esp-idf/components/hal/adc_hal.c
Armando 2d37bfa126 driver: Add adc_digi single conversion mode
- add lock for single read and continuous read APIs
- update onetime read start singal delay for hardware limitation[*]
- move adc_caps to soc_caps.h
- update license dates

[*] There is a hardware limitation. If the APB clock frequency is high, the
step of this reg signal: ``onetime_start`` may not be captured by the
ADC digital controller (when its clock frequency is too slow). A rough
estimate for this step should be at least 3 ADC digital controller
clock cycle.
2020-12-23 09:53:24 +11:00

234 lines
7.5 KiB
C

// Copyright 2019-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "hal/adc_hal.h"
#include "hal/adc_hal_conf.h"
#if CONFIG_IDF_TARGET_ESP32C3
#include "soc/soc.h"
#include "esp_rom_sys.h"
#endif
void adc_hal_init(void)
{
// Set internal FSM wait time, fixed value.
adc_ll_digi_set_fsm_time(SOC_ADC_FSM_RSTB_WAIT_DEFAULT, SOC_ADC_FSM_START_WAIT_DEFAULT,
SOC_ADC_FSM_STANDBY_WAIT_DEFAULT);
adc_ll_set_sample_cycle(ADC_FSM_SAMPLE_CYCLE_DEFAULT);
adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
adc_ll_digi_output_invert(ADC_NUM_1, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_1));
adc_ll_digi_output_invert(ADC_NUM_2, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_2));
adc_ll_digi_set_clk_div(SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT);
}
void adc_hal_deinit(void)
{
adc_ll_set_power_manage(ADC_POWER_SW_OFF);
}
int adc_hal_convert(adc_ll_num_t adc_n, int channel, int *value)
{
adc_ll_rtc_enable_channel(adc_n, channel);
adc_ll_rtc_start_convert(adc_n, channel);
while (adc_ll_rtc_convert_is_done(adc_n) != true);
*value = adc_ll_rtc_get_convert_value(adc_n);
return (int)adc_ll_rtc_analysis_raw_data(adc_n, (uint16_t)(*value));
}
#if CONFIG_IDF_TARGET_ESP32C3
//This feature is currently supported on ESP32C3, will be supported on other chips soon
/*---------------------------------------------------------------
DMA setting
---------------------------------------------------------------*/
void adc_hal_digi_dma_multi_descriptor(adc_dma_hal_config_t *dma_config, uint8_t *data_buf, uint32_t size, uint32_t num)
{
assert(((uint32_t)data_buf % 4) == 0);
assert((size % 4) == 0);
dma_descriptor_t *desc = dma_config->rx_desc;
uint32_t n = 0;
while (num--) {
desc[n].dw0.size = size;
desc[n].dw0.suc_eof = 0;
desc[n].dw0.owner = 1;
desc[n].buffer = data_buf;
desc[n].next = &desc[n+1];
data_buf += size;
n++;
}
desc[n-1].next = NULL;
}
void adc_hal_digi_rxdma_start(adc_dma_hal_context_t *adc_dma_ctx, adc_dma_hal_config_t *dma_config)
{
gdma_ll_rx_reset_channel(adc_dma_ctx->dev, dma_config->dma_chan);
gdma_ll_rx_set_desc_addr(adc_dma_ctx->dev, dma_config->dma_chan, (uint32_t)dma_config->rx_desc);
gdma_ll_rx_start(adc_dma_ctx->dev, dma_config->dma_chan);
}
void adc_hal_digi_rxdma_stop(adc_dma_hal_context_t *adc_dma_ctx, adc_dma_hal_config_t *dma_config)
{
gdma_ll_rx_stop(adc_dma_ctx->dev, dma_config->dma_chan);
}
void adc_hal_digi_ena_intr(adc_dma_hal_context_t *adc_dma_ctx, adc_dma_hal_config_t *dma_config, uint32_t mask)
{
gdma_ll_enable_interrupt(adc_dma_ctx->dev, dma_config->dma_chan, mask, true);
}
void adc_hal_digi_clr_intr(adc_dma_hal_context_t *adc_dma_ctx, adc_dma_hal_config_t *dma_config, uint32_t mask)
{
gdma_ll_clear_interrupt_status(adc_dma_ctx->dev, dma_config->dma_chan, mask);
}
void adc_hal_digi_dis_intr(adc_dma_hal_context_t *adc_dma_ctx, adc_dma_hal_config_t *dma_config, uint32_t mask)
{
gdma_ll_enable_interrupt(adc_dma_ctx->dev, dma_config->dma_chan, mask, false);
}
void adc_hal_digi_set_eof_num(adc_dma_hal_context_t *adc_dma_ctx, adc_dma_hal_config_t *dma_config, uint32_t num)
{
adc_ll_digi_dma_set_eof_num(num);
}
void adc_hal_digi_start(adc_dma_hal_context_t *adc_dma_ctx, adc_dma_hal_config_t *dma_config)
{
//Set to 1: the ADC data will be sent to the DMA
adc_ll_digi_dma_enable();
//enable sar adc timer
adc_ll_digi_trigger_enable();
}
void adc_hal_digi_stop(adc_dma_hal_context_t *adc_dma_ctx, adc_dma_hal_config_t *dma_config)
{
//Set to 0: the ADC data won't be sent to the DMA
adc_ll_digi_dma_disable();
//disable sar adc timer
adc_ll_digi_trigger_disable();
}
void adc_hal_digi_init(adc_dma_hal_context_t *adc_dma_ctx, adc_dma_hal_config_t *dma_config)
{
adc_dma_ctx->dev = &GDMA;
gdma_ll_enable_clock(adc_dma_ctx->dev, true);
gdma_ll_clear_interrupt_status(adc_dma_ctx->dev, dma_config->dma_chan, UINT32_MAX);
gdma_ll_rx_connect_to_periph(adc_dma_ctx->dev, dma_config->dma_chan, GDMA_LL_TRIG_SRC_ADC_DAC);
}
/*---------------------------------------------------------------
Single Read
---------------------------------------------------------------*/
void adc_hal_onetime_start(adc_digi_config_t *adc_digi_config)
{
/**
* There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the
* ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller
* clock cycle.
*
* This limitation will be removed in hardware future versions.
*
*/
uint32_t digi_clk = APB_CLK_FREQ / (adc_digi_config->dig_clk.div_num + adc_digi_config->dig_clk.div_a / adc_digi_config->dig_clk.div_b + 1);
//Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough.
uint32_t delay = (1000 * 1000) / digi_clk + 1;
//3 ADC digital controller clock cycle
delay = delay * 3;
//This coefficient (8) is got from test. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed.
if (digi_clk >= APB_CLK_FREQ/8) {
delay = 0;
}
adc_ll_onetime_start(false);
esp_rom_delay_us(delay);
adc_ll_onetime_start(true);
//No need to delay here. Becuase if the start signal is not seen, there won't be a done intr.
}
void adc_hal_adc1_onetime_sample_enable(bool enable)
{
if (enable) {
adc_ll_adc1_onetime_sample_ena();
} else {
adc_ll_adc1_onetime_sample_dis();
}
}
void adc_hal_adc2_onetime_sample_enable(bool enable)
{
if (enable) {
adc_ll_adc2_onetime_sample_ena();
} else {
adc_ll_adc2_onetime_sample_dis();
}
}
void adc_hal_onetime_channel(adc_ll_num_t unit, adc_channel_t channel)
{
adc_ll_onetime_set_channel(unit, channel);
}
void adc_hal_set_onetime_atten(adc_atten_t atten)
{
adc_ll_onetime_set_atten(atten);
}
uint32_t adc_hal_adc1_read(void)
{
return adc_ll_adc1_read();
}
uint32_t adc_hal_adc2_read(void)
{
return adc_ll_adc2_read();
}
//--------------------INTR-------------------------------
static adc_ll_intr_t get_event_intr(adc_event_t event)
{
adc_ll_intr_t intr_mask = 0;
if (event & ADC_EVENT_ADC1_DONE) {
intr_mask |= ADC_LL_INTR_ADC1_DONE;
}
if (event & ADC_EVENT_ADC2_DONE) {
intr_mask |= ADC_LL_INTR_ADC2_DONE;
}
return intr_mask;
}
void adc_hal_intr_enable(adc_event_t event)
{
adc_ll_intr_enable(get_event_intr(event));
}
void adc_hal_intr_disable(adc_event_t event)
{
adc_ll_intr_disable(get_event_intr(event));
}
void adc_hal_intr_clear(adc_event_t event)
{
adc_ll_intr_clear(get_event_intr(event));
}
bool adc_hal_intr_get_raw(adc_event_t event)
{
return adc_ll_intr_get_raw(get_event_intr(event));
}
bool adc_hal_intr_get_status(adc_event_t event)
{
return adc_ll_intr_get_status(get_event_intr(event));
}
#endif