esp-idf/components/newlib/time.c
2020-08-11 17:52:36 +08:00

303 lines
8.8 KiB
C

// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <errno.h>
#include <stdlib.h>
#include <time.h>
#include <reent.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/reent.h>
#include <sys/time.h>
#include <sys/times.h>
#include "esp_system.h"
#include "esp_attr.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_private/system_internal.h"
#include "soc/spinlock.h"
#include "soc/rtc.h"
#include "esp_time_impl.h"
#include "sdkconfig.h"
#ifdef CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS
_Static_assert(sizeof(time_t) == 8, "The toolchain does not support time_t wide 64-bits");
#else
_Static_assert(sizeof(time_t) == 4, "The toolchain supports time_t wide 64-bits. Please enable CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS.");
#endif
#if !CONFIG_ESP32_TIME_SYSCALL_USE_NONE && !CONFIG_ESP32S2_TIME_SYSCALL_USE_NONE
#define IMPL_NEWLIB_TIME_FUNCS 1
#endif
#if IMPL_NEWLIB_TIME_FUNCS
// stores the start time of the slew
static uint64_t s_adjtime_start_us;
// is how many microseconds total to slew
static int64_t s_adjtime_total_correction_us;
static spinlock_t s_time_lock = SPINLOCK_INITIALIZER;
// This function gradually changes boot_time to the correction value and immediately updates it.
static uint64_t adjust_boot_time(void)
{
#define ADJTIME_CORRECTION_FACTOR 6
uint64_t boot_time = esp_time_impl_get_boot_time();
if ((boot_time == 0) || (esp_time_impl_get_time_since_boot() < s_adjtime_start_us)) {
s_adjtime_start_us = 0;
}
if (s_adjtime_start_us > 0) {
uint64_t since_boot = esp_time_impl_get_time_since_boot();
// If to call this function once per second, then (since_boot - s_adjtime_start_us) will be 1_000_000 (1 second),
// and the correction will be equal to (1_000_000us >> 6) = 15_625 us.
// The minimum possible correction step can be (64us >> 6) = 1us.
// Example: if the time error is 1 second, then it will be compensate for 1 sec / 0,015625 = 64 seconds.
int64_t correction = (since_boot >> ADJTIME_CORRECTION_FACTOR) - (s_adjtime_start_us >> ADJTIME_CORRECTION_FACTOR);
if (correction > 0) {
s_adjtime_start_us = since_boot;
if (s_adjtime_total_correction_us < 0) {
if ((s_adjtime_total_correction_us + correction) >= 0) {
boot_time = boot_time + s_adjtime_total_correction_us;
s_adjtime_start_us = 0;
} else {
s_adjtime_total_correction_us += correction;
boot_time -= correction;
}
} else {
if ((s_adjtime_total_correction_us - correction) <= 0) {
boot_time = boot_time + s_adjtime_total_correction_us;
s_adjtime_start_us = 0;
} else {
s_adjtime_total_correction_us -= correction;
boot_time += correction;
}
}
esp_time_impl_set_boot_time(boot_time);
}
}
return boot_time;
}
// Get the adjusted boot time.
static uint64_t get_adjusted_boot_time(void)
{
spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER);
uint64_t adjust_time = adjust_boot_time();
spinlock_release(&s_time_lock);
return adjust_time;
}
// Applying the accumulated correction to base_time and stopping the smooth time adjustment.
static void adjtime_corr_stop (void)
{
spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER);
if (s_adjtime_start_us != 0){
adjust_boot_time();
s_adjtime_start_us = 0;
}
spinlock_release(&s_time_lock);
}
#endif
int adjtime(const struct timeval *delta, struct timeval *outdelta)
{
#if IMPL_NEWLIB_TIME_FUNCS
if(outdelta != NULL){
spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER);
adjust_boot_time();
if (s_adjtime_start_us != 0) {
outdelta->tv_sec = s_adjtime_total_correction_us / 1000000L;
outdelta->tv_usec = s_adjtime_total_correction_us % 1000000L;
} else {
outdelta->tv_sec = 0;
outdelta->tv_usec = 0;
}
spinlock_release(&s_time_lock);
}
if(delta != NULL){
int64_t sec = delta->tv_sec;
int64_t usec = delta->tv_usec;
if(llabs(sec) > ((INT_MAX / 1000000L) - 1L)) {
return -1;
}
/*
* If adjusting the system clock by adjtime () is already done during the second call adjtime (),
* and the delta of the second call is not NULL, the earlier tuning is stopped,
* but the already completed part of the adjustment is not canceled.
*/
spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER);
// If correction is already in progress (s_adjtime_start_time_us != 0), then apply accumulated corrections.
adjust_boot_time();
s_adjtime_start_us = esp_time_impl_get_time_since_boot();
s_adjtime_total_correction_us = sec * 1000000L + usec;
spinlock_release(&s_time_lock);
}
return 0;
#else
return -1;
#endif
}
clock_t IRAM_ATTR _times_r(struct _reent *r, struct tms *ptms)
{
clock_t t = xTaskGetTickCount() * (portTICK_PERIOD_MS * CLK_TCK / 1000);
ptms->tms_cstime = 0;
ptms->tms_cutime = 0;
ptms->tms_stime = t;
ptms->tms_utime = 0;
struct timeval tv = {0, 0};
_gettimeofday_r(r, &tv, NULL);
return (clock_t) tv.tv_sec;
}
int IRAM_ATTR _gettimeofday_r(struct _reent *r, struct timeval *tv, void *tz)
{
(void) tz;
#if IMPL_NEWLIB_TIME_FUNCS
if (tv) {
uint64_t microseconds = get_adjusted_boot_time() + esp_time_impl_get_time_since_boot();
tv->tv_sec = microseconds / 1000000;
tv->tv_usec = microseconds % 1000000;
}
return 0;
#else
__errno_r(r) = ENOSYS;
return -1;
#endif
}
int settimeofday(const struct timeval *tv, const struct timezone *tz)
{
(void) tz;
#if IMPL_NEWLIB_TIME_FUNCS
if (tv) {
adjtime_corr_stop();
uint64_t now = ((uint64_t) tv->tv_sec) * 1000000LL + tv->tv_usec;
uint64_t since_boot = esp_time_impl_get_time_since_boot();
esp_time_impl_set_boot_time(now - since_boot);
}
return 0;
#else
errno = ENOSYS;
return -1;
#endif
}
int usleep(useconds_t us)
{
const int us_per_tick = portTICK_PERIOD_MS * 1000;
if (us < us_per_tick) {
esp_rom_delay_us((uint32_t) us);
} else {
/* since vTaskDelay(1) blocks for anywhere between 0 and portTICK_PERIOD_MS,
* round up to compensate.
*/
vTaskDelay((us + us_per_tick - 1) / us_per_tick);
}
return 0;
}
unsigned int sleep(unsigned int seconds)
{
usleep(seconds*1000000UL);
return 0;
}
int clock_settime(clockid_t clock_id, const struct timespec *tp)
{
#if IMPL_NEWLIB_TIME_FUNCS
if (tp == NULL) {
errno = EINVAL;
return -1;
}
struct timeval tv;
switch (clock_id) {
case CLOCK_REALTIME:
tv.tv_sec = tp->tv_sec;
tv.tv_usec = tp->tv_nsec / 1000L;
settimeofday(&tv, NULL);
break;
default:
errno = EINVAL;
return -1;
}
return 0;
#else
errno = ENOSYS;
return -1;
#endif
}
int clock_gettime (clockid_t clock_id, struct timespec *tp)
{
#if IMPL_NEWLIB_TIME_FUNCS
if (tp == NULL) {
errno = EINVAL;
return -1;
}
struct timeval tv;
uint64_t monotonic_time_us = 0;
switch (clock_id) {
case CLOCK_REALTIME:
_gettimeofday_r(NULL, &tv, NULL);
tp->tv_sec = tv.tv_sec;
tp->tv_nsec = tv.tv_usec * 1000L;
break;
case CLOCK_MONOTONIC:
monotonic_time_us = esp_time_impl_get_time();
tp->tv_sec = monotonic_time_us / 1000000LL;
tp->tv_nsec = (monotonic_time_us % 1000000LL) * 1000L;
break;
default:
errno = EINVAL;
return -1;
}
return 0;
#else
errno = ENOSYS;
return -1;
#endif
}
int clock_getres (clockid_t clock_id, struct timespec *res)
{
#if IMPL_NEWLIB_TIME_FUNCS
if (res == NULL) {
errno = EINVAL;
return -1;
}
res->tv_sec = 0;
res->tv_nsec = esp_system_get_time_resolution() * 1000;
return 0;
#else
errno = ENOSYS;
return -1;
#endif
}
void esp_newlib_time_init(void)
{
esp_time_impl_init();
}