esp-idf/components/ulp/include/esp32/ulp.h
Ivan Grokhotkov f4c8df2635 ulp: fix ULP binary format documentation
Fix incorrect offset value (4+2+2+2+2=12) of arbitrary data in ULP
binary format.

Closes https://github.com/espressif/esp-idf/issues/1705.
2018-08-13 23:23:55 +03:00

910 lines
32 KiB
C

// Copyright 2016-2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include "esp_err.h"
#include "soc/soc.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup ulp_registers ULP coprocessor registers
* @{
*/
#define R0 0 /*!< general purpose register 0 */
#define R1 1 /*!< general purpose register 1 */
#define R2 2 /*!< general purpose register 2 */
#define R3 3 /*!< general purpose register 3 */
/**@}*/
/** @defgroup ulp_opcodes ULP coprocessor opcodes, sub opcodes, and various modifiers/flags
*
* These definitions are not intended to be used directly.
* They are used in definitions of instructions later on.
*
* @{
*/
#define OPCODE_WR_REG 1 /*!< Instruction: write peripheral register (RTC_CNTL/RTC_IO/SARADC) (not implemented yet) */
#define OPCODE_RD_REG 2 /*!< Instruction: read peripheral register (RTC_CNTL/RTC_IO/SARADC) (not implemented yet) */
#define RD_REG_PERIPH_RTC_CNTL 0 /*!< Identifier of RTC_CNTL peripheral for RD_REG and WR_REG instructions */
#define RD_REG_PERIPH_RTC_IO 1 /*!< Identifier of RTC_IO peripheral for RD_REG and WR_REG instructions */
#define RD_REG_PERIPH_SENS 2 /*!< Identifier of SARADC peripheral for RD_REG and WR_REG instructions */
#define RD_REG_PERIPH_RTC_I2C 3 /*!< Identifier of RTC_I2C peripheral for RD_REG and WR_REG instructions */
#define OPCODE_I2C 3 /*!< Instruction: read/write I2C (not implemented yet) */
#define OPCODE_DELAY 4 /*!< Instruction: delay (nop) for a given number of cycles */
#define OPCODE_ADC 5 /*!< Instruction: SAR ADC measurement (not implemented yet) */
#define OPCODE_ST 6 /*!< Instruction: store indirect to RTC memory */
#define SUB_OPCODE_ST 4 /*!< Store 32 bits, 16 MSBs contain PC, 16 LSBs contain value from source register */
#define OPCODE_ALU 7 /*!< Arithmetic instructions */
#define SUB_OPCODE_ALU_REG 0 /*!< Arithmetic instruction, both source values are in register */
#define SUB_OPCODE_ALU_IMM 1 /*!< Arithmetic instruction, one source value is an immediate */
#define SUB_OPCODE_ALU_CNT 2 /*!< Arithmetic instruction between counter register and an immediate (not implemented yet)*/
#define ALU_SEL_ADD 0 /*!< Addition */
#define ALU_SEL_SUB 1 /*!< Subtraction */
#define ALU_SEL_AND 2 /*!< Logical AND */
#define ALU_SEL_OR 3 /*!< Logical OR */
#define ALU_SEL_MOV 4 /*!< Copy value (immediate to destination register or source register to destination register */
#define ALU_SEL_LSH 5 /*!< Shift left by given number of bits */
#define ALU_SEL_RSH 6 /*!< Shift right by given number of bits */
#define OPCODE_BRANCH 8 /*!< Branch instructions */
#define SUB_OPCODE_BX 0 /*!< Branch to absolute PC (immediate or in register) */
#define BX_JUMP_TYPE_DIRECT 0 /*!< Unconditional jump */
#define BX_JUMP_TYPE_ZERO 1 /*!< Branch if last ALU result is zero */
#define BX_JUMP_TYPE_OVF 2 /*!< Branch if last ALU operation caused and overflow */
#define SUB_OPCODE_B 1 /*!< Branch to a relative offset */
#define B_CMP_L 0 /*!< Branch if R0 is less than an immediate */
#define B_CMP_GE 1 /*!< Branch if R0 is greater than or equal to an immediate */
#define OPCODE_END 9 /*!< Stop executing the program */
#define SUB_OPCODE_END 0 /*!< Stop executing the program and optionally wake up the chip */
#define SUB_OPCODE_SLEEP 1 /*!< Stop executing the program and run it again after selected interval */
#define OPCODE_TSENS 10 /*!< Instruction: temperature sensor measurement (not implemented yet) */
#define OPCODE_HALT 11 /*!< Halt the coprocessor */
#define OPCODE_LD 13 /*!< Indirect load lower 16 bits from RTC memory */
#define OPCODE_MACRO 15 /*!< Not a real opcode. Used to identify labels and branches in the program */
#define SUB_OPCODE_MACRO_LABEL 0 /*!< Label macro */
#define SUB_OPCODE_MACRO_BRANCH 1 /*!< Branch macro */
/**@}*/
/**@{*/
#define ESP_ERR_ULP_BASE 0x1200 /*!< Offset for ULP-related error codes */
#define ESP_ERR_ULP_SIZE_TOO_BIG (ESP_ERR_ULP_BASE + 1) /*!< Program doesn't fit into RTC memory reserved for the ULP */
#define ESP_ERR_ULP_INVALID_LOAD_ADDR (ESP_ERR_ULP_BASE + 2) /*!< Load address is outside of RTC memory reserved for the ULP */
#define ESP_ERR_ULP_DUPLICATE_LABEL (ESP_ERR_ULP_BASE + 3) /*!< More than one label with the same number was defined */
#define ESP_ERR_ULP_UNDEFINED_LABEL (ESP_ERR_ULP_BASE + 4) /*!< Branch instructions references an undefined label */
#define ESP_ERR_ULP_BRANCH_OUT_OF_RANGE (ESP_ERR_ULP_BASE + 5) /*!< Branch target is out of range of B instruction (try replacing with BX) */
/**@}*/
/**
* @brief Instruction format structure
*
* All ULP instructions are 32 bit long.
* This union contains field layouts used by all of the supported instructions.
* This union also includes a special "macro" instruction layout.
* This is not a real instruction which can be executed by the CPU. It acts
* as a token which is removed from the program by the
* ulp_process_macros_and_load function.
*
* These structures are not intended to be used directly.
* Preprocessor definitions provided below fill the fields of these structure with
* the right arguments.
*/
typedef union {
struct {
uint32_t cycles : 16; /*!< Number of cycles to sleep */
uint32_t unused : 12; /*!< Unused */
uint32_t opcode : 4; /*!< Opcode (OPCODE_DELAY) */
} delay; /*!< Format of DELAY instruction */
struct {
uint32_t dreg : 2; /*!< Register which contains data to store */
uint32_t sreg : 2; /*!< Register which contains address in RTC memory (expressed in words) */
uint32_t unused1 : 6; /*!< Unused */
uint32_t offset : 11; /*!< Offset to add to sreg */
uint32_t unused2 : 4; /*!< Unused */
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ST) */
uint32_t opcode : 4; /*!< Opcode (OPCODE_ST) */
} st; /*!< Format of ST instruction */
struct {
uint32_t dreg : 2; /*!< Register where the data should be loaded to */
uint32_t sreg : 2; /*!< Register which contains address in RTC memory (expressed in words) */
uint32_t unused1 : 6; /*!< Unused */
uint32_t offset : 11; /*!< Offset to add to sreg */
uint32_t unused2 : 7; /*!< Unused */
uint32_t opcode : 4; /*!< Opcode (OPCODE_LD) */
} ld; /*!< Format of LD instruction */
struct {
uint32_t unused : 28; /*!< Unused */
uint32_t opcode : 4; /*!< Opcode (OPCODE_HALT) */
} halt; /*!< Format of HALT instruction */
struct {
uint32_t dreg : 2; /*!< Register which contains target PC, expressed in words (used if .reg == 1) */
uint32_t addr : 11; /*!< Target PC, expressed in words (used if .reg == 0) */
uint32_t unused : 8; /*!< Unused */
uint32_t reg : 1; /*!< Target PC in register (1) or immediate (0) */
uint32_t type : 3; /*!< Jump condition (BX_JUMP_TYPE_xxx) */
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_BX) */
uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */
} bx; /*!< Format of BRANCH instruction (absolute address) */
struct {
uint32_t imm : 16; /*!< Immediate value to compare against */
uint32_t cmp : 1; /*!< Comparison to perform: B_CMP_L or B_CMP_GE */
uint32_t offset : 7; /*!< Absolute value of target PC offset w.r.t. current PC, expressed in words */
uint32_t sign : 1; /*!< Sign of target PC offset: 0: positive, 1: negative */
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_B) */
uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */
} b; /*!< Format of BRANCH instruction (relative address) */
struct {
uint32_t dreg : 2; /*!< Destination register */
uint32_t sreg : 2; /*!< Register with operand A */
uint32_t treg : 2; /*!< Register with operand B */
uint32_t unused : 15; /*!< Unused */
uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ALU_REG) */
uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
} alu_reg; /*!< Format of ALU instruction (both sources are registers) */
struct {
uint32_t dreg : 2; /*!< Destination register */
uint32_t sreg : 2; /*!< Register with operand A */
uint32_t imm : 16; /*!< Immediate value of operand B */
uint32_t unused : 1; /*!< Unused */
uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ALU_IMM) */
uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
} alu_imm; /*!< Format of ALU instruction (one source is an immediate) */
struct {
uint32_t addr : 8; /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */
uint32_t periph_sel : 2; /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */
uint32_t data : 8; /*!< 8 bits of data to write */
uint32_t low : 5; /*!< Low bit */
uint32_t high : 5; /*!< High bit */
uint32_t opcode : 4; /*!< Opcode (OPCODE_WR_REG) */
} wr_reg; /*!< Format of WR_REG instruction */
struct {
uint32_t addr : 8; /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */
uint32_t periph_sel : 2; /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */
uint32_t unused : 8; /*!< Unused */
uint32_t low : 5; /*!< Low bit */
uint32_t high : 5; /*!< High bit */
uint32_t opcode : 4; /*!< Opcode (OPCODE_WR_REG) */
} rd_reg; /*!< Format of RD_REG instruction */
struct {
uint32_t dreg : 2; /*!< Register where to store ADC result */
uint32_t mux : 4; /*!< Select SARADC pad (mux + 1) */
uint32_t sar_sel : 1; /*!< Select SARADC0 (0) or SARADC1 (1) */
uint32_t unused1 : 1; /*!< Unused */
uint32_t cycles : 16; /*!< TBD, cycles used for measurement */
uint32_t unused2 : 4; /*!< Unused */
uint32_t opcode: 4; /*!< Opcode (OPCODE_ADC) */
} adc; /*!< Format of ADC instruction */
struct {
uint32_t dreg : 2; /*!< Register where to store temperature measurement result */
uint32_t wait_delay: 14; /*!< Cycles to wait after measurement is done */
uint32_t reserved: 12; /*!< Reserved, set to 0 */
uint32_t opcode: 4; /*!< Opcode (OPCODE_TSENS) */
} tsens; /*!< Format of TSENS instruction */
struct {
uint32_t i2c_addr : 8; /*!< I2C slave address */
uint32_t data : 8; /*!< Data to read or write */
uint32_t low_bits : 3; /*!< TBD */
uint32_t high_bits : 3; /*!< TBD */
uint32_t i2c_sel : 4; /*!< TBD, select reg_i2c_slave_address[7:0] */
uint32_t unused : 1; /*!< Unused */
uint32_t rw : 1; /*!< Write (1) or read (0) */
uint32_t opcode : 4; /*!< Opcode (OPCODE_I2C) */
} i2c; /*!< Format of I2C instruction */
struct {
uint32_t wakeup : 1; /*!< Set to 1 to wake up chip */
uint32_t unused : 24; /*!< Unused */
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_WAKEUP) */
uint32_t opcode : 4; /*!< Opcode (OPCODE_END) */
} end; /*!< Format of END instruction with wakeup */
struct {
uint32_t cycle_sel : 4; /*!< Select which one of SARADC_ULP_CP_SLEEP_CYCx_REG to get the sleep duration from */
uint32_t unused : 21; /*!< Unused */
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_SLEEP) */
uint32_t opcode : 4; /*!< Opcode (OPCODE_END) */
} sleep; /*!< Format of END instruction with sleep */
struct {
uint32_t label : 16; /*!< Label number */
uint32_t unused : 8; /*!< Unused */
uint32_t sub_opcode : 4; /*!< SUB_OPCODE_MACRO_LABEL or SUB_OPCODE_MACRO_BRANCH */
uint32_t opcode: 4; /*!< Opcode (OPCODE_MACRO) */
} macro; /*!< Format of tokens used by LABEL and BRANCH macros */
} ulp_insn_t;
_Static_assert(sizeof(ulp_insn_t) == 4, "ULP coprocessor instruction size should be 4 bytes");
/**
* Delay (nop) for a given number of cycles
*/
#define I_DELAY(cycles_) { .delay = {\
.cycles = cycles_, \
.unused = 0, \
.opcode = OPCODE_DELAY } }
/**
* Halt the coprocessor.
*
* This instruction halts the coprocessor, but keeps ULP timer active.
* As such, ULP program will be restarted again by timer.
* To stop the program and prevent the timer from restarting the program,
* use I_END(0) instruction.
*/
#define I_HALT() { .halt = {\
.unused = 0, \
.opcode = OPCODE_HALT } }
/**
* Map SoC peripheral register to periph_sel field of RD_REG and WR_REG
* instructions.
*
* @param reg peripheral register in RTC_CNTL_, RTC_IO_, SENS_, RTC_I2C peripherals.
* @return periph_sel value for the peripheral to which this register belongs.
*/
static inline uint32_t SOC_REG_TO_ULP_PERIPH_SEL(uint32_t reg) {
uint32_t ret = 3;
if (reg < DR_REG_RTCCNTL_BASE) {
assert(0 && "invalid register base");
} else if (reg < DR_REG_RTCIO_BASE) {
ret = RD_REG_PERIPH_RTC_CNTL;
} else if (reg < DR_REG_SENS_BASE) {
ret = RD_REG_PERIPH_RTC_IO;
} else if (reg < DR_REG_RTC_I2C_BASE){
ret = RD_REG_PERIPH_SENS;
} else if (reg < DR_REG_IO_MUX_BASE){
ret = RD_REG_PERIPH_RTC_I2C;
} else {
assert(0 && "invalid register base");
}
return ret;
}
/**
* Write literal value to a peripheral register
*
* reg[high_bit : low_bit] = val
* This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
*/
#define I_WR_REG(reg, low_bit, high_bit, val) {.wr_reg = {\
.addr = (reg & 0xff) / sizeof(uint32_t), \
.periph_sel = SOC_REG_TO_ULP_PERIPH_SEL(reg), \
.data = val, \
.low = low_bit, \
.high = high_bit, \
.opcode = OPCODE_WR_REG } }
/**
* Read from peripheral register into R0
*
* R0 = reg[high_bit : low_bit]
* This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
*/
#define I_RD_REG(reg, low_bit, high_bit) {.rd_reg = {\
.addr = (reg & 0xff) / sizeof(uint32_t), \
.periph_sel = SOC_REG_TO_ULP_PERIPH_SEL(reg), \
.unused = 0, \
.low = low_bit, \
.high = high_bit, \
.opcode = OPCODE_RD_REG } }
/**
* Set or clear a bit in the peripheral register.
*
* Sets bit (1 << shift) of register reg to value val.
* This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
*/
#define I_WR_REG_BIT(reg, shift, val) I_WR_REG(reg, shift, shift, val)
/**
* Wake the SoC from deep sleep.
*
* This instruction initiates wake up from deep sleep.
* Use esp_deep_sleep_enable_ulp_wakeup to enable deep sleep wakeup
* triggered by the ULP before going into deep sleep.
* Note that ULP program will still keep running until the I_HALT
* instruction, and it will still be restarted by timer at regular
* intervals, even when the SoC is woken up.
*
* To stop the ULP program, use I_HALT instruction.
*
* To disable the timer which start ULP program, use I_END()
* instruction. I_END instruction clears the
* RTC_CNTL_ULP_CP_SLP_TIMER_EN_S bit of RTC_CNTL_STATE0_REG
* register, which controls the ULP timer.
*/
#define I_WAKE() { .end = { \
.wakeup = 1, \
.unused = 0, \
.sub_opcode = SUB_OPCODE_END, \
.opcode = OPCODE_END } }
/**
* Stop ULP program timer.
*
* This is a convenience macro which disables the ULP program timer.
* Once this instruction is used, ULP program will not be restarted
* anymore until ulp_run function is called.
*
* ULP program will continue running after this instruction. To stop
* the currently running program, use I_HALT().
*/
#define I_END() \
I_WR_REG_BIT(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN_S, 0)
/**
* Select the time interval used to run ULP program.
*
* This instructions selects which of the SENS_SLEEP_CYCLES_Sx
* registers' value is used by the ULP program timer.
* When the ULP program stops at I_HALT instruction, ULP program
* timer start counting. When the counter reaches the value of
* the selected SENS_SLEEP_CYCLES_Sx register, ULP program
* start running again from the start address (passed to the ulp_run
* function).
* There are 5 SENS_SLEEP_CYCLES_Sx registers, so 0 <= timer_idx < 5.
*
* By default, SENS_SLEEP_CYCLES_S0 register is used by the ULP
* program timer.
*/
#define I_SLEEP_CYCLE_SEL(timer_idx) { .sleep = { \
.cycle_sel = timer_idx, \
.unused = 0, \
.sub_opcode = SUB_OPCODE_SLEEP, \
.opcode = OPCODE_END } }
/**
* Perform temperature sensor measurement and store it into reg_dest.
*
* Delay can be set between 1 and ((1 << 14) - 1). Higher values give
* higher measurement resolution.
*/
#define I_TSENS(reg_dest, delay) { .tsens = { \
.dreg = reg_dest, \
.wait_delay = delay, \
.reserved = 0, \
.opcode = OPCODE_TSENS } }
/**
* Perform ADC measurement and store result in reg_dest.
*
* adc_idx selects ADC (0 or 1).
* pad_idx selects ADC pad (0 - 7).
*/
#define I_ADC(reg_dest, adc_idx, pad_idx) { .adc = {\
.dreg = reg_dest, \
.mux = pad_idx + 1, \
.sar_sel = adc_idx, \
.unused1 = 0, \
.cycles = 0, \
.unused2 = 0, \
.opcode = OPCODE_ADC } }
/**
* Store value from register reg_val into RTC memory.
*
* The value is written to an offset calculated by adding value of
* reg_addr register and offset_ field (this offset is expressed in 32-bit words).
* 32 bits written to RTC memory are built as follows:
* - bits [31:21] hold the PC of current instruction, expressed in 32-bit words
* - bits [20:16] = 5'b1
* - bits [15:0] are assigned the contents of reg_val
*
* RTC_SLOW_MEM[addr + offset_] = { 5'b0, insn_PC[10:0], val[15:0] }
*/
#define I_ST(reg_val, reg_addr, offset_) { .st = { \
.dreg = reg_val, \
.sreg = reg_addr, \
.unused1 = 0, \
.offset = offset_, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_ST, \
.opcode = OPCODE_ST } }
/**
* Load value from RTC memory into reg_dest register.
*
* Loads 16 LSBs from RTC memory word given by the sum of value in reg_addr and
* value of offset_.
*/
#define I_LD(reg_dest, reg_addr, offset_) { .ld = { \
.dreg = reg_dest, \
.sreg = reg_addr, \
.unused1 = 0, \
.offset = offset_, \
.unused2 = 0, \
.opcode = OPCODE_LD } }
/**
* Branch relative if R0 less than immediate value.
*
* pc_offset is expressed in words, and can be from -127 to 127
* imm_value is a 16-bit value to compare R0 against
*/
#define I_BL(pc_offset, imm_value) { .b = { \
.imm = imm_value, \
.cmp = B_CMP_L, \
.offset = abs(pc_offset), \
.sign = (pc_offset >= 0) ? 0 : 1, \
.sub_opcode = SUB_OPCODE_B, \
.opcode = OPCODE_BRANCH } }
/**
* Branch relative if R0 greater or equal than immediate value.
*
* pc_offset is expressed in words, and can be from -127 to 127
* imm_value is a 16-bit value to compare R0 against
*/
#define I_BGE(pc_offset, imm_value) { .b = { \
.imm = imm_value, \
.cmp = B_CMP_GE, \
.offset = abs(pc_offset), \
.sign = (pc_offset >= 0) ? 0 : 1, \
.sub_opcode = SUB_OPCODE_B, \
.opcode = OPCODE_BRANCH } }
/**
* Unconditional branch to absolute PC, address in register.
*
* reg_pc is the register which contains address to jump to.
* Address is expressed in 32-bit words.
*/
#define I_BXR(reg_pc) { .bx = { \
.dreg = reg_pc, \
.addr = 0, \
.unused = 0, \
.reg = 1, \
.type = BX_JUMP_TYPE_DIRECT, \
.sub_opcode = SUB_OPCODE_BX, \
.opcode = OPCODE_BRANCH } }
/**
* Unconditional branch to absolute PC, immediate address.
*
* Address imm_pc is expressed in 32-bit words.
*/
#define I_BXI(imm_pc) { .bx = { \
.dreg = 0, \
.addr = imm_pc, \
.unused = 0, \
.reg = 0, \
.type = BX_JUMP_TYPE_DIRECT, \
.sub_opcode = SUB_OPCODE_BX, \
.opcode = OPCODE_BRANCH } }
/**
* Branch to absolute PC if ALU result is zero, address in register.
*
* reg_pc is the register which contains address to jump to.
* Address is expressed in 32-bit words.
*/
#define I_BXZR(reg_pc) { .bx = { \
.dreg = reg_pc, \
.addr = 0, \
.unused = 0, \
.reg = 1, \
.type = BX_JUMP_TYPE_ZERO, \
.sub_opcode = SUB_OPCODE_BX, \
.opcode = OPCODE_BRANCH } }
/**
* Branch to absolute PC if ALU result is zero, immediate address.
*
* Address imm_pc is expressed in 32-bit words.
*/
#define I_BXZI(imm_pc) { .bx = { \
.dreg = 0, \
.addr = imm_pc, \
.unused = 0, \
.reg = 0, \
.type = BX_JUMP_TYPE_ZERO, \
.sub_opcode = SUB_OPCODE_BX, \
.opcode = OPCODE_BRANCH } }
/**
* Branch to absolute PC if ALU overflow, address in register
*
* reg_pc is the register which contains address to jump to.
* Address is expressed in 32-bit words.
*/
#define I_BXFR(reg_pc) { .bx = { \
.dreg = reg_pc, \
.addr = 0, \
.unused = 0, \
.reg = 1, \
.type = BX_JUMP_TYPE_OVF, \
.sub_opcode = SUB_OPCODE_BX, \
.opcode = OPCODE_BRANCH } }
/**
* Branch to absolute PC if ALU overflow, immediate address
*
* Address imm_pc is expressed in 32-bit words.
*/
#define I_BXFI(imm_pc) { .bx = { \
.dreg = 0, \
.addr = imm_pc, \
.unused = 0, \
.reg = 0, \
.type = BX_JUMP_TYPE_OVF, \
.sub_opcode = SUB_OPCODE_BX, \
.opcode = OPCODE_BRANCH } }
/**
* Addition: dest = src1 + src2
*/
#define I_ADDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
.dreg = reg_dest, \
.sreg = reg_src1, \
.treg = reg_src2, \
.unused = 0, \
.sel = ALU_SEL_ADD, \
.sub_opcode = SUB_OPCODE_ALU_REG, \
.opcode = OPCODE_ALU } }
/**
* Subtraction: dest = src1 - src2
*/
#define I_SUBR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
.dreg = reg_dest, \
.sreg = reg_src1, \
.treg = reg_src2, \
.unused = 0, \
.sel = ALU_SEL_SUB, \
.sub_opcode = SUB_OPCODE_ALU_REG, \
.opcode = OPCODE_ALU } }
/**
* Logical AND: dest = src1 & src2
*/
#define I_ANDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
.dreg = reg_dest, \
.sreg = reg_src1, \
.treg = reg_src2, \
.unused = 0, \
.sel = ALU_SEL_AND, \
.sub_opcode = SUB_OPCODE_ALU_REG, \
.opcode = OPCODE_ALU } }
/**
* Logical OR: dest = src1 | src2
*/
#define I_ORR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
.dreg = reg_dest, \
.sreg = reg_src1, \
.treg = reg_src2, \
.unused = 0, \
.sel = ALU_SEL_OR, \
.sub_opcode = SUB_OPCODE_ALU_REG, \
.opcode = OPCODE_ALU } }
/**
* Copy: dest = src
*/
#define I_MOVR(reg_dest, reg_src) { .alu_reg = { \
.dreg = reg_dest, \
.sreg = reg_src, \
.treg = 0, \
.unused = 0, \
.sel = ALU_SEL_MOV, \
.sub_opcode = SUB_OPCODE_ALU_REG, \
.opcode = OPCODE_ALU } }
/**
* Logical shift left: dest = src << shift
*/
#define I_LSHR(reg_dest, reg_src, reg_shift) { .alu_reg = { \
.dreg = reg_dest, \
.sreg = reg_src, \
.treg = reg_shift, \
.unused = 0, \
.sel = ALU_SEL_LSH, \
.sub_opcode = SUB_OPCODE_ALU_REG, \
.opcode = OPCODE_ALU } }
/**
* Logical shift right: dest = src >> shift
*/
#define I_RSHR(reg_dest, reg_src, reg_shift) { .alu_reg = { \
.dreg = reg_dest, \
.sreg = reg_src, \
.treg = reg_shift, \
.unused = 0, \
.sel = ALU_SEL_RSH, \
.sub_opcode = SUB_OPCODE_ALU_REG, \
.opcode = OPCODE_ALU } }
/**
* Add register and an immediate value: dest = src1 + imm
*/
#define I_ADDI(reg_dest, reg_src, imm_) { .alu_imm = { \
.dreg = reg_dest, \
.sreg = reg_src, \
.imm = imm_, \
.unused = 0, \
.sel = ALU_SEL_ADD, \
.sub_opcode = SUB_OPCODE_ALU_IMM, \
.opcode = OPCODE_ALU } }
/**
* Subtract register and an immediate value: dest = src - imm
*/
#define I_SUBI(reg_dest, reg_src, imm_) { .alu_imm = { \
.dreg = reg_dest, \
.sreg = reg_src, \
.imm = imm_, \
.unused = 0, \
.sel = ALU_SEL_SUB, \
.sub_opcode = SUB_OPCODE_ALU_IMM, \
.opcode = OPCODE_ALU } }
/**
* Logical AND register and an immediate value: dest = src & imm
*/
#define I_ANDI(reg_dest, reg_src, imm_) { .alu_imm = { \
.dreg = reg_dest, \
.sreg = reg_src, \
.imm = imm_, \
.unused = 0, \
.sel = ALU_SEL_AND, \
.sub_opcode = SUB_OPCODE_ALU_IMM, \
.opcode = OPCODE_ALU } }
/**
* Logical OR register and an immediate value: dest = src | imm
*/
#define I_ORI(reg_dest, reg_src, imm_) { .alu_imm = { \
.dreg = reg_dest, \
.sreg = reg_src, \
.imm = imm_, \
.unused = 0, \
.sel = ALU_SEL_OR, \
.sub_opcode = SUB_OPCODE_ALU_IMM, \
.opcode = OPCODE_ALU } }
/**
* Copy an immediate value into register: dest = imm
*/
#define I_MOVI(reg_dest, imm_) { .alu_imm = { \
.dreg = reg_dest, \
.sreg = 0, \
.imm = imm_, \
.unused = 0, \
.sel = ALU_SEL_MOV, \
.sub_opcode = SUB_OPCODE_ALU_IMM, \
.opcode = OPCODE_ALU } }
/**
* Logical shift left register value by an immediate: dest = src << imm
*/
#define I_LSHI(reg_dest, reg_src, imm_) { .alu_imm = { \
.dreg = reg_dest, \
.sreg = reg_src, \
.imm = imm_, \
.unused = 0, \
.sel = ALU_SEL_LSH, \
.sub_opcode = SUB_OPCODE_ALU_IMM, \
.opcode = OPCODE_ALU } }
/**
* Logical shift right register value by an immediate: dest = val >> imm
*/
#define I_RSHI(reg_dest, reg_src, imm_) { .alu_imm = { \
.dreg = reg_dest, \
.sreg = reg_src, \
.imm = imm_, \
.unused = 0, \
.sel = ALU_SEL_RSH, \
.sub_opcode = SUB_OPCODE_ALU_IMM, \
.opcode = OPCODE_ALU } }
/**
* Define a label with number label_num.
*
* This is a macro which doesn't generate a real instruction.
* The token generated by this macro is removed by ulp_process_macros_and_load
* function. Label defined using this macro can be used in branch macros defined
* below.
*/
#define M_LABEL(label_num) { .macro = { \
.label = label_num, \
.unused = 0, \
.sub_opcode = SUB_OPCODE_MACRO_LABEL, \
.opcode = OPCODE_MACRO } }
/**
* Token macro used by M_B and M_BX macros. Not to be used directly.
*/
#define M_BRANCH(label_num) { .macro = { \
.label = label_num, \
.unused = 0, \
.sub_opcode = SUB_OPCODE_MACRO_BRANCH, \
.opcode = OPCODE_MACRO } }
/**
* Macro: branch to label label_num if R0 is less than immediate value.
*
* This macro generates two ulp_insn_t values separated by a comma, and should
* be used when defining contents of ulp_insn_t arrays. First value is not a
* real instruction; it is a token which is removed by ulp_process_macros_and_load
* function.
*/
#define M_BL(label_num, imm_value) \
M_BRANCH(label_num), \
I_BL(0, imm_value)
/**
* Macro: branch to label label_num if R0 is greater or equal than immediate value
*
* This macro generates two ulp_insn_t values separated by a comma, and should
* be used when defining contents of ulp_insn_t arrays. First value is not a
* real instruction; it is a token which is removed by ulp_process_macros_and_load
* function.
*/
#define M_BGE(label_num, imm_value) \
M_BRANCH(label_num), \
I_BGE(0, imm_value)
/**
* Macro: unconditional branch to label
*
* This macro generates two ulp_insn_t values separated by a comma, and should
* be used when defining contents of ulp_insn_t arrays. First value is not a
* real instruction; it is a token which is removed by ulp_process_macros_and_load
* function.
*/
#define M_BX(label_num) \
M_BRANCH(label_num), \
I_BXI(0)
/**
* Macro: branch to label if ALU result is zero
*
* This macro generates two ulp_insn_t values separated by a comma, and should
* be used when defining contents of ulp_insn_t arrays. First value is not a
* real instruction; it is a token which is removed by ulp_process_macros_and_load
* function.
*/
#define M_BXZ(label_num) \
M_BRANCH(label_num), \
I_BXZI(0)
/**
* Macro: branch to label if ALU overflow
*
* This macro generates two ulp_insn_t values separated by a comma, and should
* be used when defining contents of ulp_insn_t arrays. First value is not a
* real instruction; it is a token which is removed by ulp_process_macros_and_load
* function.
*/
#define M_BXF(label_num) \
M_BRANCH(label_num), \
I_BXFI(0)
#define RTC_SLOW_MEM ((uint32_t*) 0x50000000) /*!< RTC slow memory, 8k size */
/**
* @brief Resolve all macro references in a program and load it into RTC memory
* @param load_addr address where the program should be loaded, expressed in 32-bit words
* @param program ulp_insn_t array with the program
* @param psize size of the program, expressed in 32-bit words
* @return
* - ESP_OK on success
* - ESP_ERR_NO_MEM if auxiliary temporary structure can not be allocated
* - one of ESP_ERR_ULP_xxx if program is not valid or can not be loaded
*/
esp_err_t ulp_process_macros_and_load(uint32_t load_addr, const ulp_insn_t* program, size_t* psize);
/**
* @brief Load ULP program binary into RTC memory
*
* ULP program binary should have the following format (all values little-endian):
*
* 1. MAGIC, (value 0x00706c75, 4 bytes)
* 2. TEXT_OFFSET, offset of .text section from binary start (2 bytes)
* 3. TEXT_SIZE, size of .text section (2 bytes)
* 4. DATA_SIZE, size of .data section (2 bytes)
* 5. BSS_SIZE, size of .bss section (2 bytes)
* 6. (TEXT_OFFSET - 12) bytes of arbitrary data (will not be loaded into RTC memory)
* 7. .text section
* 8. .data section
*
* Linker script in components/ulp/ld/esp32.ulp.ld produces ELF files which
* correspond to this format. This linker script produces binaries with load_addr == 0.
*
* @param load_addr address where the program should be loaded, expressed in 32-bit words
* @param program_binary pointer to program binary
* @param program_size size of the program binary
* @return
* - ESP_OK on success
* - ESP_ERR_INVALID_ARG if load_addr is out of range
* - ESP_ERR_INVALID_SIZE if program_size doesn't match (TEXT_OFFSET + TEXT_SIZE + DATA_SIZE)
* - ESP_ERR_NOT_SUPPORTED if the magic number is incorrect
*/
esp_err_t ulp_load_binary(uint32_t load_addr, const uint8_t* program_binary, size_t program_size);
/**
* @brief Run the program loaded into RTC memory
* @param entry_point entry point, expressed in 32-bit words
* @return ESP_OK on success
*/
esp_err_t ulp_run(uint32_t entry_point);
/**
* @brief Set one of ULP wakeup period values
*
* ULP coprocessor starts running the program when the wakeup timer counts up
* to a given value (called period). There are 5 period values which can be
* programmed into SENS_ULP_CP_SLEEP_CYCx_REG registers, x = 0..4.
* By default, wakeup timer will use the period set into SENS_ULP_CP_SLEEP_CYC0_REG,
* i.e. period number 0. ULP program code can use SLEEP instruction to select
* which of the SENS_ULP_CP_SLEEP_CYCx_REG should be used for subsequent wakeups.
*
* @param period_index wakeup period setting number (0 - 4)
* @param period_us wakeup period, us
* @return
* - ESP_OK on success
* - ESP_ERR_INVALID_ARG if period_index is out of range
*/
esp_err_t ulp_set_wakeup_period(size_t period_index, uint32_t period_us);
#ifdef __cplusplus
}
#endif