom/gpio.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/gpio_reg.h"
#include "soc/dport_reg.h"
#include "soc/emac_ex_reg.h"
#include "soc/emac_reg_v2.h"
#include "soc/soc.h"
#include "tcpip_adapter.h"
#include "sdkconfig.h"
#include "esp_task_wdt.h"
#include "esp_event.h"
#include "esp_system.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_eth.h"
#include "esp_intr_alloc.h"
#include "esp_pm.h"
#include "esp_spiram.h"
#include "driver/periph_ctrl.h"
#include "emac_common.h"
#include "emac_desc.h"
#include "freertos/xtensa_api.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "freertos/timers.h"
#include "lwip/err.h"
#define EMAC_EVT_QNUM 200
#define EMAC_SIG_MAX 50
static struct emac_config_data emac_config;
static dma_extended_desc_t *emac_dma_rx_chain_buf;
static dma_extended_desc_t *emac_dma_tx_chain_buf;
static uint8_t *emac_dma_rx_buf[DMA_RX_BUF_NUM];
static uint8_t *emac_dma_tx_buf[DMA_TX_BUF_NUM];
static SemaphoreHandle_t emac_g_sem = NULL;
static portMUX_TYPE g_emac_mux = portMUX_INITIALIZER_UNLOCKED;
static xTaskHandle emac_task_hdl = NULL;
static xQueueHandle emac_xqueue = NULL;
static uint8_t emac_sig_cnt[EMAC_SIG_MAX] = {0};
static TimerHandle_t emac_timer = NULL;
static SemaphoreHandle_t emac_rx_xMutex = NULL;
static SemaphoreHandle_t emac_tx_xMutex = NULL;
static intr_handle_t eth_intr_handle = NULL;
static const char *TAG = "emac";
static bool pause_send = false;
#ifdef CONFIG_PM_ENABLE
static esp_pm_lock_handle_t s_pm_lock;
#endif
static esp_err_t emac_ioctl(emac_sig_t sig, emac_par_t par);
esp_err_t emac_post(emac_sig_t sig, emac_par_t par);
static void emac_macaddr_init(void)
{
esp_read_mac(&(emac_config.macaddr[0]), ESP_MAC_ETH);
}
void esp_eth_get_mac(uint8_t mac[6])
{
memcpy(mac, &(emac_config.macaddr[0]), 6);
}
esp_err_t esp_eth_set_mac(const uint8_t mac[6])
{
if (!(mac[0] & 0x01)) {
memcpy(&(emac_config.macaddr[0]), mac, 6);
return ESP_OK;
} else {
return ESP_ERR_INVALID_MAC;
}
}
eth_speed_mode_t esp_eth_get_speed(void)
{
return emac_config.emac_phy_get_speed_mode();
}
static void emac_setup_tx_desc(dma_extended_desc_t *tx_desc, uint32_t size)
{
tx_desc->basic.desc1 = size & 0xfff;
tx_desc->basic.desc0 = EMAC_DESC_TX_OWN | EMAC_DESC_INT_COMPL | EMAC_DESC_LAST_SEGMENT |
EMAC_DESC_FIRST_SEGMENT | EMAC_DESC_SECOND_ADDR_CHAIN;
}
static void emac_clean_tx_desc(dma_extended_desc_t *tx_desc)
{
tx_desc->basic.desc1 = 0;
tx_desc->basic.desc0 = 0;
}
static void emac_clean_rx_desc(dma_extended_desc_t *rx_desc, uint32_t buf_ptr)
{
if (buf_ptr != 0) {
rx_desc->basic.desc2 = buf_ptr;
}
rx_desc->basic.desc1 = EMAC_DESC_RX_SECOND_ADDR_CHAIN | DMA_RX_BUF_SIZE;
rx_desc->basic.desc0 = EMAC_DESC_RX_OWN;
}
static void emac_set_tx_base_reg(void)
{
REG_WRITE(EMAC_DMATXBASEADDR_REG, (uint32_t)(emac_config.dma_etx));
}
static void emac_set_rx_base_reg(void)
{
REG_WRITE(EMAC_DMARXBASEADDR_REG, (uint32_t)(emac_config.dma_erx));
}
/*
* dirty_rx indicates the hardware has been fed with data packets and is the
* first node software needs to handle;
*
* cur_rx indicates the completion of software handling and is the last node
* hardware could use;
*
* cnt_rx is to count the numbers of packets handled by software, passed to
* protocol stack and not been freed.
*
* (1) Initializing the Linked List. Connect the numerable nodes to a circular
* linked list, appoint one of the nodes as the head node, mark* the dirty_rx
* and cur_rx into the node, and mount the node on the hardware base address.
* Initialize cnt_rx into 0.
*
* (2) When hardware receives packets, nodes of linked lists will be fed with
* data packets from the base address by turns, marks the node
* of linked lists as “HARDWARE UNUSABLE” and reports interrupts.
*
* (3) When the software receives the interrupts, it will handle the linked
* lists by turns from dirty_rx, send data packets to protocol
* stack. dirty_rx will deviate backwards by turns and cnt_rx will by turns ++.
*
* (4) After the protocol stack handles all the data and calls the free function,
* it will deviate backwards by turns from cur_rx, mark the * node of linked
* lists as “HARDWARE USABLE” and cnt_rx will by turns --.
*
* (5) Cycle from Step 2 to Step 4 without break and build up circular linked
* list handling.
*/
static void emac_reset_dma_chain(void)
{
emac_config.cnt_tx = 0;
emac_config.cur_tx = 0;
emac_config.dirty_tx = 0;
emac_config.cnt_rx = 0;
emac_config.cur_rx = 0;
emac_config.dirty_rx = 0;
}
static void emac_init_dma_chain(void)
{
int i;
uint32_t dma_phy;
dma_extended_desc_t *p = NULL;
//init tx chain
emac_config.dma_etx = emac_dma_tx_chain_buf;
emac_config.cnt_tx = 0;
emac_config.cur_tx = 0;
emac_config.dirty_tx = 0;
dma_phy = (uint32_t)(emac_config.dma_etx);
p = emac_config.dma_etx;
for (i = 0; i < (DMA_TX_BUF_NUM - 1); i++) {
dma_phy += sizeof(dma_extended_desc_t);
emac_clean_tx_desc(p);
p->basic.desc2 = (uint32_t)(emac_dma_tx_buf[i]);
p->basic.desc3 = dma_phy;
p++;
}
emac_clean_tx_desc(p);
p->basic.desc2 = (uint32_t)(emac_dma_tx_buf[i]);
p->basic.desc3 = (uint32_t)(emac_config.dma_etx);
//init rx chain
emac_config.dma_erx = emac_dma_rx_chain_buf;
emac_config.cnt_rx = 0;
emac_config.cur_rx = 0;
emac_config.dirty_rx = 0;
dma_phy = (uint32_t)(emac_config.dma_erx);
p = emac_config.dma_erx;
for (i = 0; i < (DMA_RX_BUF_NUM - 1); i++) {
dma_phy += sizeof(dma_extended_desc_t);
emac_clean_rx_desc(p, (uint32_t)(emac_dma_rx_buf[i]));
p->basic.desc3 = dma_phy;
p++;
}
emac_clean_rx_desc(p, (uint32_t)(emac_dma_rx_buf[i]));
p->basic.desc3 = (uint32_t)(emac_config.dma_erx);
}
void esp_eth_smi_write(uint32_t reg_num, uint16_t value)
{
uint32_t phy_num = emac_config.phy_addr;
while (REG_GET_BIT(EMAC_GMIIADDR_REG, EMAC_MIIBUSY) == 1) {
}
REG_WRITE(EMAC_MIIDATA_REG, value);
REG_WRITE(EMAC_GMIIADDR_REG, 0x3 | ((reg_num & 0x1f) << 6) | ((phy_num & 0x1f) << 11) | ((0x3) << 2));
while (REG_GET_BIT(EMAC_GMIIADDR_REG, EMAC_MIIBUSY) == 1) {
}
}
uint16_t esp_eth_smi_read(uint32_t reg_num)
{
uint32_t phy_num = emac_config.phy_addr;
uint16_t value = 0;
while (REG_GET_BIT(EMAC_GMIIADDR_REG, EMAC_MIIBUSY) == 1) {
}
REG_WRITE(EMAC_GMIIADDR_REG, 0x1 | ((reg_num & 0x1f) << 6) | ((phy_num & 0x1f) << 11) | (0x3 << 2));
while (REG_GET_BIT(EMAC_GMIIADDR_REG, EMAC_MIIBUSY) == 1) {
}
value = (REG_READ(EMAC_MIIDATA_REG) & 0xffff);
return value;
}
esp_err_t esp_eth_smi_wait_value(uint32_t reg_num, uint16_t value, uint16_t value_mask, int timeout_ms)
{
unsigned start = xTaskGetTickCount();
unsigned timeout_ticks = (timeout_ms + portTICK_PERIOD_MS - 1) / portTICK_PERIOD_MS;
uint16_t current_value = 0;
while (timeout_ticks == 0 || (xTaskGetTickCount() - start < timeout_ticks)) {
current_value = esp_eth_smi_read(reg_num);
if ((current_value & value_mask) == (value & value_mask)) {
return ESP_OK;
}
vTaskDelay(1);
}
ESP_LOGE(TAG, "Timed out waiting for PHY register 0x%x to have value 0x%04x(mask 0x%04x). Current value 0x%04x",
reg_num, value, value_mask, current_value);
return ESP_ERR_TIMEOUT;
}
esp_err_t emac_reset(void)
{
REG_SET_BIT(EMAC_DMABUSMODE_REG, EMAC_SW_RST);
if (emac_config.reset_timeout_ms) {
int start = xTaskGetTickCount();
uint32_t timeout_ticks = (emac_config.reset_timeout_ms + portTICK_PERIOD_MS - 1) / portTICK_PERIOD_MS;
while (timeout_ticks == 0 || (xTaskGetTickCount() - start < timeout_ticks)) {
if (REG_GET_BIT(EMAC_DMABUSMODE_REG, EMAC_SW_RST) != EMAC_SW_RST) {
goto reset_ok;
}
vTaskDelay(1);
}
ESP_LOGE(TAG, "Reset EMAC Timeout");
return ESP_ERR_TIMEOUT;
}
/* infinite wait loop */
else {
while (REG_GET_BIT(EMAC_DMABUSMODE_REG, EMAC_SW_RST) == EMAC_SW_RST) {
//nothing to do ,if stop here,maybe emac have not clk input.
ESP_LOGI(TAG, "emac resetting ....");
}
}
reset_ok:
ESP_LOGI(TAG, "emac reset done");
return ESP_OK;
}
static void emac_set_user_config_data(eth_config_t *config)
{
emac_config.phy_addr = config->phy_addr;
emac_config.mac_mode = config->mac_mode;
emac_config.clock_mode = config->clock_mode;
emac_config.phy_init = config->phy_init;
emac_config.emac_tcpip_input = config->tcpip_input;
emac_config.emac_gpio_config = config->gpio_config;
emac_config.emac_phy_check_link = config->phy_check_link;
emac_config.emac_phy_check_init = config->phy_check_init;
emac_config.emac_phy_get_speed_mode = config->phy_get_speed_mode;
emac_config.emac_phy_get_duplex_mode = config->phy_get_duplex_mode;
emac_config.reset_timeout_ms = config->reset_timeout_ms;
#if DMA_RX_BUF_NUM > 9
emac_config.emac_flow_ctrl_enable = config->flow_ctrl_enable;
#else
if (config->flow_ctrl_enable == true) {
ESP_LOGE(TAG, "Can only configure flow_ctrl_enable==true if DMA_RX_BUF_NUM in menuconfig is >9. Disabling flow control.");
}
emac_config.emac_flow_ctrl_enable = false;
#endif
emac_config.emac_phy_get_partner_pause_enable = config->phy_get_partner_pause_enable;
emac_config.emac_phy_power_enable = config->phy_power_enable;
emac_config.promiscuous_enable = config->promiscuous_enable;
}
static void emac_enable_intr()
{
REG_WRITE(EMAC_DMAIN_EN_REG, EMAC_INTR_ENABLE_BIT);
}
static void emac_disable_intr()
{
REG_WRITE(EMAC_DMAIN_EN_REG, 0);
}
static esp_err_t emac_verify_args(void)
{
esp_err_t ret = ESP_OK;
if (emac_config.phy_addr > PHY31) {
ESP_LOGE(TAG, "phy addr err");
ret = ESP_FAIL;
}
if (emac_config.mac_mode != ETH_MODE_RMII) {
ESP_LOGE(TAG, "mac mode err, currently only support for RMII");
ret = ESP_FAIL;
}
if (emac_config.clock_mode > ETH_CLOCK_GPIO17_OUT) {
ESP_LOGE(TAG, "emac clock mode err");
ret = ESP_FAIL;
}
if (emac_config.phy_init == NULL) {
ESP_LOGE(TAG, "phy_init func is null");
ret = ESP_FAIL;
}
if (emac_config.emac_tcpip_input == NULL) {
ESP_LOGE(TAG, "tcpip_input func is null");
ret = ESP_FAIL;
}
if (emac_config.emac_gpio_config == NULL) {
ESP_LOGE(TAG, "gpio config func is null");
ret = ESP_FAIL;
}
if (emac_config.emac_phy_check_link == NULL) {
ESP_LOGE(TAG, "phy check link func is null");
ret = ESP_FAIL;
}
if (emac_config.emac_phy_check_init == NULL) {
ESP_LOGE(TAG, "phy check init func is null");
ret = ESP_FAIL;
}
if (emac_config.emac_phy_get_speed_mode == NULL) {
ESP_LOGE(TAG, "phy get speed mode func is null");
ret = ESP_FAIL;
}
if (emac_config.emac_phy_get_duplex_mode == NULL) {
ESP_LOGE(TAG, "phy get duplex mode func is null");
ret = ESP_FAIL;
}
if (emac_config.emac_flow_ctrl_enable && !emac_config.emac_phy_get_partner_pause_enable) {
ESP_LOGE(TAG, "phy get partner pause enable func is null");
ret = ESP_FAIL;
}
if (emac_config.emac_phy_power_enable == NULL) {
ESP_LOGE(TAG, "phy power enable func is null");
ret = ESP_FAIL;
}
return ret;
}
static void emac_process_tx(void)
{
uint32_t cur_tx_desc = emac_read_tx_cur_reg();
if (emac_config.emac_status == EMAC_RUNTIME_STOP) {
return;
}
xSemaphoreTakeRecursive(emac_tx_xMutex, portMAX_DELAY);
while (((uint32_t) & (emac_config.dma_etx[emac_config.dirty_tx])) != cur_tx_desc) {
emac_clean_tx_desc(&(emac_config.dma_etx[emac_config.dirty_tx]));
emac_config.dirty_tx = (emac_config.dirty_tx + 1) % DMA_TX_BUF_NUM;
emac_config.cnt_tx--;
if (emac_config.cnt_tx < 0) {
ESP_LOGE(TAG, "emac tx chain err");
}
cur_tx_desc = emac_read_tx_cur_reg();
}
xSemaphoreGiveRecursive(emac_tx_xMutex);
}
void esp_eth_free_rx_buf(void *buf)
{
xSemaphoreTakeRecursive(emac_rx_xMutex, portMAX_DELAY);
emac_clean_rx_desc(&(emac_config.dma_erx[emac_config.cur_rx]), (uint32_t)buf);
emac_config.cur_rx = (emac_config.cur_rx + 1) % DMA_RX_BUF_NUM;
emac_config.cnt_rx--;
if (emac_config.cnt_rx < 0) {
ESP_LOGE(TAG, "emac rx buf err");
}
emac_poll_rx_cmd();
xSemaphoreGiveRecursive(emac_rx_xMutex);
if (emac_config.emac_flow_ctrl_partner_support) {
portENTER_CRITICAL(&g_emac_mux);
if (pause_send && emac_config.cnt_rx < FLOW_CONTROL_LOW_WATERMARK) {
emac_send_pause_zero_frame_enable();
pause_send = false;
}
portEXIT_CRITICAL(&g_emac_mux);
}
}
static uint32_t IRAM_ATTR emac_get_rxbuf_count_in_intr(void)
{
uint32_t cnt = 0;
uint32_t cur_rx_desc = emac_read_rx_cur_reg();
dma_extended_desc_t *cur_desc = (dma_extended_desc_t *)cur_rx_desc;
while (cur_desc->basic.desc0 == EMAC_DESC_RX_OWN && cnt < DMA_RX_BUF_NUM) {
cnt++;
cur_desc = (dma_extended_desc_t *)cur_desc->basic.desc3;
}
return cnt;
}
#if CONFIG_EMAC_L2_TO_L3_RX_BUF_MODE
static void emac_process_rx(void)
{
if (emac_config.emac_status == EMAC_RUNTIME_STOP) {
return;
}
uint32_t cur_rx_desc = emac_read_rx_cur_reg();
while (((uint32_t) & (emac_config.dma_erx[emac_config.dirty_rx])) != cur_rx_desc) {
//copy data to lwip
emac_config.emac_tcpip_input((void *)(emac_config.dma_erx[emac_config.dirty_rx].basic.desc2),
(((emac_config.dma_erx[emac_config.dirty_rx].basic.desc0) >> EMAC_DESC_FRAME_LENGTH_S) &
EMAC_DESC_FRAME_LENGTH), NULL);
emac_clean_rx_desc(&(emac_config.dma_erx[emac_config.dirty_rx]), (emac_config.dma_erx[emac_config.dirty_rx].basic.desc2));
emac_config.dirty_rx = (emac_config.dirty_rx + 1) % DMA_RX_BUF_NUM;
cur_rx_desc = emac_read_rx_cur_reg();
}
emac_enable_rx_intr();
}
static void emac_process_rx_unavail(void)
{
if (emac_config.emac_status == EMAC_RUNTIME_STOP) {
return;
}
uint32_t dirty_cnt = 0;
while (dirty_cnt < DMA_RX_BUF_NUM) {
if (emac_config.dma_erx[emac_config.dirty_rx].basic.desc0 & EMAC_DESC_RX_OWN) {
break;
}
dirty_cnt++;
//copy data to lwip
emac_config.emac_tcpip_input((void *)(emac_config.dma_erx[emac_config.dirty_rx].basic.desc2),
(((emac_config.dma_erx[emac_config.dirty_rx].basic.desc0) >> EMAC_DESC_FRAME_LENGTH_S) &
EMAC_DESC_FRAME_LENGTH), NULL);
emac_clean_rx_desc(&(emac_config.dma_erx[emac_config.dirty_rx]), (emac_config.dma_erx[emac_config.dirty_rx].basic.desc2));
emac_config.dirty_rx = (emac_config.dirty_rx + 1) % DMA_RX_BUF_NUM;
}
emac_enable_rx_intr();
emac_enable_rx_unavail_intr();
emac_poll_rx_cmd();
}
#else
static void emac_process_rx_unavail(void)
{
if (emac_config.emac_status == EMAC_RUNTIME_STOP) {
return;
}
xSemaphoreTakeRecursive(emac_rx_xMutex, portMAX_DELAY);
while (emac_config.cnt_rx < DMA_RX_BUF_NUM) {
if (emac_config.dma_erx[emac_config.dirty_rx].basic.desc0 & EMAC_DESC_RX_OWN) {
break;
}
emac_config.cnt_rx++;
if (emac_config.cnt_rx > DMA_RX_BUF_NUM) {
ESP_LOGE(TAG, "emac rx buf full");
}
uint32_t tmp_dirty = emac_config.dirty_rx;
emac_config.dirty_rx = (emac_config.dirty_rx + 1) % DMA_RX_BUF_NUM;
//copy data to lwip
emac_config.emac_tcpip_input((void *)(emac_config.dma_erx[tmp_dirty].basic.desc2),
(((emac_config.dma_erx[tmp_dirty].basic.desc0) >> EMAC_DESC_FRAME_LENGTH_S) &
EMAC_DESC_FRAME_LENGTH), NULL);
}
emac_enable_rx_intr();
emac_enable_rx_unavail_intr();
xSemaphoreGiveRecursive(emac_rx_xMutex);
}
static void emac_process_rx(void)
{
if (emac_config.emac_status == EMAC_RUNTIME_STOP) {
return;
}
uint32_t cur_rx_desc = emac_read_rx_cur_reg();
xSemaphoreTakeRecursive(emac_rx_xMutex, portMAX_DELAY);
if ((((uint32_t) & (emac_config.dma_erx[emac_config.dirty_rx])) != cur_rx_desc)) {
while ((((uint32_t) & (emac_config.dma_erx[emac_config.dirty_rx])) != cur_rx_desc) &&
emac_config.cnt_rx < DMA_RX_BUF_NUM) {
emac_config.cnt_rx++;
if (emac_config.cnt_rx > DMA_RX_BUF_NUM) {
ESP_LOGE(TAG, "emac rx buf full");
}
uint32_t tmp_dirty = emac_config.dirty_rx;
emac_config.dirty_rx = (emac_config.dirty_rx + 1) % DMA_RX_BUF_NUM;
//copy data to lwip
emac_config.emac_tcpip_input((void *)(emac_config.dma_erx[tmp_dirty].basic.desc2),
(((emac_config.dma_erx[tmp_dirty].basic.desc0) >> EMAC_DESC_FRAME_LENGTH_S) &
EMAC_DESC_FRAME_LENGTH), NULL);
cur_rx_desc = emac_read_rx_cur_reg();
}
} else {
if (emac_config.cnt_rx < DMA_RX_BUF_NUM) {
if (!(emac_config.dma_erx[emac_config.dirty_rx].basic.desc0 & EMAC_DESC_RX_OWN)) {
while (emac_config.cnt_rx < DMA_RX_BUF_NUM) {
if (emac_config.dma_erx[emac_config.dirty_rx].basic.desc0 & EMAC_DESC_RX_OWN) {
break;
}
emac_config.cnt_rx++;
if (emac_config.cnt_rx > DMA_RX_BUF_NUM) {
ESP_LOGE(TAG, "emac rx buf full");
}
uint32_t tmp_dirty = emac_config.dirty_rx;
emac_config.dirty_rx = (emac_config.dirty_rx + 1) % DMA_RX_BUF_NUM;
//copy data to lwip
emac_config.emac_tcpip_input((void *)(emac_config.dma_erx[tmp_dirty].basic.desc2),
(((emac_config.dma_erx[tmp_dirty].basic.desc0) >> EMAC_DESC_FRAME_LENGTH_S) &
EMAC_DESC_FRAME_LENGTH), NULL);
}
}
}
}
emac_enable_rx_intr();
xSemaphoreGiveRecursive(emac_rx_xMutex);
}
#endif
//TODO other events need to do something
static void IRAM_ATTR emac_process_intr(void *arg)
{
uint32_t event;
event = REG_READ(EMAC_DMASTATUS_REG);
//clr intrs
REG_WRITE(EMAC_DMASTATUS_REG, event);
if (event & EMAC_RECV_INT) {
emac_disable_rx_intr();
if (emac_config.emac_flow_ctrl_partner_support) {
if (emac_get_rxbuf_count_in_intr() < FLOW_CONTROL_HIGH_WATERMARK && !pause_send) {
pause_send = true;
emac_send_pause_frame_enable();
}
}
emac_post(SIG_EMAC_RX_DONE, 0);
}
if (event & EMAC_RECV_BUF_UNAVAIL) {
emac_disable_rx_unavail_intr();
emac_post(SIG_EMAC_RX_UNAVAIL, 0);
}
if (event & EMAC_TRANS_INT) {
emac_post(SIG_EMAC_TX_DONE, 0);
}
}
static void emac_set_macaddr_reg(void)
{
REG_SET_FIELD(EMAC_ADDR0HIGH_REG, EMAC_ADDRESS0_HI, (emac_config.macaddr[5] << 8) | (emac_config.macaddr[4]));
REG_WRITE(EMAC_ADDR0LOW_REG, (emac_config.macaddr[3] << 24) | (emac_config.macaddr[2] << 16) |
(emac_config.macaddr[1] << 8) | (emac_config.macaddr[0]));
}
static void emac_check_phy_init(void)
{
emac_config.emac_phy_check_init();
if (emac_config.emac_phy_get_duplex_mode() == ETH_MODE_FULLDUPLEX) {
REG_SET_BIT(EMAC_GMACCONFIG_REG, EMAC_EMACDUPLEX);
} else {
REG_CLR_BIT(EMAC_GMACCONFIG_REG, EMAC_EMACDUPLEX);
}
if (emac_config.emac_phy_get_speed_mode() == ETH_SPEED_MODE_100M) {
REG_SET_BIT(EMAC_GMACCONFIG_REG, EMAC_EMACFESPEED);
} else {
REG_CLR_BIT(EMAC_GMACCONFIG_REG, EMAC_EMACFESPEED);
}
#if CONFIG_EMAC_L2_TO_L3_RX_BUF_MODE
emac_disable_flowctrl();
emac_config.emac_flow_ctrl_partner_support = false;
#else
if (emac_config.emac_flow_ctrl_enable) {
if (emac_config.emac_phy_get_partner_pause_enable() &&
emac_config.emac_phy_get_duplex_mode() == ETH_MODE_FULLDUPLEX) {
emac_enable_flowctrl();
emac_config.emac_flow_ctrl_partner_support = true;
} else {
emac_disable_flowctrl();
emac_config.emac_flow_ctrl_partner_support = false;
}
} else {
emac_disable_flowctrl();
emac_config.emac_flow_ctrl_partner_support = false;
}
#endif
emac_mac_enable_txrx();
}
static void emac_process_link_updown(bool link_status)
{
system_event_t evt;
uint8_t i = 0;
emac_config.phy_link_up = link_status;
if (link_status) {
emac_check_phy_init();
ESP_LOGD(TAG, "eth link_up");
emac_enable_dma_tx();
emac_enable_dma_rx();
for (i = 0; i < PHY_LINK_CHECK_NUM; i++) {
emac_check_phy_init();
}
evt.event_id = SYSTEM_EVENT_ETH_CONNECTED;
} else {
ESP_LOGD(TAG, "eth link_down");
emac_disable_dma_tx();
emac_disable_dma_rx();
evt.event_id = SYSTEM_EVENT_ETH_DISCONNECTED;
}
esp_event_send(&evt);
}
static void emac_hw_init(void)
{
//init chain
emac_init_dma_chain();
//get hw features TODO
//ipc TODO
}
esp_err_t esp_eth_tx(uint8_t *buf, uint16_t size)
{
esp_err_t ret = ESP_OK;
if (emac_config.emac_status != EMAC_RUNTIME_START) {
ESP_LOGE(TAG, "tx netif is not ready, emac_status=%d", emac_config.emac_status);
ret = ESP_ERR_INVALID_STATE;
return ret;
}
xSemaphoreTakeRecursive(emac_tx_xMutex, portMAX_DELAY);
if (emac_config.cnt_tx == DMA_TX_BUF_NUM - 1) {
ESP_LOGD(TAG, "tx buf full");
ret = ESP_ERR_NO_MEM;
goto _exit;
}
memcpy((void *)(emac_config.dma_etx[emac_config.cur_tx].basic.desc2), buf, size);
emac_setup_tx_desc(&(emac_config.dma_etx[emac_config.cur_tx]), size);
emac_config.cnt_tx++;
emac_config.cur_tx = (emac_config.cur_tx + 1) % DMA_TX_BUF_NUM;
emac_poll_tx_cmd();
_exit:
xSemaphoreGiveRecursive(emac_tx_xMutex);
return ret;
}
static void emac_init_default_data(void)
{
memset((void *)&emac_config, 0, sizeof(struct emac_config_data));
}
void emac_process_link_check(void)
{
if (emac_config.emac_status != EMAC_RUNTIME_START) {
return;
}
if (emac_config.emac_phy_check_link()) {
if (!emac_config.phy_link_up) {
emac_process_link_updown(true);
}
} else {
if (emac_config.phy_link_up) {
emac_process_link_updown(false);
}
}
}
void emac_link_check_func(void *pv_parameters)
{
emac_post(SIG_EMAC_CHECK_LINK, 0);
}
static bool emac_link_check_timer_init(void)
{
emac_timer = xTimerCreate("emac_timer",
(CONFIG_EMAC_CHECK_LINK_PERIOD_MS / portTICK_PERIOD_MS),
pdTRUE,
NULL,
emac_link_check_func);
if (emac_timer == NULL) {
return false;
} else {
return true;
}
}
static bool emac_link_check_timer_start(void)
{
if (xTimerStart(emac_timer, portMAX_DELAY) != pdPASS) {
return false;
} else {
return true;
}
}
static bool emac_link_check_timer_stop(void)
{
if (xTimerStop(emac_timer, portMAX_DELAY) != pdPASS) {
return false;
} else {
return true;
}
}
static bool emac_link_check_timer_delete(void)
{
xTimerDelete(emac_timer, portMAX_DELAY);
emac_timer = NULL;
return true;
}
static void emac_start(void *param)
{
struct emac_post_cmd *post_cmd = (struct emac_post_cmd *)param;
struct emac_open_cmd *cmd = (struct emac_open_cmd *)(post_cmd->cmd);
ESP_LOGD(TAG, "emac start");
cmd->err = EMAC_CMD_OK;
if (emac_reset() != ESP_OK) {
return;
}
emac_reset_dma_chain();
emac_dma_init();
emac_set_macaddr_reg();
emac_set_tx_base_reg();
emac_set_rx_base_reg();
emac_mac_init();
/* check if enable promiscuous mode */
if (emac_config.promiscuous_enable) {
emac_enable_promiscuous();
} else {
emac_disable_promiscuous();
}
emac_enable_intr();
emac_config.emac_status = EMAC_RUNTIME_START;
system_event_t evt;
evt.event_id = SYSTEM_EVENT_ETH_START;
esp_event_send(&evt);
//set a timer to check link up status
if (emac_link_check_timer_init()) {
if (!emac_link_check_timer_start()) {
cmd->err = EMAC_CMD_FAIL;
emac_link_check_timer_delete();
}
} else {
cmd->err = EMAC_CMD_FAIL;
}
if (post_cmd->post_type == EMAC_POST_SYNC) {
xSemaphoreGive(emac_g_sem);
}
ESP_LOGD(TAG, "emac start success");
}
esp_err_t esp_eth_enable(void)
{
struct emac_post_cmd post_cmd;
struct emac_open_cmd open_cmd;
post_cmd.cmd = (void *)(&open_cmd);
open_cmd.err = EMAC_CMD_OK;
if (emac_config.emac_status == EMAC_RUNTIME_START) {
open_cmd.err = EMAC_CMD_OK;
return open_cmd.err;
}
#ifdef CONFIG_PM_ENABLE
esp_err_t err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "ethernet", &s_pm_lock);
if (err != ESP_OK) {
return err;
}
esp_pm_lock_acquire(s_pm_lock);
#endif //CONFIG_PM_ENABLE
emac_enable_clk(true);
/* init phy device */
if (emac_config.phy_init() != ESP_OK) {
ESP_LOGE(TAG, "Initialise PHY device Timeout");
return ESP_FAIL;
}
if (emac_config.emac_status != EMAC_RUNTIME_NOT_INIT) {
if (emac_ioctl(SIG_EMAC_START, (emac_par_t)(&post_cmd))) {
open_cmd.err = EMAC_CMD_FAIL;
goto cleanup;
}
} else {
open_cmd.err = EMAC_CMD_FAIL;
goto cleanup;
}
return EMAC_CMD_OK;
cleanup:
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_release(s_pm_lock);
esp_pm_lock_delete(s_pm_lock);
s_pm_lock = NULL;
#endif //CONFIG_PM_ENABLE
return open_cmd.err;
}
static void emac_stop(void *param)
{
struct emac_post_cmd *post_cmd = (struct emac_post_cmd *)param;
ESP_LOGD(TAG, "emac stop");
emac_link_check_timer_stop();
emac_link_check_timer_delete();
emac_process_link_updown(false);
emac_disable_intr();
emac_enable_clk(false);
emac_config.emac_status = EMAC_RUNTIME_STOP;
system_event_t evt;
evt.event_id = SYSTEM_EVENT_ETH_STOP;
esp_event_send(&evt);
if (post_cmd->post_type == EMAC_POST_SYNC) {
xSemaphoreGive(emac_g_sem);
}
ESP_LOGD(TAG, "emac stop success");
}
esp_err_t esp_eth_disable(void)
{
struct emac_post_cmd post_cmd;
struct emac_close_cmd close_cmd;
post_cmd.cmd = (void *)(&close_cmd);
close_cmd.err = EMAC_CMD_OK;
if (emac_config.emac_status == EMAC_RUNTIME_STOP) {
close_cmd.err = EMAC_CMD_OK;
return close_cmd.err;
}
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_release(s_pm_lock);
esp_pm_lock_delete(s_pm_lock);
s_pm_lock = NULL;
#endif // CONFIG_PM_ENABLE
if (emac_config.emac_status == EMAC_RUNTIME_START) {
if (emac_ioctl(SIG_EMAC_STOP, (emac_par_t)(&post_cmd)) != 0) {
close_cmd.err = EMAC_CMD_FAIL;
}
} else {
close_cmd.err = EMAC_CMD_FAIL;
}
return close_cmd.err;
}
static esp_err_t emac_ioctl(emac_sig_t sig, emac_par_t par)
{
esp_err_t ret = ESP_OK;
struct emac_post_cmd *post_cmd = (struct emac_post_cmd *)par;
xTaskHandle task_hdl = xTaskGetCurrentTaskHandle();
if (emac_task_hdl != task_hdl) {
post_cmd->post_type = EMAC_POST_SYNC;
if (emac_post(sig, par) != ESP_OK) {
ret = ESP_FAIL;
return ret;
};
if (xSemaphoreTake(emac_g_sem, portMAX_DELAY) == pdTRUE) {
return ret;
}
} else {
post_cmd->post_type = EMAC_POST_ASYNC;
switch (sig) {
case SIG_EMAC_RX_DONE:
emac_process_rx();
break;
case SIG_EMAC_TX_DONE:
emac_process_tx();
break;
case SIG_EMAC_START:
emac_start((void *)par);
break;
case SIG_EMAC_STOP:
emac_stop((void *)par);
break;
default:
ESP_LOGE(TAG, "unexpect sig %d", sig);
break;
}
}
return ret;
}
void emac_task(void *pv)
{
emac_event_t e;
for (;;) {
if (xQueueReceive(emac_xqueue, &e, portMAX_DELAY) == pdTRUE) {
portENTER_CRITICAL(&g_emac_mux);
emac_sig_cnt[e.sig]--;
portEXIT_CRITICAL(&g_emac_mux);
switch (e.sig) {
case SIG_EMAC_RX_DONE:
emac_process_rx();
break;
case SIG_EMAC_RX_UNAVAIL:
emac_process_rx_unavail();
break;
case SIG_EMAC_TX_DONE:
emac_process_tx();
break;
case SIG_EMAC_START:
emac_start((void *)e.par);
break;
case SIG_EMAC_STOP:
emac_stop((void *)e.par);
break;
case SIG_EMAC_CHECK_LINK:
emac_process_link_check();
break;
default:
ESP_LOGE(TAG, "unexpect sig %d", e.sig);
break;
}
}
}
}
esp_err_t IRAM_ATTR emac_post(emac_sig_t sig, emac_par_t par)
{
if (sig <= SIG_EMAC_RX_DONE) {
if (emac_sig_cnt[sig]) {
return ESP_OK;
} else {
emac_sig_cnt[sig]++;
emac_event_t evt;
signed portBASE_TYPE ret;
evt.sig = sig;
evt.par = par;
portBASE_TYPE tmp;
ret = xQueueSendFromISR(emac_xqueue, &evt, &tmp);
if (tmp != pdFALSE) {
portYIELD_FROM_ISR();
}
if (ret != pdPASS) {
return ESP_FAIL;
}
}
} else {
portENTER_CRITICAL(&g_emac_mux);
emac_sig_cnt[sig]++;
portEXIT_CRITICAL(&g_emac_mux);
emac_event_t evt;
evt.sig = sig;
evt.par = par;
if (xQueueSend(emac_xqueue, &evt, 10 / portTICK_PERIOD_MS) != pdTRUE) {
return ESP_FAIL;
}
}
return ESP_OK;
}
esp_err_t esp_eth_init(eth_config_t *config)
{
esp_event_set_default_eth_handlers();
return esp_eth_init_internal(config);
}
esp_err_t esp_eth_init_internal(eth_config_t *config)
{
int i = 0;
esp_err_t ret = ESP_OK;
if (emac_config.emac_status != EMAC_RUNTIME_NOT_INIT) {
goto _initialised;
}
/* dynamically alloc memory for ethernet dma */
emac_dma_rx_chain_buf = (dma_extended_desc_t *)heap_caps_malloc(sizeof(dma_extended_desc_t) * DMA_RX_BUF_NUM, MALLOC_CAP_DMA);
emac_dma_tx_chain_buf = (dma_extended_desc_t *)heap_caps_malloc(sizeof(dma_extended_desc_t) * DMA_TX_BUF_NUM, MALLOC_CAP_DMA);
for (i = 0; i < DMA_RX_BUF_NUM; i++) {
emac_dma_rx_buf[i] = (uint8_t *)heap_caps_malloc(DMA_RX_BUF_SIZE, MALLOC_CAP_DMA);
}
for (i = 0; i < DMA_TX_BUF_NUM; i++) {
emac_dma_tx_buf[i] = (uint8_t *)heap_caps_malloc(DMA_TX_BUF_SIZE, MALLOC_CAP_DMA);
}
emac_init_default_data();
if (config) {
emac_set_user_config_data(config);
}
ret = emac_verify_args();
if (ret != ESP_OK) {
goto _verify_err;
}
//before set emac reg must enable clk
periph_module_enable(PERIPH_EMAC_MODULE);
if (emac_config.clock_mode != ETH_CLOCK_GPIO0_IN) {
#if CONFIG_SPIRAM_SUPPORT
// make sure Ethernet won't have conflict with PSRAM
if (emac_config.clock_mode >= ETH_CLOCK_GPIO16_OUT) {
if (esp_spiram_is_initialized()) {
ESP_LOGE(TAG, "GPIO16 and GPIO17 are occupied by PSRAM, please switch to ETH_CLOCK_GPIO_IN or ETH_CLOCK_GPIO_OUT mode");
ret = ESP_FAIL;
goto _verify_err;
} else {
ESP_LOGW(TAG, "Using GPIO16/17 to output Ethernet RMII clock, make sure you don't have PSRAM on board");
}
}
#endif
// 50 MHz = 40MHz * (6 + 4) / (2 * (2 + 2) = 400MHz / 8
rtc_clk_apll_enable(1, 0, 0, 6, 2);
REG_SET_FIELD(EMAC_EX_CLKOUT_CONF_REG, EMAC_EX_CLK_OUT_H_DIV_NUM, 0);
REG_SET_FIELD(EMAC_EX_CLKOUT_CONF_REG, EMAC_EX_CLK_OUT_DIV_NUM, 0);
if (emac_config.clock_mode == ETH_CLOCK_GPIO0_OUT) {
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO0_U, FUNC_GPIO0_CLK_OUT1);
REG_WRITE(PIN_CTRL, 6);
ESP_LOGD(TAG, "EMAC 50MHz clock output on GPIO0");
} else if (emac_config.clock_mode == ETH_CLOCK_GPIO16_OUT) {
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO16_U, FUNC_GPIO16_EMAC_CLK_OUT);
ESP_LOGD(TAG, "EMAC 50MHz clock output on GPIO16");
} else if (emac_config.clock_mode == ETH_CLOCK_GPIO17_OUT) {
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO17_U, FUNC_GPIO17_EMAC_CLK_OUT_180);
ESP_LOGD(TAG, "EMAC 50MHz inverted clock output on GPIO17");
}
}
if (emac_config.clock_mode == ETH_CLOCK_GPIO0_IN) {
// external clock on GPIO0
REG_SET_BIT(EMAC_EX_CLK_CTRL_REG, EMAC_EX_EXT_OSC_EN);
REG_CLR_BIT(EMAC_EX_CLK_CTRL_REG, EMAC_EX_INT_OSC_EN);
REG_SET_BIT(EMAC_EX_OSCCLK_CONF_REG, EMAC_EX_OSC_CLK_SEL);
ESP_LOGD(TAG, "External clock input 50MHz on GPIO0");
if (emac_config.mac_mode == ETH_MODE_MII) {
REG_SET_BIT(EMAC_EX_CLK_CTRL_REG, EMAC_EX_MII_CLK_RX_EN);
REG_SET_BIT(EMAC_EX_CLK_CTRL_REG, EMAC_EX_MII_CLK_TX_EN);
}
} else {
// internal clock by APLL
REG_CLR_BIT(EMAC_EX_CLK_CTRL_REG, EMAC_EX_EXT_OSC_EN);
REG_SET_BIT(EMAC_EX_CLK_CTRL_REG, EMAC_EX_INT_OSC_EN);
REG_CLR_BIT(EMAC_EX_OSCCLK_CONF_REG, EMAC_EX_OSC_CLK_SEL);
}
emac_config.emac_phy_power_enable(true);
emac_enable_clk(true);
REG_SET_FIELD(EMAC_EX_PHYINF_CONF_REG, EMAC_EX_PHY_INTF_SEL, EMAC_EX_PHY_INTF_RMII);
emac_dma_init();
emac_config.emac_gpio_config();
emac_hw_init();
emac_macaddr_init();
//watchdog TODO
//init task for emac
emac_g_sem = xSemaphoreCreateBinary();
emac_rx_xMutex = xSemaphoreCreateRecursiveMutex();
emac_tx_xMutex = xSemaphoreCreateRecursiveMutex();
emac_xqueue = xQueueCreate(EMAC_EVT_QNUM, sizeof(emac_event_t));
xTaskCreate(emac_task,
"emacT",
EMAC_TASK_STACK_SIZE,
NULL,
EMAC_TASK_PRIORITY,
&emac_task_hdl);
esp_intr_alloc(ETS_ETH_MAC_INTR_SOURCE, 0, emac_process_intr, NULL, &eth_intr_handle);
emac_config.emac_status = EMAC_RUNTIME_INIT;
return ESP_OK;
_verify_err:
free(emac_dma_rx_chain_buf);
free(emac_dma_tx_chain_buf);
emac_dma_rx_chain_buf = NULL;
emac_dma_tx_chain_buf = NULL;
for (i = 0; i < DMA_RX_BUF_NUM; i++) {
free(emac_dma_rx_buf[i]);
emac_dma_rx_buf[i] = NULL;
}
for (i = 0; i < DMA_TX_BUF_NUM; i++) {
free(emac_dma_tx_buf[i]);
emac_dma_tx_buf[i] = NULL;
}
_initialised:
return ret;
}
esp_err_t esp_eth_deinit(void)
{
esp_err_t ret = ESP_OK;
int i = 0;
if (emac_config.emac_status == EMAC_RUNTIME_NOT_INIT) {
goto _exit;
}
if (emac_config.emac_status == EMAC_RUNTIME_START) {
esp_eth_disable();
}
if (!emac_task_hdl) {
ret = ESP_ERR_INVALID_STATE;
goto _exit;
}
vTaskDelete(emac_task_hdl);
emac_task_hdl = NULL;
vQueueDelete(emac_xqueue);
vSemaphoreDelete(emac_tx_xMutex);
vSemaphoreDelete(emac_rx_xMutex);
vSemaphoreDelete(emac_g_sem);
emac_reset_dma_chain();
emac_config.emac_phy_power_enable(false);
periph_module_disable(PERIPH_EMAC_MODULE);
emac_config.emac_status = EMAC_RUNTIME_NOT_INIT;
/* free memory that dynamically allocted */
free(emac_dma_rx_chain_buf);
free(emac_dma_tx_chain_buf);
emac_dma_rx_chain_buf = NULL;
emac_dma_tx_chain_buf = NULL;
for (i = 0; i < DMA_RX_BUF_NUM; i++) {
free(emac_dma_rx_buf[i]);
emac_dma_rx_buf[i] = NULL;
}
for (i = 0; i < DMA_TX_BUF_NUM; i++) {
free(emac_dma_tx_buf[i]);
emac_dma_tx_buf[i] = NULL;
}
esp_intr_free(eth_intr_handle);
_exit:
return ret;
}