esp-idf/components/esp_eth/src/esp_eth_mac_esp32.c

519 lines
18 KiB
C

// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <stdlib.h>
#include <sys/cdefs.h>
#include "driver/periph_ctrl.h"
#include "driver/gpio.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_eth.h"
#include "esp_pm.h"
#include "esp_system.h"
#include "esp_heap_caps.h"
#include "esp_intr_alloc.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "hal/cpu_hal.h"
#include "hal/emac.h"
#include "soc/soc.h"
#include "sdkconfig.h"
#include "esp_rom_gpio.h"
static const char *TAG = "emac_esp32";
#define MAC_CHECK(a, str, goto_tag, ret_value, ...) \
do \
{ \
if (!(a)) \
{ \
ESP_LOGE(TAG, "%s(%d): " str, __FUNCTION__, __LINE__, ##__VA_ARGS__); \
ret = ret_value; \
goto goto_tag; \
} \
} while (0)
#define PHY_OPERATION_TIMEOUT_US (1000)
typedef struct {
esp_eth_mac_t parent;
esp_eth_mediator_t *eth;
emac_hal_context_t hal;
intr_handle_t intr_hdl;
TaskHandle_t rx_task_hdl;
uint32_t sw_reset_timeout_ms;
uint32_t frames_remain;
int smi_mdc_gpio_num;
int smi_mdio_gpio_num;
uint8_t addr[6];
uint8_t *rx_buf[CONFIG_ETH_DMA_RX_BUFFER_NUM];
uint8_t *tx_buf[CONFIG_ETH_DMA_TX_BUFFER_NUM];
bool isr_need_yield;
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_handle_t pm_lock;
#endif
} emac_esp32_t;
static esp_err_t emac_esp32_set_mediator(esp_eth_mac_t *mac, esp_eth_mediator_t *eth)
{
esp_err_t ret = ESP_OK;
MAC_CHECK(eth, "can't set mac's mediator to null", err, ESP_ERR_INVALID_ARG);
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
emac->eth = eth;
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_esp32_write_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t reg_value)
{
esp_err_t ret = ESP_OK;
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
MAC_CHECK(!emac_hal_is_mii_busy(&emac->hal), "phy is busy", err, ESP_ERR_INVALID_STATE);
emac_hal_set_phy_data(&emac->hal, reg_value);
emac_hal_set_phy_cmd(&emac->hal, phy_addr, phy_reg, true);
/* polling the busy flag */
uint32_t to = 0;
bool busy = true;
do {
ets_delay_us(100);
busy = emac_hal_is_mii_busy(&emac->hal);
to += 100;
} while (busy && to < PHY_OPERATION_TIMEOUT_US);
MAC_CHECK(!busy, "phy is busy", err, ESP_ERR_TIMEOUT);
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_esp32_read_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t *reg_value)
{
esp_err_t ret = ESP_OK;
MAC_CHECK(reg_value, "can't set reg_value to null", err, ESP_ERR_INVALID_ARG);
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
MAC_CHECK(!emac_hal_is_mii_busy(&emac->hal), "phy is busy", err, ESP_ERR_INVALID_STATE);
emac_hal_set_phy_cmd(&emac->hal, phy_addr, phy_reg, false);
/* polling the busy flag */
uint32_t to = 0;
bool busy = true;
do {
ets_delay_us(100);
busy = emac_hal_is_mii_busy(&emac->hal);
to += 100;
} while (busy && to < PHY_OPERATION_TIMEOUT_US);
MAC_CHECK(!busy, "phy is busy", err, ESP_ERR_TIMEOUT);
/* Store value */
*reg_value = emac_hal_get_phy_data(&emac->hal);
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_esp32_set_addr(esp_eth_mac_t *mac, uint8_t *addr)
{
esp_err_t ret = ESP_OK;
MAC_CHECK(addr, "can't set mac addr to null", err, ESP_ERR_INVALID_ARG);
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
memcpy(emac->addr, addr, 6);
emac_hal_set_address(&emac->hal, emac->addr);
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_esp32_get_addr(esp_eth_mac_t *mac, uint8_t *addr)
{
esp_err_t ret = ESP_OK;
MAC_CHECK(addr, "can't set mac addr to null", err, ESP_ERR_INVALID_ARG);
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
memcpy(addr, emac->addr, 6);
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_esp32_set_link(esp_eth_mac_t *mac, eth_link_t link)
{
esp_err_t ret = ESP_OK;
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
switch (link) {
case ETH_LINK_UP:
MAC_CHECK(esp_intr_enable(emac->intr_hdl) == ESP_OK, "enable interrupt failed", err, ESP_FAIL);
emac_hal_start(&emac->hal);
break;
case ETH_LINK_DOWN:
MAC_CHECK(esp_intr_disable(emac->intr_hdl) == ESP_OK, "disable interrupt failed", err, ESP_FAIL);
emac_hal_stop(&emac->hal);
break;
default:
MAC_CHECK(false, "unknown link status", err, ESP_ERR_INVALID_ARG);
break;
}
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_esp32_set_speed(esp_eth_mac_t *mac, eth_speed_t speed)
{
esp_err_t ret = ESP_OK;
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
switch (speed) {
case ETH_SPEED_10M:
emac_hal_set_speed(&emac->hal, EMAC_SPEED_10M);
ESP_LOGD(TAG, "working in 10Mbps");
break;
case ETH_SPEED_100M:
emac_hal_set_speed(&emac->hal, EMAC_SPEED_100M);
ESP_LOGD(TAG, "working in 100Mbps");
break;
default:
MAC_CHECK(false, "unknown speed", err, ESP_ERR_INVALID_ARG);
break;
}
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_esp32_set_duplex(esp_eth_mac_t *mac, eth_duplex_t duplex)
{
esp_err_t ret = ESP_OK;
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
switch (duplex) {
case ETH_DUPLEX_HALF:
emac_hal_set_duplex(&emac->hal, EMAC_DUPLEX_HALF);
ESP_LOGD(TAG, "working in half duplex");
break;
case ETH_DUPLEX_FULL:
emac_hal_set_duplex(&emac->hal, EMAC_DUPLEX_FULL);
ESP_LOGD(TAG, "working in full duplex");
break;
default:
MAC_CHECK(false, "unknown duplex", err, ESP_ERR_INVALID_ARG);
break;
}
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_esp32_set_promiscuous(esp_eth_mac_t *mac, bool enable)
{
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
emac_hal_set_promiscuous(&emac->hal, enable);
return ESP_OK;
}
static esp_err_t emac_esp32_transmit(esp_eth_mac_t *mac, uint8_t *buf, uint32_t length)
{
esp_err_t ret = ESP_OK;
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
uint32_t sent_len = emac_hal_transmit_frame(&emac->hal, buf, length);
MAC_CHECK(sent_len == length, "insufficient TX buffer size", err, ESP_ERR_INVALID_SIZE);
return ESP_OK;
err:
return ret;
}
static esp_err_t emac_esp32_receive(esp_eth_mac_t *mac, uint8_t *buf, uint32_t *length)
{
esp_err_t ret = ESP_OK;
uint32_t expected_len = *length;
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
MAC_CHECK(buf && length, "can't set buf and length to null", err, ESP_ERR_INVALID_ARG);
uint32_t receive_len = emac_hal_receive_frame(&emac->hal, buf, expected_len, &emac->frames_remain);
/* we need to check the return value in case the buffer size is not enough */
ESP_LOGD(TAG, "receive len= %d", receive_len);
MAC_CHECK(expected_len >= receive_len, "received buffer longer than expected", err, ESP_ERR_INVALID_SIZE);
*length = receive_len;
return ESP_OK;
err:
*length = expected_len;
return ret;
}
static void emac_esp32_rx_task(void *arg)
{
emac_esp32_t *emac = (emac_esp32_t *)arg;
uint8_t *buffer = NULL;
uint32_t length = 0;
while (1) {
// block indefinitely until got notification from underlay event
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
do {
length = ETH_MAX_PACKET_SIZE;
buffer = malloc(length);
if (!buffer) {
ESP_LOGE(TAG, "no mem for receive buffer");
} else if (emac_esp32_receive(&emac->parent, buffer, &length) == ESP_OK) {
/* pass the buffer to stack (e.g. TCP/IP layer) */
if (length) {
emac->eth->stack_input(emac->eth, buffer, length);
} else {
free(buffer);
}
} else {
free(buffer);
}
} while (emac->frames_remain);
}
vTaskDelete(NULL);
}
static void emac_esp32_init_smi_gpio(emac_esp32_t *emac)
{
/* Setup SMI MDC GPIO */
gpio_set_direction(emac->smi_mdc_gpio_num, GPIO_MODE_OUTPUT);
esp_rom_gpio_connect_out_signal(emac->smi_mdc_gpio_num, EMAC_MDC_O_IDX, false, false);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[emac->smi_mdc_gpio_num], PIN_FUNC_GPIO);
/* Setup SMI MDIO GPIO */
gpio_set_direction(emac->smi_mdio_gpio_num, GPIO_MODE_INPUT_OUTPUT);
esp_rom_gpio_connect_out_signal(emac->smi_mdio_gpio_num, EMAC_MDO_O_IDX, false, false);
esp_rom_gpio_connect_in_signal(emac->smi_mdio_gpio_num, EMAC_MDI_I_IDX, false);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[emac->smi_mdio_gpio_num], PIN_FUNC_GPIO);
}
static esp_err_t emac_esp32_init(esp_eth_mac_t *mac)
{
esp_err_t ret = ESP_OK;
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
esp_eth_mediator_t *eth = emac->eth;
/* enable peripheral clock */
periph_module_enable(PERIPH_EMAC_MODULE);
/* init clock, config gpio, etc */
emac_hal_lowlevel_init(&emac->hal);
/* init gpio used by smi interface */
emac_esp32_init_smi_gpio(emac);
MAC_CHECK(eth->on_state_changed(eth, ETH_STATE_LLINIT, NULL) == ESP_OK, "lowlevel init failed", err, ESP_FAIL);
/* software reset */
emac_hal_reset(&emac->hal);
uint32_t to = 0;
for (to = 0; to < emac->sw_reset_timeout_ms / 10; to++) {
if (emac_hal_is_reset_done(&emac->hal)) {
break;
}
vTaskDelay(pdMS_TO_TICKS(10));
}
MAC_CHECK(to < emac->sw_reset_timeout_ms / 10, "reset timeout", err, ESP_ERR_TIMEOUT);
/* set smi clock */
emac_hal_set_csr_clock_range(&emac->hal);
/* reset descriptor chain */
emac_hal_reset_desc_chain(&emac->hal);
/* init mac registers by default */
emac_hal_init_mac_default(&emac->hal);
/* init dma registers by default */
emac_hal_init_dma_default(&emac->hal);
/* get emac address from efuse */
MAC_CHECK(esp_read_mac(emac->addr, ESP_MAC_ETH) == ESP_OK, "fetch ethernet mac address failed", err, ESP_FAIL);
/* set MAC address to emac register */
emac_hal_set_address(&emac->hal, emac->addr);
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_acquire(emac->pm_lock);
#endif
return ESP_OK;
err:
eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL);
periph_module_disable(PERIPH_EMAC_MODULE);
return ret;
}
static esp_err_t emac_esp32_deinit(esp_eth_mac_t *mac)
{
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
esp_eth_mediator_t *eth = emac->eth;
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_release(emac->pm_lock);
#endif
emac_hal_stop(&emac->hal);
eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL);
periph_module_disable(PERIPH_EMAC_MODULE);
return ESP_OK;
}
static esp_err_t emac_esp32_start(esp_eth_mac_t *mac)
{
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
emac_hal_start(&emac->hal);
return ESP_OK;
}
static esp_err_t emac_esp32_stop(esp_eth_mac_t *mac)
{
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
emac_hal_stop(&emac->hal);
return ESP_OK;
}
static esp_err_t emac_esp32_del(esp_eth_mac_t *mac)
{
emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent);
esp_intr_free(emac->intr_hdl);
#ifdef CONFIG_PM_ENABLE
if (emac->pm_lock) {
esp_pm_lock_delete(emac->pm_lock);
}
#endif
vTaskDelete(emac->rx_task_hdl);
int i = 0;
for (i = 0; i < CONFIG_ETH_DMA_RX_BUFFER_NUM; i++) {
free(emac->hal.rx_buf[i]);
}
for (i = 0; i < CONFIG_ETH_DMA_TX_BUFFER_NUM; i++) {
free(emac->hal.tx_buf[i]);
}
free(emac->hal.descriptors);
free(emac);
return ESP_OK;
}
// To achieve a better performance, we put the ISR always in IRAM
IRAM_ATTR void emac_esp32_isr_handler(void *args)
{
emac_hal_context_t *hal = (emac_hal_context_t *)args;
emac_esp32_t *emac = __containerof(hal, emac_esp32_t, hal);
emac_hal_isr(args);
if (emac->isr_need_yield) {
emac->isr_need_yield = false;
portYIELD_FROM_ISR();
}
}
esp_eth_mac_t *esp_eth_mac_new_esp32(const eth_mac_config_t *config)
{
esp_err_t ret_code = ESP_OK;
esp_eth_mac_t *ret = NULL;
void *descriptors = NULL;
emac_esp32_t *emac = NULL;
MAC_CHECK(config, "can't set mac config to null", err, NULL);
if (config->flags & ETH_MAC_FLAG_WORK_WITH_CACHE_DISABLE) {
emac = heap_caps_calloc(1, sizeof(emac_esp32_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
} else {
emac = calloc(1, sizeof(emac_esp32_t));
}
MAC_CHECK(emac, "calloc emac failed", err, NULL);
/* alloc memory for ethernet dma descriptor */
uint32_t desc_size = CONFIG_ETH_DMA_RX_BUFFER_NUM * sizeof(eth_dma_rx_descriptor_t) +
CONFIG_ETH_DMA_TX_BUFFER_NUM * sizeof(eth_dma_tx_descriptor_t);
descriptors = heap_caps_calloc(1, desc_size, MALLOC_CAP_DMA);
MAC_CHECK(descriptors, "calloc descriptors failed", err, NULL);
int i = 0;
/* alloc memory for ethernet dma buffer */
for (i = 0; i < CONFIG_ETH_DMA_RX_BUFFER_NUM; i++) {
emac->rx_buf[i] = heap_caps_calloc(1, CONFIG_ETH_DMA_BUFFER_SIZE, MALLOC_CAP_DMA);
if (!(emac->rx_buf[i])) {
goto err;
}
}
for (i = 0; i < CONFIG_ETH_DMA_TX_BUFFER_NUM; i++) {
emac->tx_buf[i] = heap_caps_calloc(1, CONFIG_ETH_DMA_BUFFER_SIZE, MALLOC_CAP_DMA);
if (!(emac->tx_buf[i])) {
goto err;
}
}
/* initialize hal layer driver */
emac_hal_init(&emac->hal, descriptors, emac->rx_buf, emac->tx_buf);
emac->sw_reset_timeout_ms = config->sw_reset_timeout_ms;
emac->smi_mdc_gpio_num = config->smi_mdc_gpio_num;
emac->smi_mdio_gpio_num = config->smi_mdio_gpio_num;
emac->parent.set_mediator = emac_esp32_set_mediator;
emac->parent.init = emac_esp32_init;
emac->parent.deinit = emac_esp32_deinit;
emac->parent.start = emac_esp32_start;
emac->parent.stop = emac_esp32_stop;
emac->parent.del = emac_esp32_del;
emac->parent.write_phy_reg = emac_esp32_write_phy_reg;
emac->parent.read_phy_reg = emac_esp32_read_phy_reg;
emac->parent.set_addr = emac_esp32_set_addr;
emac->parent.get_addr = emac_esp32_get_addr;
emac->parent.set_speed = emac_esp32_set_speed;
emac->parent.set_duplex = emac_esp32_set_duplex;
emac->parent.set_link = emac_esp32_set_link;
emac->parent.set_promiscuous = emac_esp32_set_promiscuous;
emac->parent.transmit = emac_esp32_transmit;
emac->parent.receive = emac_esp32_receive;
/* Interrupt configuration */
if (config->flags & ETH_MAC_FLAG_WORK_WITH_CACHE_DISABLE) {
ret_code = esp_intr_alloc(ETS_ETH_MAC_INTR_SOURCE, ESP_INTR_FLAG_IRAM,
emac_esp32_isr_handler, &emac->hal, &(emac->intr_hdl));
} else {
ret_code = esp_intr_alloc(ETS_ETH_MAC_INTR_SOURCE, 0,
emac_esp32_isr_handler, &emac->hal, &(emac->intr_hdl));
}
MAC_CHECK(ret_code == ESP_OK, "alloc emac interrupt failed", err, NULL);
#ifdef CONFIG_PM_ENABLE
MAC_CHECK(esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "emac_esp32", &emac->pm_lock) == ESP_OK,
"create pm lock failed", err, NULL);
#endif
/* create rx task */
BaseType_t core_num = tskNO_AFFINITY;
if (config->flags & ETH_MAC_FLAG_PIN_TO_CORE) {
core_num = cpu_hal_get_core_id();
}
BaseType_t xReturned = xTaskCreatePinnedToCore(emac_esp32_rx_task, "emac_rx", config->rx_task_stack_size, emac,
config->rx_task_prio, &emac->rx_task_hdl, core_num);
MAC_CHECK(xReturned == pdPASS, "create emac_rx task failed", err, NULL);
return &(emac->parent);
err:
if (emac) {
if (emac->rx_task_hdl) {
vTaskDelete(emac->rx_task_hdl);
}
if (emac->intr_hdl) {
esp_intr_free(emac->intr_hdl);
}
for (int i = 0; i < CONFIG_ETH_DMA_TX_BUFFER_NUM; i++) {
free(emac->tx_buf[i]);
}
for (int i = 0; i < CONFIG_ETH_DMA_RX_BUFFER_NUM; i++) {
free(emac->rx_buf[i]);
}
#ifdef CONFIG_PM_ENABLE
if (emac->pm_lock) {
esp_pm_lock_delete(emac->pm_lock);
}
#endif
free(emac);
}
if (descriptors) {
free(descriptors);
}
return ret;
}
IRAM_ATTR void emac_hal_rx_complete_cb(void *arg)
{
emac_hal_context_t *hal = (emac_hal_context_t *)arg;
emac_esp32_t *emac = __containerof(hal, emac_esp32_t, hal);
BaseType_t high_task_wakeup;
/* notify receive task */
vTaskNotifyGiveFromISR(emac->rx_task_hdl, &high_task_wakeup);
if (high_task_wakeup == pdTRUE) {
emac->isr_need_yield = true;
}
}
IRAM_ATTR void emac_hal_rx_unavail_cb(void *arg)
{
emac_hal_context_t *hal = (emac_hal_context_t *)arg;
emac_esp32_t *emac = __containerof(hal, emac_esp32_t, hal);
BaseType_t high_task_wakeup;
/* notify receive task */
vTaskNotifyGiveFromISR(emac->rx_task_hdl, &high_task_wakeup);
if (high_task_wakeup == pdTRUE) {
emac->isr_need_yield = true;
}
}