mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
395 lines
11 KiB
C
395 lines
11 KiB
C
/*
|
|
* ESP32 hardware accelerated SHA1/256/512 implementation
|
|
* based on mbedTLS FIPS-197 compliant version.
|
|
*
|
|
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
|
|
* Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
*/
|
|
/*
|
|
* The SHA-1 standard was published by NIST in 1993.
|
|
*
|
|
* http://www.itl.nist.gov/fipspubs/fip180-1.htm
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <sys/lock.h>
|
|
|
|
#include "esp_log.h"
|
|
#include "esp_crypto_lock.h"
|
|
#include "esp32s2/rom/cache.h"
|
|
#include "esp32s2/rom/lldesc.h"
|
|
#include "soc/crypto_dma_reg.h"
|
|
#include "soc/dport_reg.h"
|
|
#include "soc/hwcrypto_reg.h"
|
|
#include "soc/cache_memory.h"
|
|
#include "soc/periph_defs.h"
|
|
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/semphr.h"
|
|
|
|
#include "driver/periph_ctrl.h"
|
|
#include "sys/param.h"
|
|
|
|
#include "esp32s2/sha.h"
|
|
|
|
/* Max amount of bytes in a single DMA operation is 4095,
|
|
for SHA this means that the biggest safe amount of bytes is
|
|
31 blocks of 128 bytes = 3968
|
|
*/
|
|
#define SHA_DMA_MAX_BYTES 3968
|
|
|
|
/* The longest length of a single block is for SHA512 = 128 byte */
|
|
#define SHA_MAX_BLK_LEN 128
|
|
|
|
const static char *TAG = "esp-sha";
|
|
|
|
/* Return block size (in bytes) for a given SHA type */
|
|
inline static size_t block_length(esp_sha_type type)
|
|
{
|
|
switch (type) {
|
|
case SHA1:
|
|
case SHA2_224:
|
|
case SHA2_256:
|
|
return 64;
|
|
case SHA2_384:
|
|
case SHA2_512:
|
|
case SHA2_512224:
|
|
case SHA2_512256:
|
|
case SHA2_512T:
|
|
return 128;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Return state size (in bytes) for a given SHA type */
|
|
inline static size_t state_length(esp_sha_type type)
|
|
{
|
|
switch (type) {
|
|
case SHA1:
|
|
return 160 / 8;
|
|
case SHA2_224:
|
|
case SHA2_256:
|
|
return 256 / 8;
|
|
case SHA2_384:
|
|
case SHA2_512:
|
|
case SHA2_512224:
|
|
case SHA2_512256:
|
|
case SHA2_512T:
|
|
return 512 / 8;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Enable SHA peripheral and then lock it */
|
|
void esp_sha_acquire_hardware()
|
|
{
|
|
esp_crypto_dma_lock_acquire();
|
|
|
|
/* Enable SHA and DMA hardware */
|
|
periph_module_enable(PERIPH_SHA_DMA_MODULE);
|
|
|
|
/* DMA for SHA */
|
|
REG_WRITE(CRYPTO_DMA_AES_SHA_SELECT_REG, 1);
|
|
}
|
|
|
|
/* Disable SHA peripheral block and then release it */
|
|
void esp_sha_release_hardware()
|
|
{
|
|
/* Disable SHA and DMA hardware */
|
|
periph_module_disable(PERIPH_SHA_DMA_MODULE);
|
|
|
|
esp_crypto_dma_lock_release();
|
|
}
|
|
|
|
/* Busy wait until SHA is idle */
|
|
static void esp_sha_wait_idle(void)
|
|
{
|
|
while (DPORT_REG_READ(SHA_BUSY_REG) != 0) {
|
|
}
|
|
}
|
|
|
|
void esp_sha_write_digest_state(esp_sha_type sha_type, void *digest_state)
|
|
{
|
|
uint32_t *digest_state_words = (uint32_t *)digest_state;
|
|
uint32_t *reg_addr_buf = (uint32_t *)(SHA_H_BASE);
|
|
|
|
for (int i = 0; i < state_length(sha_type) / 4; i++) {
|
|
REG_WRITE(®_addr_buf[i], digest_state_words[i]);
|
|
}
|
|
}
|
|
|
|
/* Read the SHA digest from hardware */
|
|
void esp_sha_read_digest_state(esp_sha_type sha_type, void *digest_state)
|
|
{
|
|
uint32_t *digest_state_words = (uint32_t *)digest_state;
|
|
int word_len = state_length(sha_type) / 4;
|
|
|
|
esp_dport_access_read_buffer(digest_state_words, SHA_H_BASE, word_len);
|
|
|
|
/* Fault injection check: verify SHA engine actually ran,
|
|
state is not all zeroes.
|
|
*/
|
|
for (int i = 0; i < word_len; i++) {
|
|
if (digest_state_words[i] != 0) {
|
|
return;
|
|
}
|
|
}
|
|
abort(); // SHA peripheral returned all zero state, probably due to fault injection
|
|
}
|
|
|
|
/* The initial hash value for SHA512/t is generated according to the
|
|
algorithm described in the TRM, chapter SHA-Accelerator
|
|
*/
|
|
int esp_sha_512_t_init_hash(uint16_t t)
|
|
{
|
|
uint32_t t_string = 0;
|
|
uint8_t t0, t1, t2, t_len;
|
|
|
|
if (t == 384) {
|
|
ESP_LOGE(TAG, "Invalid t for SHA512/t, t = %u,cannot be 384", t);
|
|
return -1;
|
|
}
|
|
|
|
if (t <= 9) {
|
|
t_string = (uint32_t)((1 << 23) | ((0x30 + t) << 24));
|
|
t_len = 0x48;
|
|
} else if (t <= 99) {
|
|
t0 = t % 10;
|
|
t1 = (t / 10) % 10;
|
|
t_string = (uint32_t)((1 << 15) | ((0x30 + t0) << 16) |
|
|
(((0x30 + t1) << 24)));
|
|
t_len = 0x50;
|
|
} else if (t <= 512) {
|
|
t0 = t % 10;
|
|
t1 = (t / 10) % 10;
|
|
t2 = t / 100;
|
|
t_string = (uint32_t)((1 << 7) | ((0x30 + t0) << 8) |
|
|
(((0x30 + t1) << 16) + ((0x30 + t2) << 24)));
|
|
t_len = 0x58;
|
|
} else {
|
|
ESP_LOGE(TAG, "Invalid t for SHA512/t, t = %u, must equal or less than 512", t);
|
|
return -1;
|
|
}
|
|
|
|
REG_WRITE(SHA_T_LENGTH_REG, t_len);
|
|
REG_WRITE(SHA_T_STRING_REG, t_string);
|
|
REG_WRITE(SHA_MODE_REG, SHA2_512T);
|
|
REG_WRITE(SHA_START_REG, 1);
|
|
|
|
esp_sha_wait_idle();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void esp_sha_fill_text_block(esp_sha_type sha_type, const void *input)
|
|
{
|
|
uint32_t *reg_addr_buf = (uint32_t *)(SHA_TEXT_BASE);
|
|
uint32_t *data_words = NULL;
|
|
|
|
/* Fill the data block */
|
|
data_words = (uint32_t *)(input);
|
|
for (int i = 0; i < block_length(sha_type) / 4; i++) {
|
|
reg_addr_buf[i] = (data_words[i]);
|
|
}
|
|
asm volatile ("memw");
|
|
}
|
|
|
|
/* Hash a single SHA block */
|
|
static void esp_sha_block(esp_sha_type sha_type, const void *input, bool is_first_block)
|
|
{
|
|
esp_sha_fill_text_block(sha_type, input);
|
|
|
|
esp_sha_wait_idle();
|
|
/* Start hashing */
|
|
if (is_first_block) {
|
|
REG_WRITE(SHA_START_REG, 1);
|
|
} else {
|
|
REG_WRITE(SHA_CONTINUE_REG, 1);
|
|
}
|
|
}
|
|
|
|
/* Hash the input block by block, using non-DMA mode */
|
|
static void esp_sha_block_mode(esp_sha_type sha_type, const uint8_t *input, uint32_t ilen,
|
|
const uint8_t *buf, uint32_t buf_len, bool is_first_block)
|
|
{
|
|
size_t blk_len = 0;
|
|
int num_block = 0;
|
|
|
|
blk_len = block_length(sha_type);
|
|
|
|
REG_WRITE(SHA_MODE_REG, sha_type);
|
|
num_block = ilen / blk_len;
|
|
|
|
if (buf_len != 0) {
|
|
esp_sha_block(sha_type, buf, is_first_block);
|
|
is_first_block = false;
|
|
}
|
|
|
|
for (int i = 0; i < num_block; i++) {
|
|
esp_sha_block(sha_type, input + blk_len*i, is_first_block);
|
|
is_first_block = false;
|
|
}
|
|
|
|
esp_sha_wait_idle();
|
|
}
|
|
|
|
|
|
|
|
static int esp_sha_dma_process(esp_sha_type sha_type, const void *input, uint32_t ilen,
|
|
const void *buf, uint32_t buf_len, bool is_first_block);
|
|
|
|
/* Performs SHA on multiple blocks at a time using DMA
|
|
splits up into smaller operations for inputs that exceed a single DMA list
|
|
*/
|
|
int esp_sha_dma(esp_sha_type sha_type, const void *input, uint32_t ilen,
|
|
const void *buf, uint32_t buf_len, bool is_first_block)
|
|
{
|
|
int ret = 0;
|
|
unsigned char *dma_cap_buf = NULL;
|
|
int dma_op_num = ( ilen / (SHA_DMA_MAX_BYTES + 1) ) + 1;
|
|
|
|
if (buf_len > block_length(sha_type)) {
|
|
ESP_LOGE(TAG, "SHA DMA buf_len cannot exceed max size for a single block");
|
|
return -1;
|
|
}
|
|
|
|
/* DMA cannot access memory in the iCache range, hash block by block instead of using DMA */
|
|
if (!esp_ptr_dma_ext_capable(input) && !esp_ptr_dma_capable(input) && (ilen != 0)) {
|
|
esp_sha_block_mode(sha_type, input, ilen, buf, buf_len, is_first_block);
|
|
return 0;
|
|
}
|
|
|
|
#if (CONFIG_ESP32S2_SPIRAM_SUPPORT)
|
|
if (esp_ptr_external_ram(input)) {
|
|
Cache_WriteBack_Addr((uint32_t)input, ilen);
|
|
}
|
|
if (esp_ptr_external_ram(buf)) {
|
|
Cache_WriteBack_Addr((uint32_t)buf, buf_len);
|
|
}
|
|
#endif
|
|
|
|
/* Copy to internal buf if buf is in non DMA capable memory */
|
|
if (!esp_ptr_dma_ext_capable(buf) && !esp_ptr_dma_capable(buf) && (buf_len != 0)) {
|
|
dma_cap_buf = heap_caps_malloc(sizeof(unsigned char) * buf_len, MALLOC_CAP_DMA);
|
|
if (dma_cap_buf == NULL) {
|
|
ESP_LOGE(TAG, "Failed to allocate buf memory");
|
|
ret = -1;
|
|
goto cleanup;
|
|
}
|
|
memcpy(dma_cap_buf, buf, buf_len);
|
|
buf = dma_cap_buf;
|
|
}
|
|
|
|
|
|
/* The max amount of blocks in a single hardware operation is 2^6 - 1 = 63
|
|
Thus we only do a single DMA input list + dma buf list,
|
|
which is max 3968/64 + 64/64 = 63 blocks */
|
|
for (int i = 0; i < dma_op_num; i++) {
|
|
|
|
int dma_chunk_len = MIN(ilen, SHA_DMA_MAX_BYTES);
|
|
|
|
ret = esp_sha_dma_process(sha_type, input, dma_chunk_len, buf, buf_len, is_first_block);
|
|
|
|
if (ret != 0) {
|
|
goto cleanup;
|
|
}
|
|
|
|
ilen -= dma_chunk_len;
|
|
input += dma_chunk_len;
|
|
|
|
// Only append buf to the first operation
|
|
buf_len = 0;
|
|
is_first_block = false;
|
|
}
|
|
|
|
cleanup:
|
|
free(dma_cap_buf);
|
|
return ret;
|
|
}
|
|
|
|
static void esp_sha_dma_init(lldesc_t *input)
|
|
{
|
|
/* Reset DMA */
|
|
SET_PERI_REG_MASK(CRYPTO_DMA_CONF0_REG, CONF0_REG_AHBM_RST | CONF0_REG_OUT_RST | CONF0_REG_AHBM_FIFO_RST);
|
|
CLEAR_PERI_REG_MASK(CRYPTO_DMA_CONF0_REG, CONF0_REG_AHBM_RST | CONF0_REG_OUT_RST | CONF0_REG_AHBM_FIFO_RST);
|
|
|
|
/* Set descriptors */
|
|
CLEAR_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, OUT_LINK_REG_OUTLINK_ADDR);
|
|
SET_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, ((uint32_t)(input))&OUT_LINK_REG_OUTLINK_ADDR);
|
|
/* Start transfer */
|
|
SET_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, OUT_LINK_REG_OUTLINK_START);
|
|
}
|
|
|
|
/* Performs SHA on multiple blocks at a time */
|
|
static esp_err_t esp_sha_dma_process(esp_sha_type sha_type, const void *input, uint32_t ilen,
|
|
const void *buf, uint32_t buf_len, bool is_first_block)
|
|
{
|
|
size_t blk_len = 0;
|
|
int ret = 0;
|
|
lldesc_t dma_descr_input = {};
|
|
lldesc_t dma_descr_buf = {};
|
|
lldesc_t *dma_descr_head;
|
|
|
|
blk_len = block_length(sha_type);
|
|
|
|
REG_WRITE(SHA_MODE_REG, sha_type);
|
|
REG_WRITE(SHA_BLOCK_NUM_REG, ((ilen + buf_len) / blk_len));
|
|
|
|
|
|
/* DMA descriptor for Memory to DMA-SHA transfer */
|
|
if (ilen) {
|
|
dma_descr_input.length = ilen;
|
|
dma_descr_input.size = ilen;
|
|
dma_descr_input.owner = 1;
|
|
dma_descr_input.eof = 1;
|
|
dma_descr_input.buf = input;
|
|
dma_descr_head = &dma_descr_input;
|
|
}
|
|
/* Check after input to overide head if there is any buf*/
|
|
if (buf_len) {
|
|
dma_descr_buf.length = buf_len;
|
|
dma_descr_buf.size = buf_len;
|
|
dma_descr_buf.owner = 1;
|
|
dma_descr_buf.eof = 1;
|
|
dma_descr_buf.buf = buf;
|
|
dma_descr_head = &dma_descr_buf;
|
|
}
|
|
|
|
/* Link DMA lists */
|
|
if (buf_len && ilen) {
|
|
dma_descr_buf.eof = 0;
|
|
dma_descr_buf.empty = (uint32_t)(&dma_descr_input);
|
|
}
|
|
|
|
esp_sha_dma_init(dma_descr_head);
|
|
|
|
/* Start hashing */
|
|
if (is_first_block) {
|
|
REG_WRITE(SHA_DMA_START_REG, 1);
|
|
} else {
|
|
REG_WRITE(SHA_DMA_CONTINUE_REG, 1);
|
|
}
|
|
|
|
esp_sha_wait_idle();
|
|
|
|
return ret;
|
|
}
|
|
|