2023-06-15 14:00:57 +02:00

1150 lines
45 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* SPDX-FileCopyrightText: 2016-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include "esp_err.h"
#include "ulp_common.h"
#include "ulp_fsm_common.h"
#include "soc/reg_base.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup ulp_registers ULP coprocessor registers
* @{
*/
#define R0 0 /*!< general purpose register 0 */
#define R1 1 /*!< general purpose register 1 */
#define R2 2 /*!< general purpose register 2 */
#define R3 3 /*!< general purpose register 3 */
/**@}*/
/** @defgroup ulp_opcodes ULP coprocessor opcodes, sub opcodes, and various modifiers/flags
*
* These definitions are not intended to be used directly.
* They are used in definitions of instructions later on.
*
* @{
*/
#define OPCODE_WR_REG 1 /*!< Instruction: write peripheral register (RTC_CNTL/RTC_IO/SARADC) (not implemented yet) */
#define OPCODE_RD_REG 2 /*!< Instruction: read peripheral register (RTC_CNTL/RTC_IO/SARADC) (not implemented yet) */
#define RD_REG_PERIPH_RTC_CNTL 0 /*!< Identifier of RTC_CNTL peripheral for RD_REG and WR_REG instructions */
#define RD_REG_PERIPH_RTC_IO 1 /*!< Identifier of RTC_IO peripheral for RD_REG and WR_REG instructions */
#define RD_REG_PERIPH_SENS 2 /*!< Identifier of SARADC peripheral for RD_REG and WR_REG instructions */
#define RD_REG_PERIPH_RTC_I2C 3 /*!< Identifier of RTC_I2C peripheral for RD_REG and WR_REG instructions */
#define OPCODE_I2C 3 /*!< Instruction: read/write I2C (not implemented yet) */
#define OPCODE_DELAY 4 /*!< Instruction: delay (nop) for a given number of cycles */
#define OPCODE_ADC 5 /*!< Instruction: SAR ADC measurement (not implemented yet) */
#define OPCODE_ST 6 /*!< Instruction: store indirect to RTC memory */
#define SUB_OPCODE_ST_AUTO 1 /*!< Automatic Storage Mode - Access continuous addresses. Use SUB_OPCODE_ST_OFFSET to configure the initial address before using this instruction. */
#define SUB_OPCODE_ST_OFFSET 3 /*!< Automatic Storage Mode - Configure the initial address. */
#define SUB_OPCODE_ST 4 /*!< Manual Storage Mode. Store 32 bits, 16 MSBs contain PC, 16 LSBs contain value from source register */
#define OPCODE_ALU 7 /*!< Arithmetic instructions */
#define SUB_OPCODE_ALU_REG 0 /*!< Arithmetic instruction, both source values are in register */
#define SUB_OPCODE_ALU_IMM 1 /*!< Arithmetic instruction, one source value is an immediate */
#define SUB_OPCODE_ALU_CNT 2 /*!< Arithmetic instruction between counter register and an immediate (not implemented yet)*/
#define ALU_SEL_ADD 0 /*!< Addition */
#define ALU_SEL_SUB 1 /*!< Subtraction */
#define ALU_SEL_AND 2 /*!< Logical AND */
#define ALU_SEL_OR 3 /*!< Logical OR */
#define ALU_SEL_MOV 4 /*!< Copy value (immediate to destination register or source register to destination register */
#define ALU_SEL_LSH 5 /*!< Shift left by given number of bits */
#define ALU_SEL_RSH 6 /*!< Shift right by given number of bits */
#define ALU_SEL_STAGE_INC 0 /*!< Increment stage count register */
#define ALU_SEL_STAGE_DEC 1 /*!< Decrement stage count register */
#define ALU_SEL_STAGE_RST 2 /*!< Reset stage count register */
#define OPCODE_BRANCH 8 /*!< Branch instructions */
#define SUB_OPCODE_B 0 /*!< Branch to a relative offset */
#define SUB_OPCODE_BX 1 /*!< Branch to absolute PC (immediate or in register) */
#define SUB_OPCODE_BS 2 /*!< Branch to a relative offset by comparing the stage_cnt register */
#define BX_JUMP_TYPE_DIRECT 0 /*!< Unconditional jump */
#define BX_JUMP_TYPE_ZERO 1 /*!< Branch if last ALU result is zero */
#define BX_JUMP_TYPE_OVF 2 /*!< Branch if last ALU operation caused and overflow */
#define B_CMP_L 0 /*!< Branch if R0 is less than an immediate */
#define B_CMP_G 1 /*!< Branch if R0 is greater than an immediate */
#define B_CMP_E 2 /*!< Branch if R0 is equal to an immediate */
#define BS_CMP_L 0 /*!< Branch if stage_cnt is less than an immediate */
#define BS_CMP_GE 1 /*!< Branch if stage_cnt is greater than or equal to an immediate */
#define BS_CMP_LE 2 /*!< Branch if stage_cnt is less than or equal to an immediate */
#define OPCODE_END 9 /*!< Stop executing the program */
#define SUB_OPCODE_END 0 /*!< Stop executing the program and optionally wake up the chip */
#define SUB_OPCODE_SLEEP 1 /*!< Stop executing the program and run it again after selected interval */
#define OPCODE_TSENS 10 /*!< Instruction: temperature sensor measurement (not implemented yet) */
#define OPCODE_HALT 11 /*!< Halt the coprocessor */
#define OPCODE_LD 13 /*!< Indirect load lower 16 bits from RTC memory */
#define OPCODE_MACRO 15 /*!< Not a real opcode. Used to identify labels and branches in the program */
#define SUB_OPCODE_MACRO_LABEL 0 /*!< Label macro */
#define SUB_OPCODE_MACRO_BRANCH 1 /*!< Branch macro */
#define SUB_OPCODE_MACRO_LABELPC 2 /*!< Label pointer macro */
/**@}*/
/**
* @brief Instruction format structure
*
* All ULP instructions are 32 bit long.
* This union contains field layouts used by all of the supported instructions.
* This union also includes a special "macro" instruction layout.
* This is not a real instruction which can be executed by the CPU. It acts
* as a token which is removed from the program by the
* ulp_process_macros_and_load function.
*
* These structures are not intended to be used directly.
* Preprocessor definitions provided below fill the fields of these structure with
* the right arguments.
*/
union ulp_insn {
struct {
uint32_t cycles : 16; /*!< Number of cycles to sleep */
uint32_t unused : 12; /*!< Unused */
uint32_t opcode : 4; /*!< Opcode (OPCODE_DELAY) */
} delay; /*!< Format of DELAY instruction */
struct {
uint32_t dreg : 2; /*!< Register which contains data to store */
uint32_t sreg : 2; /*!< Register which contains address in RTC memory (expressed in words) */
uint32_t label: 2; /*!< Data label, 2-bit user defined unsigned value */
uint32_t upper: 1; /*!< 0: write the low half-word; 1: write the high half-word */
uint32_t wr_way: 2; /*!< 0: write the full-word; 1: with the label; 3: without the label */
uint32_t unused1 : 1; /*!< Unused */
uint32_t offset : 11; /*!< Offset to add to sreg */
uint32_t unused2 : 4; /*!< Unused */
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ST) */
uint32_t opcode : 4; /*!< Opcode (OPCODE_ST) */
} st; /*!< Format of ST instruction */
struct {
uint32_t dreg : 2; /*!< Register where the data should be loaded to */
uint32_t sreg : 2; /*!< Register which contains address in RTC memory (expressed in words) */
uint32_t unused1 : 6; /*!< Unused */
uint32_t offset : 11; /*!< Offset to add to sreg */
uint32_t unused2 : 6; /*!< Unused */
uint32_t rd_upper: 1; /*!< 0: read the high half-word; 1: read the low half-word*/
uint32_t opcode : 4; /*!< Opcode (OPCODE_LD) */
} ld; /*!< Format of LD instruction */
struct {
uint32_t unused : 28; /*!< Unused */
uint32_t opcode : 4; /*!< Opcode (OPCODE_HALT) */
} halt; /*!< Format of HALT instruction */
struct {
uint32_t dreg : 2; /*!< Register which contains target PC, expressed in words (used if .reg == 1) */
uint32_t addr : 11; /*!< Target PC, expressed in words (used if .reg == 0) */
uint32_t unused1 : 8; /*!< Unused */
uint32_t reg : 1; /*!< Target PC in register (1) or immediate (0) */
uint32_t type : 3; /*!< Jump condition (BX_JUMP_TYPE_xxx) */
uint32_t unused2 : 1; /*!< Unused */
uint32_t sub_opcode : 2; /*!< Sub opcode (SUB_OPCODE_BX) */
uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */
} bx; /*!< Format of BRANCH instruction (absolute address) */
struct {
uint32_t imm : 16; /*!< Immediate value to compare against */
uint32_t cmp : 2; /*!< Comparison to perform: B_CMP_L or B_CMP_GE */
uint32_t offset : 7; /*!< Absolute value of target PC offset w.r.t. current PC, expressed in words */
uint32_t sign : 1; /*!< Sign of target PC offset: 0: positive, 1: negative */
uint32_t sub_opcode : 2; /*!< Sub opcode (SUB_OPCODE_B) */
uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */
} b; /*!< Format of BRANCH instruction (relative address) */
struct {
uint32_t dreg : 2; /*!< Destination register */
uint32_t sreg : 2; /*!< Register with operand A */
uint32_t treg : 2; /*!< Register with operand B */
uint32_t unused1 : 15; /*!< Unused */
uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
uint32_t unused2 : 1; /*!< Unused */
uint32_t sub_opcode : 2; /*!< Sub opcode (SUB_OPCODE_ALU_REG) */
uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
} alu_reg; /*!< Format of ALU instruction (both sources are registers) */
struct {
uint32_t dreg : 2; /*!< Destination register */
uint32_t sreg : 2; /*!< Register with operand A */
uint32_t imm : 16; /*!< Immediate value of operand B */
uint32_t unused1: 1; /*!< Unused */
uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
uint32_t unused2 : 1; /*!< Unused */
uint32_t sub_opcode : 2; /*!< Sub opcode (SUB_OPCODE_ALU_IMM) */
uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
} alu_imm; /*!< Format of ALU instruction (one source is an immediate) */
struct {
uint32_t unused1: 4; /*!< Unused */
uint32_t imm : 8; /*!< Immediate value */
uint32_t unused2: 9; /*!< Unused */
uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
uint32_t unused3 : 1; /*!< Unused */
uint32_t sub_opcode : 2; /*!< Sub opcode (SUB_OPCODE_ALU_CNT) */
uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
} alu_cnt; /*!< Format of ALU instruction with stage count register and an immediate */
struct {
uint32_t addr : 8; /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */
uint32_t periph_sel : 2; /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */
uint32_t data : 8; /*!< 8 bits of data to write */
uint32_t low : 5; /*!< Low bit */
uint32_t high : 5; /*!< High bit */
uint32_t opcode : 4; /*!< Opcode (OPCODE_WR_REG) */
} wr_reg; /*!< Format of WR_REG instruction */
struct {
uint32_t addr : 8; /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */
uint32_t periph_sel : 2; /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */
uint32_t unused : 8; /*!< Unused */
uint32_t low : 5; /*!< Low bit */
uint32_t high : 5; /*!< High bit */
uint32_t opcode : 4; /*!< Opcode (OPCODE_RD_REG) */
} rd_reg; /*!< Format of RD_REG instruction */
struct {
uint32_t dreg : 2; /*!< Register where to store ADC result */
uint32_t mux : 4; /*!< Select SARADC pad (mux + 1) */
uint32_t sar_sel : 1; /*!< Select SARADC0 (0) or SARADC1 (1) */
uint32_t unused1 : 1; /*!< Unused */
uint32_t cycles : 16; /*!< TBD, cycles used for measurement */
uint32_t unused2 : 4; /*!< Unused */
uint32_t opcode: 4; /*!< Opcode (OPCODE_ADC) */
} adc; /*!< Format of ADC instruction */
struct {
uint32_t dreg : 2; /*!< Register where to store temperature measurement result */
uint32_t wait_delay: 14; /*!< Cycles to wait after measurement is done */
uint32_t reserved: 12; /*!< Reserved, set to 0 */
uint32_t opcode: 4; /*!< Opcode (OPCODE_TSENS) */
} tsens; /*!< Format of TSENS instruction */
struct {
uint32_t i2c_addr : 8; /*!< I2C slave address */
uint32_t data : 8; /*!< Data to read or write */
uint32_t low_bits : 3; /*!< TBD */
uint32_t high_bits : 3; /*!< TBD */
uint32_t i2c_sel : 4; /*!< TBD, select reg_i2c_slave_address[7:0] */
uint32_t unused : 1; /*!< Unused */
uint32_t rw : 1; /*!< Write (1) or read (0) */
uint32_t opcode : 4; /*!< Opcode (OPCODE_I2C) */
} i2c; /*!< Format of I2C instruction */
struct {
uint32_t wakeup : 1; /*!< Set to 1 to wake up chip */
uint32_t unused : 25; /*!< Unused */
uint32_t sub_opcode : 2; /*!< Sub opcode (SUB_OPCODE_WAKEUP) */
uint32_t opcode : 4; /*!< Opcode (OPCODE_END) */
} end; /*!< Format of END instruction with wakeup */
struct {
uint32_t label : 16; /*!< Label number */
uint32_t unused : 8; /*!< Unused */
uint32_t sub_opcode : 4; /*!< SUB_OPCODE_MACRO_LABEL or SUB_OPCODE_MACRO_BRANCH */
uint32_t opcode: 4; /*!< Opcode (OPCODE_MACRO) */
} macro; /*!< Format of tokens used by LABEL and BRANCH macros */
};
/**
* Delay (nop) for a given number of cycles
*/
#define I_DELAY(cycles_) { .delay = {\
.cycles = cycles_, \
.unused = 0, \
.opcode = OPCODE_DELAY } }
/**
* Halt the coprocessor.
*
* This instruction halts the coprocessor, but keeps ULP timer active.
* As such, ULP program will be restarted again by timer.
* To stop the program and prevent the timer from restarting the program,
* use I_END(0) instruction.
*/
#define I_HALT() { .halt = {\
.unused = 0, \
.opcode = OPCODE_HALT } }
/**
* Map SoC peripheral register to periph_sel field of RD_REG and WR_REG
* instructions.
*
* @param reg peripheral register in RTC_CNTL_, RTC_IO_, SENS_, RTC_I2C peripherals.
* @return periph_sel value for the peripheral to which this register belongs.
*/
static inline uint32_t SOC_REG_TO_ULP_PERIPH_SEL(uint32_t reg)
{
uint32_t ret = 3;
if (reg < DR_REG_RTCCNTL_BASE) {
assert(0 && "invalid register base");
} else if (reg < DR_REG_RTCIO_BASE) {
ret = RD_REG_PERIPH_RTC_CNTL;
} else if (reg < DR_REG_SENS_BASE) {
ret = RD_REG_PERIPH_RTC_IO;
} else if (reg < DR_REG_RTC_I2C_BASE) {
ret = RD_REG_PERIPH_SENS;
} else if (reg < DR_REG_IO_MUX_BASE) {
ret = RD_REG_PERIPH_RTC_I2C;
} else {
assert(0 && "invalid register base");
}
return ret;
}
/**
* Write literal value to a peripheral register
*
* reg[high_bit : low_bit] = val
* This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
*/
#define I_WR_REG(reg, low_bit, high_bit, val) {.wr_reg = {\
.addr = ((reg) / sizeof(uint32_t)) & 0xff, \
.periph_sel = SOC_REG_TO_ULP_PERIPH_SEL(reg), \
.data = val, \
.low = low_bit, \
.high = high_bit, \
.opcode = OPCODE_WR_REG } }
/**
* Read from peripheral register into R0
*
* R0 = reg[high_bit : low_bit]
* This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
*/
#define I_RD_REG(reg, low_bit, high_bit) {.rd_reg = {\
.addr = ((reg) / sizeof(uint32_t)) & 0xff, \
.periph_sel = SOC_REG_TO_ULP_PERIPH_SEL(reg), \
.unused = 0, \
.low = low_bit, \
.high = high_bit, \
.opcode = OPCODE_RD_REG } }
/**
* Set or clear a bit in the peripheral register.
*
* Sets bit (1 << shift) of register reg to value val.
* This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
*/
#define I_WR_REG_BIT(reg, shift, val) I_WR_REG(reg, shift, shift, val)
/**
* Wake the SoC from deep sleep.
*
* This instruction initiates wake up from deep sleep.
* Use esp_deep_sleep_enable_ulp_wakeup to enable deep sleep wakeup
* triggered by the ULP before going into deep sleep.
* Note that ULP program will still keep running until the I_HALT
* instruction, and it will still be restarted by timer at regular
* intervals, even when the SoC is woken up.
*
* To stop the ULP program, use I_HALT instruction.
*
* To disable the timer which start ULP program, use I_END()
* instruction. I_END instruction clears the
* RTC_CNTL_ULP_CP_SLP_TIMER_EN_S bit of RTC_CNTL_ULP_CP_TIMER_REG
* register, which controls the ULP timer.
*/
#define I_WAKE() { .end = { \
.wakeup = 1, \
.unused = 0, \
.sub_opcode = SUB_OPCODE_END, \
.opcode = OPCODE_END } }
/**
* Stop ULP program timer.
*
* This is a convenience macro which disables the ULP program timer.
* Once this instruction is used, ULP program will not be restarted
* anymore until ulp_run function is called.
*
* ULP program will continue running after this instruction. To stop
* the currently running program, use I_HALT().
*/
#define I_END() \
I_WR_REG_BIT(RTC_CNTL_ULP_CP_TIMER_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN_S, 0)
/**
* Perform temperature sensor measurement and store it into reg_dest.
*
* Delay can be set between 1 and ((1 << 14) - 1). Higher values give
* higher measurement resolution.
*/
#define I_TSENS(reg_dest, delay) { .tsens = { \
.dreg = reg_dest, \
.wait_delay = delay, \
.reserved = 0, \
.opcode = OPCODE_TSENS } }
/**
* Perform ADC measurement and store result in reg_dest.
*
* adc_idx selects ADC (0 or 1).
* pad_idx selects ADC pad (0 - 7).
*/
#define I_ADC(reg_dest, adc_idx, pad_idx) { .adc = {\
.dreg = reg_dest, \
.mux = pad_idx + 1, \
.sar_sel = adc_idx, \
.unused1 = 0, \
.cycles = 0, \
.unused2 = 0, \
.opcode = OPCODE_ADC } }
/**
* Store lower half-word, upper half-word or full-word data from register reg_val into RTC memory address.
*
* This instruction can be used to write data to discontinuous addresses in the RTC_SLOW_MEM.
* The value is written to an offset calculated by adding the value of
* reg_addr register and offset_ field (this offset is expressed in 32-bit words).
* The storage method is dictated by the wr_way and upper field settings as summarized in the following table:
*
* @verbatim
* |--------|-------|----------------------------------------------------------------------------------------|----------------------------|
* | wr_way | upper | data | operation |
* |--------|-------|----------------------------------------------------------------------------------------|----------------------------|
* | | | | Write full-word, including |
* | 0 | X | RTC_SLOW_MEM[addr + offset_]{31:0} = {insn_PC[10:0], 3b0, label_[1:0], reg_val[15:0]} | the PC and the data |
* |--------|-------|----------------------------------------------------------------------------------------|----------------------------|
* | | | | Store the data with label |
* | 1 | 0 | RTC_SLOW_MEM[addr + offset_]{15:0} = {label_[1:0], reg_val[13:0]} | in the low half-word |
* |--------|-------|----------------------------------------------------------------------------------------|----------------------------|
* | | | | Store the data with label |
* | 1 | 1 | RTC_SLOW_MEM[addr + offset_]{31:16} = {label_[1:0], reg_val[13:0]} | in the high half-word |
* |--------|-------|----------------------------------------------------------------------------------------|----------------------------|
* | | | | Store the data without |
* | 3 | 0 | RTC_SLOW_MEM[addr + offset_]{15:0} = reg_val[15:0] | label in the low half-word |
* |--------|-------|----------------------------------------------------------------------------------------|----------------------------|
* | | | | Store the data without |
* | 3 | 1 | RTC_SLOW_MEM[addr + offset_]{31:16} = reg_val[15:0] | label in the high half-word|
* |--------|-------|----------------------------------------------------------------------------------------|----------------------------|
* @endverbatim
*
* SUB_OPCODE_ST = manual_en:1, offset_set:0, wr_auto:0
*/
#define I_ST_MANUAL(reg_val, reg_addr, offset_, label_, upper_, wr_way_) { .st = { \
.dreg = reg_val, \
.sreg = reg_addr, \
.label = label_, \
.upper = upper_, \
.wr_way = wr_way_, \
.unused1 = 0, \
.offset = offset_, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_ST, \
.opcode = OPCODE_ST } }
/**
* Store value from register reg_val into RTC memory.
*
* I_ST() instruction provides backward compatibility for code written for esp32 to be run on esp32s2.
* This instruction is equivalent to calling I_ST_MANUAL() instruction with label = 0, upper = 0 and wr_way = 3.
*/
#define I_ST(reg_val, reg_addr, offset_) I_ST_MANUAL(reg_val, reg_addr, offset_, 0, 0, 3)
/**
* Store value from register reg_val to lower 16 bits of the RTC memory address.
*
* This instruction is equivalent to calling I_ST_MANUAL() instruction with label = 0, upper = 0 and wr_way = 3.
*/
#define I_STL(reg_val, reg_addr, offset_) I_ST_MANUAL(reg_val, reg_addr, offset_, 0, 0, 3)
/**
* Store value from register reg_val to upper 16 bits of the RTC memory address.
*
* This instruction is equivalent to calling I_ST_MANUAL() instruction with label = 0, upper = 1 and wr_way = 3.
*/
#define I_STH(reg_val, reg_addr, offset_) I_ST_MANUAL(reg_val, reg_addr, offset_, 0, 1, 3)
/**
* Store value from register reg_val to full 32 bit word of the RTC memory address.
*
* This instruction is equivalent to calling I_ST_MANUAL() instruction with wr_way = 0.
*/
#define I_ST32(reg_val, reg_addr, offset_, label_) I_ST_MANUAL(reg_val, reg_addr, offset_, label_, 0, 0)
/**
* Store value from register reg_val with label to lower 16 bits of RTC memory address.
*
* This instruction is equivalent to calling I_ST_MANUAL() instruction with label = label_, upper = 0 and wr_way = 1.
*/
#define I_STL_LABEL(reg_val, reg_addr, offset_, label_) I_ST_MANUAL(reg_val, reg_addr, offset_, label_, 0, 1)
/**
* Store value from register reg_val with label to upper 16 bits of RTC memory address.
*
* This instruction is equivalent to calling I_ST_MANUAL() instruction with label = label_, upper = 1 and wr_way = 1.
*/
#define I_STH_LABEL(reg_val, reg_addr, offset_, label_) I_ST_MANUAL(reg_val, reg_addr, offset_, label_, 1, 1)
/**
* Store lower half-word, upper half-word or full-word data from register reg_val into RTC memory address with auto-increment of the offset value.
*
* This instruction can be used to write data to continuous addresses in the RTC_SLOW_MEM.
* The initial address must be set using the SUB_OPCODE_ST_OFFSET instruction before the auto store instruction is called.
* The data written to the RTC memory address could be written to the full 32 bit word or to the lower half-word or the
* upper half-word. The storage method is dictated by the wr_way field and the number of times the SUB_OPCODE_ST_AUTO instruction is called.
* write_cnt indicates the later. The following table summarizes the storage method:
*
* @verbatim
* |--------|-----------|----------------------------------------------------------------------------------------|----------------------------|
* | wr_way | write_cnt | data | operation |
* |--------|-----------|----------------------------------------------------------------------------------------|----------------------------|
* | | | | Write full-word, including |
* | 0 | X | RTC_SLOW_MEM[addr + offset_]{31:0} = {insn_PC[10:0], 3b0, label_[1:0], reg_val[15:0]} | the PC and the data |
* |--------|-----------|----------------------------------------------------------------------------------------|----------------------------|
* | | | | Store the data with label |
* | 1 | odd | RTC_SLOW_MEM[addr + offset_]{15:0} = {label_[1:0], reg_val[13:0]} | in the low half-word |
* |--------|-----------|----------------------------------------------------------------------------------------|----------------------------|
* | | | | Store the data with label |
* | 1 | even | RTC_SLOW_MEM[addr + offset_]{31:16} = {label_[1:0], reg_val[13:0]} | in the high half-word |
* |--------|-----------|----------------------------------------------------------------------------------------|----------------------------|
* | | | | Store the data without |
* | 3 | odd | RTC_SLOW_MEM[addr + offset_]{15:0} = reg_val[15:0] | label in the low half-word |
* |--------|-----------|----------------------------------------------------------------------------------------|----------------------------|
* | | | | Store the data without |
* | 3 | even | RTC_SLOW_MEM[addr + offset_]{31:16} = reg_val[15:0] | label in the high half-word|
* |--------|-----------|----------------------------------------------------------------------------------------|----------------------------|
* @endverbatim
*
* The initial address offset is incremented after each store operation as follows:
* - When a full-word is written, the offset is automatically incremented by 1 after each SUB_OPCODE_ST_AUTO operation.
* - When a half-word is written (lower half-word first), the offset is automatically incremented by 1 after two
* SUB_OPCODE_ST_AUTO operations.
*
* SUB_OPCODE_ST_AUTO = manual_en:0, offset_set:0, wr_auto:1
*/
#define I_ST_AUTO(reg_val, reg_addr, label_, wr_way_) { .st = { \
.dreg = reg_addr, \
.sreg = reg_val, \
.label = label_, \
.upper = 0, \
.wr_way = wr_way_, \
.unused1 = 0, \
.offset = 0, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_ST_AUTO, \
.opcode = OPCODE_ST } }
/**
* Set the initial address offset for auto-store operation
*
* This instruction sets the initial address of the RTC_SLOW_MEM to be used by the auto-store operation.
* The offset is incremented automatically.
* Refer I_ST_AUTO() for detailed explaination.
*
* SUB_OPCODE_ST_OFFSET = manual_en:0, offset_set:1, wr_auto:1
*/
#define I_STO(offset_) { .st = { \
.dreg = 0, \
.sreg = 0, \
.label = 0, \
.upper = 0, \
.wr_way = 0, \
.unused1 = 0, \
.offset = offset_, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_ST_OFFSET, \
.opcode = OPCODE_ST } }
/**
* Store value from register reg_val to 32 bit word of the RTC memory address.
*
* This instruction is equivalent to calling I_ST_AUTO() instruction with label = 0 and wr_way = 3.
* The data in reg_val will be either written to the lower half-word or the upper half-word of the RTC memory address
* depending on the count of the number of times the I_STI() instruction is called.
* The initial offset is automatically incremented with I_STI() is called twice.
* Refer I_ST_AUTO() for detailed explaination.
*/
#define I_STI(reg_val, reg_addr) I_ST_AUTO(reg_val, reg_addr, 0, 3)
/**
* Store value from register reg_val with label to 32 bit word of the RTC memory address.
*
* This instruction is equivalent to calling I_ST_AUTO() instruction with label = label_ and wr_way = 1.
* The data in reg_val will be either written to the lower half-word or the upper half-word of the RTC memory address
* depending on the count of the number of times the I_STI_LABEL() instruction is called.
* The initial offset is automatically incremented with I_STI_LABEL() is called twice.
* Refer I_ST_AUTO() for detailed explaination.
*/
#define I_STI_LABEL(reg_val, reg_addr, label_) I_ST_AUTO(reg_val, reg_addr, label_, 1)
/**
* Store value from register reg_val to full 32 bit word of the RTC memory address.
*
* This instruction is equivalent to calling I_ST_AUTO() instruction with label = label_ and wr_way = 0.
* The data in reg_val will be written to the RTC memory address along with the label and the PC.
* The initial offset is automatically incremented each time the I_STI32() instruction is called.
* Refer I_ST_AUTO() for detailed explaination.
*/
#define I_STI32(reg_val, reg_addr, label_) I_ST_AUTO(reg_val, reg_addr, label_, 0)
/**
* Load lower half-word, upper half-word or full-word data from RTC memory address into the register reg_dest.
*
* This instruction reads the lower half-word or upper half-word of the RTC memory address depending on the value
* of rd_upper_. The following table summarizes the loading method:
*
* @verbatim
* |----------|------------------------------------------------------|-------------------------|
* | rd_upper | data | operation |
* |----------|------------------------------------------------------|-------------------------|
* | | | Read lower half-word of |
* | 0 | reg_dest{15:0} = RTC_SLOW_MEM[addr + offset_]{31:16} | the memory |
* |----------|------------------------------------------------------|-------------------------|
* | | | Read upper half-word of |
* | 1 | reg_dest{15:0} = RTC_SLOW_MEM[addr + offset_]{15:0} | the memory |
* |----------|------------------------------------------------------|-------------------------|
* @endverbatim
*
*/
#define I_LD_MANUAL(reg_dest, reg_addr, offset_, rd_upper_) { .ld = { \
.dreg = reg_dest, \
.sreg = reg_addr, \
.unused1 = 0, \
.offset = offset_, \
.unused2 = 0, \
.rd_upper = rd_upper_, \
.opcode = OPCODE_LD } }
/**
* Load lower 16 bits value from RTC memory into reg_dest register.
*
* Loads 16 LSBs (rd_upper = 1) from RTC memory word given by the sum of value in reg_addr and
* value of offset_.
* I_LD() instruction provides backward compatibility for code written for esp32 to be run on esp32s2.
*/
#define I_LD(reg_dest, reg_addr, offset_) I_LD_MANUAL(reg_dest, reg_addr, offset_, 0)
/**
* Load lower 16 bits value from RTC memory into reg_dest register.
*
* I_LDL() instruction and I_LD() instruction can be used interchangably.
*/
#define I_LDL(reg_dest, reg_addr, offset_) I_LD(reg_dest, reg_addr, offset_)
/**
* Load upper 16 bits value from RTC memory into reg_dest register.
*
* Loads 16 MSBs (rd_upper = 0) from RTC memory word given by the sum of value in reg_addr and
* value of offset_.
*/
#define I_LDH(reg_dest, reg_addr, offset_) I_LD_MANUAL(reg_dest, reg_addr, offset_, 1)
/**
* Branch relative if R0 register less than the immediate value.
*
* pc_offset is expressed in words, and can be from -127 to 127
* imm_value is a 16-bit value to compare R0 against
*/
#define I_BL(pc_offset, imm_value) { .b = { \
.imm = imm_value, \
.cmp = B_CMP_L, \
.offset = abs(pc_offset), \
.sign = (pc_offset >= 0) ? 0 : 1, \
.sub_opcode = SUB_OPCODE_B, \
.opcode = OPCODE_BRANCH } }
/**
* Branch relative if R0 register greater than the immediate value.
*
* pc_offset is expressed in words, and can be from -127 to 127
* imm_value is a 16-bit value to compare R0 against
*/
#define I_BG(pc_offset, imm_value) { .b = { \
.imm = imm_value, \
.cmp = B_CMP_G, \
.offset = abs(pc_offset), \
.sign = (pc_offset >= 0) ? 0 : 1, \
.sub_opcode = SUB_OPCODE_B, \
.opcode = OPCODE_BRANCH } }
/**
* Branch relative if R0 register is equal to the immediate value.
*
* pc_offset is expressed in words, and can be from -127 to 127
* imm_value is a 16-bit value to compare R0 against
*/
#define I_BE(pc_offset, imm_value) { .b = { \
.imm = imm_value, \
.cmp = B_CMP_E, \
.offset = abs(pc_offset), \
.sign = (pc_offset >= 0) ? 0 : 1, \
.sub_opcode = SUB_OPCODE_B, \
.opcode = OPCODE_BRANCH } }
/**
* Unconditional branch to absolute PC, address in register.
*
* reg_pc is the register which contains address to jump to.
* Address is expressed in 32-bit words.
*/
#define I_BXR(reg_pc) { .bx = { \
.dreg = reg_pc, \
.addr = 0, \
.unused1 = 0, \
.reg = 1, \
.type = BX_JUMP_TYPE_DIRECT, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_BX, \
.opcode = OPCODE_BRANCH } }
/**
* Unconditional branch to absolute PC, immediate address.
*
* Address imm_pc is expressed in 32-bit words.
*/
#define I_BXI(imm_pc) { .bx = { \
.dreg = 0, \
.addr = imm_pc, \
.unused1 = 0, \
.reg = 0, \
.type = BX_JUMP_TYPE_DIRECT, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_BX, \
.opcode = OPCODE_BRANCH } }
/**
* Branch to absolute PC if ALU result is zero, address in register.
*
* reg_pc is the register which contains address to jump to.
* Address is expressed in 32-bit words.
*/
#define I_BXZR(reg_pc) { .bx = { \
.dreg = reg_pc, \
.addr = 0, \
.unused1 = 0, \
.reg = 1, \
.type = BX_JUMP_TYPE_ZERO, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_BX, \
.opcode = OPCODE_BRANCH } }
/**
* Branch to absolute PC if ALU result is zero, immediate address.
*
* Address imm_pc is expressed in 32-bit words.
*/
#define I_BXZI(imm_pc) { .bx = { \
.dreg = 0, \
.addr = imm_pc, \
.unused1 = 0, \
.reg = 0, \
.type = BX_JUMP_TYPE_ZERO, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_BX, \
.opcode = OPCODE_BRANCH } }
/**
* Branch to absolute PC if ALU overflow, address in register
*
* reg_pc is the register which contains address to jump to.
* Address is expressed in 32-bit words.
*/
#define I_BXFR(reg_pc) { .bx = { \
.dreg = reg_pc, \
.addr = 0, \
.unused1 = 0, \
.reg = 1, \
.type = BX_JUMP_TYPE_OVF, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_BX, \
.opcode = OPCODE_BRANCH } }
/**
* Branch to absolute PC if ALU overflow, immediate address
*
* Address imm_pc is expressed in 32-bit words.
*/
#define I_BXFI(imm_pc) { .bx = { \
.dreg = 0, \
.addr = imm_pc, \
.unused1 = 0, \
.reg = 0, \
.type = BX_JUMP_TYPE_OVF, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_BX, \
.opcode = OPCODE_BRANCH } }
/**
* Branch relative if stage_cnt is less than or equal to the immediate value.
*
* pc_offset is expressed in words, and can be from -127 to 127
* imm_value is a 16-bit value to compare R0 against
*/
#define I_BSLE(pc_offset, imm_value) { .b = { \
.imm = imm_value, \
.cmp = BS_CMP_LE, \
.offset = abs(pc_offset), \
.sign = (pc_offset >= 0) ? 0 : 1, \
.sub_opcode = SUB_OPCODE_BS, \
.opcode = OPCODE_BRANCH } }
/**
* Branch relative if stage_cnt register is greater than or equal to the immediate value.
*
* pc_offset is expressed in words, and can be from -127 to 127
* imm_value is a 16-bit value to compare R0 against
*/
#define I_BSGE(pc_offset, imm_value) { .b = { \
.imm = imm_value, \
.cmp = BS_CMP_GE, \
.offset = abs(pc_offset), \
.sign = (pc_offset >= 0) ? 0 : 1, \
.sub_opcode = SUB_OPCODE_BS, \
.opcode = OPCODE_BRANCH } }
/**
* Branch relative if stage_cnt register is less than the immediate value.
*
* pc_offset is expressed in words, and can be from -127 to 127
* imm_value is a 16-bit value to compare R0 against
*/
#define I_BSL(pc_offset, imm_value) { .b = { \
.imm = imm_value, \
.cmp = BS_CMP_L, \
.offset = abs(pc_offset), \
.sign = (pc_offset >= 0) ? 0 : 1, \
.sub_opcode = SUB_OPCODE_BS, \
.opcode = OPCODE_BRANCH } }
/**
* Addition: dest = src1 + src2
*/
#define I_ADDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
.dreg = reg_dest, \
.sreg = reg_src1, \
.treg = reg_src2, \
.unused1 = 0, \
.sel = ALU_SEL_ADD, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_ALU_REG, \
.opcode = OPCODE_ALU } }
/**
* Subtraction: dest = src1 - src2
*/
#define I_SUBR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
.dreg = reg_dest, \
.sreg = reg_src1, \
.treg = reg_src2, \
.unused1 = 0, \
.sel = ALU_SEL_SUB, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_ALU_REG, \
.opcode = OPCODE_ALU } }
/**
* Logical AND: dest = src1 & src2
*/
#define I_ANDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
.dreg = reg_dest, \
.sreg = reg_src1, \
.treg = reg_src2, \
.unused1 = 0, \
.sel = ALU_SEL_AND, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_ALU_REG, \
.opcode = OPCODE_ALU } }
/**
* Logical OR: dest = src1 | src2
*/
#define I_ORR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
.dreg = reg_dest, \
.sreg = reg_src1, \
.treg = reg_src2, \
.unused1 = 0, \
.sel = ALU_SEL_OR, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_ALU_REG, \
.opcode = OPCODE_ALU } }
/**
* Copy: dest = src
*/
#define I_MOVR(reg_dest, reg_src) { .alu_reg = { \
.dreg = reg_dest, \
.sreg = reg_src, \
.treg = 0, \
.unused1 = 0, \
.sel = ALU_SEL_MOV, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_ALU_REG, \
.opcode = OPCODE_ALU } }
/**
* Logical shift left: dest = src << shift
*/
#define I_LSHR(reg_dest, reg_src, reg_shift) { .alu_reg = { \
.dreg = reg_dest, \
.sreg = reg_src, \
.treg = reg_shift, \
.unused1 = 0, \
.sel = ALU_SEL_LSH, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_ALU_REG, \
.opcode = OPCODE_ALU } }
/**
* Logical shift right: dest = src >> shift
*/
#define I_RSHR(reg_dest, reg_src, reg_shift) { .alu_reg = { \
.dreg = reg_dest, \
.sreg = reg_src, \
.treg = reg_shift, \
.unused1 = 0, \
.sel = ALU_SEL_RSH, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_ALU_REG, \
.opcode = OPCODE_ALU } }
/**
* Add register and an immediate value: dest = src1 + imm
*/
#define I_ADDI(reg_dest, reg_src, imm_) { .alu_imm = { \
.dreg = reg_dest, \
.sreg = reg_src, \
.imm = imm_, \
.unused1 = 0, \
.sel = ALU_SEL_ADD, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_ALU_IMM, \
.opcode = OPCODE_ALU } }
/**
* Subtract register and an immediate value: dest = src - imm
*/
#define I_SUBI(reg_dest, reg_src, imm_) { .alu_imm = { \
.dreg = reg_dest, \
.sreg = reg_src, \
.imm = imm_, \
.unused1 = 0, \
.sel = ALU_SEL_SUB, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_ALU_IMM, \
.opcode = OPCODE_ALU } }
/**
* Logical AND register and an immediate value: dest = src & imm
*/
#define I_ANDI(reg_dest, reg_src, imm_) { .alu_imm = { \
.dreg = reg_dest, \
.sreg = reg_src, \
.imm = imm_, \
.unused1 = 0, \
.sel = ALU_SEL_AND, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_ALU_IMM, \
.opcode = OPCODE_ALU } }
/**
* Logical OR register and an immediate value: dest = src | imm
*/
#define I_ORI(reg_dest, reg_src, imm_) { .alu_imm = { \
.dreg = reg_dest, \
.sreg = reg_src, \
.imm = imm_, \
.unused1 = 0, \
.sel = ALU_SEL_OR, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_ALU_IMM, \
.opcode = OPCODE_ALU } }
/**
* Copy an immediate value into register: dest = imm
*/
#define I_MOVI(reg_dest, imm_) { .alu_imm = { \
.dreg = reg_dest, \
.sreg = 0, \
.imm = imm_, \
.unused1 = 0, \
.sel = ALU_SEL_MOV, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_ALU_IMM, \
.opcode = OPCODE_ALU } }
/**
* Logical shift left register value by an immediate: dest = src << imm
*/
#define I_LSHI(reg_dest, reg_src, imm_) { .alu_imm = { \
.dreg = reg_dest, \
.sreg = reg_src, \
.imm = imm_, \
.unused1 = 0, \
.sel = ALU_SEL_LSH, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_ALU_IMM, \
.opcode = OPCODE_ALU } }
/**
* Logical shift right register value by an immediate: dest = val >> imm
*/
#define I_RSHI(reg_dest, reg_src, imm_) { .alu_imm = { \
.dreg = reg_dest, \
.sreg = reg_src, \
.imm = imm_, \
.unused1 = 0, \
.sel = ALU_SEL_RSH, \
.unused2 = 0, \
.sub_opcode = SUB_OPCODE_ALU_IMM, \
.opcode = OPCODE_ALU } }
/**
* Increment stage_cnt register by an immediate: stage_cnt = stage_cnt + imm
*/
#define I_STAGE_INC(reg_dest, reg_src, imm_) { .alu_cnt = { \
.unused1 = 0, \
.imm = imm_, \
.unused2 = 0, \
.sel = ALU_SEL_STAGE_INC, \
.unused3 = 0, \
.sub_opcode = SUB_OPCODE_ALU_CNT, \
.opcode = OPCODE_ALU } }
/**
* Decrement stage_cnt register by an immediate: stage_cnt = stage_cnt - imm
*/
#define I_STAGE_DEC(reg_dest, reg_src, imm_) { .alu_cnt = { \
.unused1 = 0, \
.imm = imm_, \
.unused2 = 0, \
.sel = ALU_SEL_STAGE_DEC, \
.unused3 = 0, \
.sub_opcode = SUB_OPCODE_ALU_CNT, \
.opcode = OPCODE_ALU } }
/**
* Reset stage_cnt register by an immediate: stage_cnt = 0
*/
#define I_STAGE_RST(reg_dest, reg_src, imm_) { .alu_cnt = { \
.unused1 = 0, \
.imm = imm_, \
.unused2 = 0, \
.sel = ALU_SEL_STAGE_RST, \
.unused3 = 0, \
.sub_opcode = SUB_OPCODE_ALU_CNT, \
.opcode = OPCODE_ALU } }
/**
* Define a label with number label_num.
*
* This is a macro which doesn't generate a real instruction.
* The token generated by this macro is removed by ulp_process_macros_and_load
* function. Label defined using this macro can be used in branch macros defined
* below.
*/
#define M_LABEL(label_num) { .macro = { \
.label = label_num, \
.unused = 0, \
.sub_opcode = SUB_OPCODE_MACRO_LABEL, \
.opcode = OPCODE_MACRO } }
/**
* Token macro used by M_B and M_BX macros. Not to be used directly.
*/
#define M_BRANCH(label_num) { .macro = { \
.label = label_num, \
.unused = 0, \
.sub_opcode = SUB_OPCODE_MACRO_BRANCH, \
.opcode = OPCODE_MACRO } }
/**
* Macro: branch to label label_num if R0 is less than immediate value.
*
* This macro generates two ulp_insn_t values separated by a comma, and should
* be used when defining contents of ulp_insn_t arrays. First value is not a
* real instruction; it is a token which is removed by ulp_process_macros_and_load
* function.
*/
#define M_BL(label_num, imm_value) \
M_BRANCH(label_num), \
I_BL(0, imm_value)
/**
* Macro: branch to label label_num if R0 is greater than immediate value
*
* This macro generates two ulp_insn_t values separated by a comma, and should
* be used when defining contents of ulp_insn_t arrays. First value is not a
* real instruction; it is a token which is removed by ulp_process_macros_and_load
* function.
*/
#define M_BG(label_num, imm_value) \
M_BRANCH(label_num), \
I_BG(0, imm_value)
/**
* Macro: branch to label label_num if R0 equal to the immediate value
*
* This macro generates two ulp_insn_t values separated by a comma, and should
* be used when defining contents of ulp_insn_t arrays. First value is not a
* real instruction; it is a token which is removed by ulp_process_macros_and_load
* function.
*/
#define M_BE(label_num, imm_value) \
M_BRANCH(label_num), \
I_BE(0, imm_value)
/**
* Macro: unconditional branch to label
*
* This macro generates two ulp_insn_t values separated by a comma, and should
* be used when defining contents of ulp_insn_t arrays. First value is not a
* real instruction; it is a token which is removed by ulp_process_macros_and_load
* function.
*/
#define M_BX(label_num) \
M_BRANCH(label_num), \
I_BXI(0)
/**
* Macro: branch to label if ALU result is zero
*
* This macro generates two ulp_insn_t values separated by a comma, and should
* be used when defining contents of ulp_insn_t arrays. First value is not a
* real instruction; it is a token which is removed by ulp_process_macros_and_load
* function.
*/
#define M_BXZ(label_num) \
M_BRANCH(label_num), \
I_BXZI(0)
/**
* Macro: branch to label if ALU overflow
*
* This macro generates two ulp_insn_t values separated by a comma, and should
* be used when defining contents of ulp_insn_t arrays. First value is not a
* real instruction; it is a token which is removed by ulp_process_macros_and_load
* function.
*/
#define M_BXF(label_num) \
M_BRANCH(label_num), \
I_BXFI(0)
#ifdef __cplusplus
}
#endif