esp-idf/components/esp32/test/test_esp_timer.c

810 lines
24 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/time.h>
#include <sys/param.h>
#include "unity.h"
#include "esp_timer.h"
#include "esp_heap_caps.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "test_utils.h"
#include "../esp_timer_impl.h"
#ifdef CONFIG_ESP_TIMER_PROFILING
#define WITH_PROFILING 1
#endif
extern uint32_t esp_timer_impl_get_overflow_val();
extern void esp_timer_impl_set_overflow_val(uint32_t overflow_val);
static uint32_t s_old_overflow_val;
static void setup_overflow()
{
s_old_overflow_val = esp_timer_impl_get_overflow_val();
/* Overflow every 0.1 sec.
* Chosen so that it is 0 modulo s_timer_ticks_per_us (which is 80),
* to prevent roundoff error on each overflow.
*/
esp_timer_impl_set_overflow_val(8000000);
}
static void teardown_overflow()
{
esp_timer_impl_set_overflow_val(s_old_overflow_val);
}
TEST_CASE("esp_timer orders timers correctly", "[esp_timer]")
{
void dummy_cb(void* arg)
{
}
uint64_t timeouts[] = { 10000, 1000, 10000, 5000, 20000, 1000 };
size_t indices[] = { 3, 0, 4, 2, 5, 1 };
const size_t num_timers = sizeof(timeouts)/sizeof(timeouts[0]);
esp_timer_handle_t handles[num_timers];
char* names[num_timers];
setup_overflow();
for (size_t i = 0; i < num_timers; ++i) {
asprintf(&names[i], "timer%d", i);
esp_timer_create_args_t args = {
.callback = &dummy_cb,
.name = names[i]
};
TEST_ESP_OK(esp_timer_create(&args, &handles[i]));
TEST_ESP_OK(esp_timer_start_once(handles[i], timeouts[i] * 100));
}
teardown_overflow();
char* stream_str[1024];
FILE* stream = fmemopen(stream_str, sizeof(stream_str), "r+");
TEST_ESP_OK(esp_timer_dump(stream));
for (size_t i = 0; i < num_timers; ++i) {
TEST_ESP_OK(esp_timer_stop(handles[i]));
TEST_ESP_OK(esp_timer_delete(handles[i]));
free(names[i]);
}
fflush(stream);
fseek(stream, 0, SEEK_SET);
for (size_t i = 0; i < num_timers; ++i) {
char line[128];
TEST_ASSERT_NOT_NULL(fgets(line, sizeof(line), stream));
#if WITH_PROFILING
int timer_id;
sscanf(line, "timer%d", &timer_id);
TEST_ASSERT_EQUAL(indices[timer_id], i);
#else
intptr_t timer_ptr;
sscanf(line, "timer@0x%x", &timer_ptr);
for (size_t j = 0; j < num_timers; ++j) {
if (indices[j] == i) {
TEST_ASSERT_EQUAL_PTR(handles[j], timer_ptr);
break;
}
}
#endif
}
fclose(stream);
}
TEST_CASE("esp_timer_impl_set_alarm stress test", "[esp_timer]")
{
const int test_time_sec = 10;
void set_alarm_task(void* arg)
{
SemaphoreHandle_t done = (SemaphoreHandle_t) arg;
uint64_t start = esp_timer_impl_get_time();
uint64_t now = start;
int count = 0;
const int delays[] = {50, 5000, 10000000};
const int delays_count = sizeof(delays)/sizeof(delays[0]);
while (now - start < test_time_sec * 1000000) {
now = esp_timer_impl_get_time();
esp_timer_impl_set_alarm(now + delays[count % delays_count]);
++count;
}
xSemaphoreGive(done);
vTaskDelete(NULL);
}
SemaphoreHandle_t done = xSemaphoreCreateCounting(portNUM_PROCESSORS, 0);
setup_overflow();
xTaskCreatePinnedToCore(&set_alarm_task, "set_alarm_0", 4096, done, UNITY_FREERTOS_PRIORITY, NULL, 0);
#if portNUM_PROCESSORS == 2
xTaskCreatePinnedToCore(&set_alarm_task, "set_alarm_1", 4096, done, UNITY_FREERTOS_PRIORITY, NULL, 1);
#endif
TEST_ASSERT(xSemaphoreTake(done, test_time_sec * 2 * 1000 / portTICK_PERIOD_MS));
#if portNUM_PROCESSORS == 2
TEST_ASSERT(xSemaphoreTake(done, test_time_sec * 2 * 1000 / portTICK_PERIOD_MS));
#endif
teardown_overflow();
vSemaphoreDelete(done);
}
TEST_CASE("esp_timer produces correct delay", "[esp_timer]")
{
void timer_func(void* arg)
{
int64_t* p_end = (int64_t*) arg;
*p_end = ref_clock_get();
}
int64_t t_end;
esp_timer_handle_t timer1;
esp_timer_create_args_t args = {
.callback = &timer_func,
.arg = &t_end,
.name = "timer1"
};
TEST_ESP_OK(esp_timer_create(&args, &timer1));
const int delays_ms[] = {20, 100, 200, 250};
const size_t delays_count = sizeof(delays_ms)/sizeof(delays_ms[0]);
ref_clock_init();
setup_overflow();
for (size_t i = 0; i < delays_count; ++i) {
t_end = 0;
int64_t t_start = ref_clock_get();
TEST_ESP_OK(esp_timer_start_once(timer1, delays_ms[i] * 1000));
vTaskDelay(delays_ms[i] * 2 / portTICK_PERIOD_MS);
TEST_ASSERT(t_end != 0);
int32_t ms_diff = (t_end - t_start) / 1000;
printf("%d %d\n", delays_ms[i], ms_diff);
TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, delays_ms[i], ms_diff);
}
teardown_overflow();
ref_clock_deinit();
TEST_ESP_OK( esp_timer_dump(stdout) );
esp_timer_delete(timer1);
}
TEST_CASE("periodic esp_timer produces correct delays", "[esp_timer]")
{
// no, we can't make this a const size_t (§6.7.5.2)
#define NUM_INTERVALS 16
typedef struct {
esp_timer_handle_t timer;
size_t cur_interval;
int intervals[NUM_INTERVALS];
int64_t t_start;
SemaphoreHandle_t done;
} test_args_t;
void timer_func(void* arg)
{
test_args_t* p_args = (test_args_t*) arg;
int64_t t_end = ref_clock_get();
int32_t ms_diff = (t_end - p_args->t_start) / 1000;
printf("timer #%d %dms\n", p_args->cur_interval, ms_diff);
p_args->intervals[p_args->cur_interval++] = ms_diff;
// Deliberately make timer handler run longer.
// We check that this doesn't affect the result.
ets_delay_us(10*1000);
if (p_args->cur_interval == NUM_INTERVALS) {
printf("done\n");
TEST_ESP_OK(esp_timer_stop(p_args->timer));
xSemaphoreGive(p_args->done);
}
}
const int delay_ms = 100;
test_args_t args = {0};
esp_timer_handle_t timer1;
esp_timer_create_args_t create_args = {
.callback = &timer_func,
.arg = &args,
.name = "timer1",
};
TEST_ESP_OK(esp_timer_create(&create_args, &timer1));
ref_clock_init();
setup_overflow();
args.timer = timer1;
args.t_start = ref_clock_get();
args.done = xSemaphoreCreateBinary();
TEST_ESP_OK(esp_timer_start_periodic(timer1, delay_ms * 1000));
TEST_ASSERT(xSemaphoreTake(args.done, delay_ms * NUM_INTERVALS * 2));
TEST_ASSERT_EQUAL_UINT32(NUM_INTERVALS, args.cur_interval);
for (size_t i = 0; i < NUM_INTERVALS; ++i) {
TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, (i + 1) * delay_ms, args.intervals[i]);
}
teardown_overflow();
ref_clock_deinit();
TEST_ESP_OK( esp_timer_dump(stdout) );
TEST_ESP_OK( esp_timer_delete(timer1) );
vSemaphoreDelete(args.done);
#undef NUM_INTERVALS
}
TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
{
#define N 5
typedef struct {
const int order[N * 3];
size_t count;
} test_common_t;
typedef struct {
int timer_index;
const int intervals[N];
size_t intervals_count;
esp_timer_handle_t timer;
test_common_t* common;
bool pass;
SemaphoreHandle_t done;
int64_t t_start;
} test_args_t;
void timer_func(void* arg)
{
test_args_t* p_args = (test_args_t*) arg;
// check order
size_t count = p_args->common->count;
int expected_index = p_args->common->order[count];
int ms_since_start = (ref_clock_get() - p_args->t_start) / 1000;
printf("Time %dms, at count %d, expected timer %d, got timer %d\n",
ms_since_start, count, expected_index, p_args->timer_index);
if (expected_index != p_args->timer_index) {
p_args->pass = false;
esp_timer_stop(p_args->timer);
xSemaphoreGive(p_args->done);
return;
}
p_args->common->count++;
if (++p_args->intervals_count == N) {
esp_timer_stop(p_args->timer);
xSemaphoreGive(p_args->done);
return;
}
int next_interval = p_args->intervals[p_args->intervals_count];
printf("starting timer %d interval #%d, %d ms\n",
p_args->timer_index, p_args->intervals_count, next_interval);
esp_timer_start_once(p_args->timer, next_interval * 1000);
}
test_common_t common = {
.order = {1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 1, 3, 3, 2},
.count = 0
};
SemaphoreHandle_t done = xSemaphoreCreateCounting(3, 0);
ref_clock_init();
int64_t now = ref_clock_get();
test_args_t args1 = {
.timer_index = 1,
.intervals = {10, 40, 20, 40, 30},
.common = &common,
.pass = true,
.done = done,
.t_start = now
};
test_args_t args2 = {
.timer_index = 2,
.intervals = {20, 20, 60, 30, 40},
.common = &common,
.pass = true,
.done = done,
.t_start = now
};
test_args_t args3 = {
.timer_index = 3,
.intervals = {30, 30, 60, 30, 10},
.common = &common,
.pass = true,
.done = done,
.t_start = now
};
esp_timer_create_args_t create_args = {
.callback = &timer_func,
.arg = &args1,
.name = "1"
};
TEST_ESP_OK(esp_timer_create(&create_args, &args1.timer));
create_args.name = "2";
create_args.arg = &args2;
TEST_ESP_OK(esp_timer_create(&create_args, &args2.timer));
create_args.name = "3";
create_args.arg = &args3;
TEST_ESP_OK(esp_timer_create(&create_args, &args3.timer));
esp_timer_start_once(args1.timer, args1.intervals[0] * 1000);
esp_timer_start_once(args2.timer, args2.intervals[0] * 1000);
esp_timer_start_once(args3.timer, args3.intervals[0] * 1000);
for (int i = 0; i < 3; ++i) {
int result = xSemaphoreTake(done, 1000 / portTICK_PERIOD_MS);
TEST_ASSERT_TRUE(result == pdPASS);
}
TEST_ASSERT_TRUE(args1.pass);
TEST_ASSERT_TRUE(args2.pass);
TEST_ASSERT_TRUE(args3.pass);
ref_clock_deinit();
TEST_ESP_OK( esp_timer_dump(stdout) );
TEST_ESP_OK( esp_timer_delete(args1.timer) );
TEST_ESP_OK( esp_timer_delete(args2.timer) );
TEST_ESP_OK( esp_timer_delete(args3.timer) );
#undef N
}
/* Create two timers, start them around the same time, and search through
* timeout delta values to reproduce the case when timeouts occur close to
* each other, testing the "multiple timers triggered" code path in timer_process_alarm.
*/
TEST_CASE("esp_timer for very short intervals", "[esp_timer]")
{
SemaphoreHandle_t semaphore = xSemaphoreCreateCounting(2, 0);
void timer_func(void* arg) {
SemaphoreHandle_t done = (SemaphoreHandle_t) arg;
xSemaphoreGive(done);
printf(".");
}
esp_timer_create_args_t timer_args = {
.callback = &timer_func,
.arg = (void*) semaphore,
.name = "foo"
};
esp_timer_handle_t timer1, timer2;
ESP_ERROR_CHECK( esp_timer_create(&timer_args, &timer1) );
ESP_ERROR_CHECK( esp_timer_create(&timer_args, &timer2) );
setup_overflow();
const int timeout_ms = 10;
for (int timeout_delta_us = -150; timeout_delta_us < 150; timeout_delta_us++) {
printf("delta=%d", timeout_delta_us);
ESP_ERROR_CHECK( esp_timer_start_once(timer1, timeout_ms * 1000) );
ESP_ERROR_CHECK( esp_timer_start_once(timer2, timeout_ms * 1000 + timeout_delta_us) );
TEST_ASSERT_EQUAL(pdPASS, xSemaphoreTake(semaphore, timeout_ms * 2));
TEST_ASSERT_EQUAL(pdPASS, xSemaphoreTake(semaphore, timeout_ms * 2));
printf("\n");
TEST_ESP_ERR(ESP_ERR_INVALID_STATE, esp_timer_stop(timer1));
TEST_ESP_ERR(ESP_ERR_INVALID_STATE, esp_timer_stop(timer2));
}
teardown_overflow();
vSemaphoreDelete(semaphore);
}
TEST_CASE("esp_timer_get_time call takes less than 1us", "[esp_timer]")
{
int64_t begin = esp_timer_get_time();
volatile int64_t end;
const int iter_count = 10000;
for (int i = 0; i < iter_count; ++i) {
end = esp_timer_get_time();
}
int ns_per_call = (int) ((end - begin) * 1000 / iter_count);
TEST_PERFORMANCE_LESS_THAN(ESP_TIMER_GET_TIME_PER_CALL, "%dns", ns_per_call);
}
static int64_t IRAM_ATTR __attribute__((noinline)) get_clock_diff()
{
uint64_t hs_time = esp_timer_get_time();
uint64_t ref_time = ref_clock_get();
return hs_time - ref_time;
}
TEST_CASE("esp_timer_get_time returns monotonic values", "[esp_timer]")
{
typedef struct {
SemaphoreHandle_t done;
bool pass;
int test_cnt;
int error_cnt;
int64_t max_error;
int64_t avg_diff;
int64_t dummy;
} test_state_t;
void timer_test_task(void* arg) {
test_state_t* state = (test_state_t*) arg;
state->pass = true;
/* make sure both functions are in cache */
state->dummy = get_clock_diff();
/* calculate the difference between the two clocks */
portDISABLE_INTERRUPTS();
int64_t delta = get_clock_diff();
portENABLE_INTERRUPTS();
int64_t start_time = ref_clock_get();
int error_repeat_cnt = 0;
while (ref_clock_get() - start_time < 10000000) { /* 10 seconds */
/* Get values of both clocks again, and check that they are close to 'delta'.
* We don't disable interrupts here, because esp_timer_get_time doesn't lock
* interrupts internally, so we check if it can get "broken" by a well placed
* interrupt.
*/
int64_t diff = get_clock_diff() - delta;
/* Allow some difference due to rtos tick interrupting task between
* getting 'hs_now' and 'now'.
*/
if (abs(diff) > 100) {
error_repeat_cnt++;
state->error_cnt++;
} else {
error_repeat_cnt = 0;
}
if (error_repeat_cnt > 2) {
printf("diff=%lld\n", diff);
state->pass = false;
}
state->avg_diff += diff;
state->max_error = MAX(state->max_error, abs(diff));
state->test_cnt++;
}
state->avg_diff /= state->test_cnt;
xSemaphoreGive(state->done);
vTaskDelete(NULL);
}
ref_clock_init();
setup_overflow();
test_state_t states[portNUM_PROCESSORS] = {0};
SemaphoreHandle_t done = xSemaphoreCreateCounting(portNUM_PROCESSORS, 0);
for (int i = 0; i < portNUM_PROCESSORS; ++i) {
states[i].done = done;
xTaskCreatePinnedToCore(&timer_test_task, "test", 4096, &states[i], 6, NULL, i);
}
for (int i = 0; i < portNUM_PROCESSORS; ++i) {
TEST_ASSERT_TRUE( xSemaphoreTake(done, portMAX_DELAY) );
printf("CPU%d: %s test_cnt=%d error_cnt=%d avg_diff=%d |max_error|=%d\n",
i, states[i].pass ? "PASS" : "FAIL",
states[i].test_cnt, states[i].error_cnt,
(int) states[i].avg_diff, (int) states[i].max_error);
}
vSemaphoreDelete(done);
teardown_overflow();
ref_clock_deinit();
for (int i = 0; i < portNUM_PROCESSORS; ++i) {
TEST_ASSERT(states[i].pass);
}
}
TEST_CASE("Can dump esp_timer stats", "[esp_timer]")
{
esp_timer_dump(stdout);
}
TEST_CASE("Can delete timer from callback", "[esp_timer]")
{
typedef struct {
SemaphoreHandle_t notify_from_timer_cb;
esp_timer_handle_t timer;
} test_arg_t;
void timer_func(void* varg)
{
test_arg_t arg = *(test_arg_t*) varg;
esp_timer_delete(arg.timer);
printf("Timer %p is deleted\n", arg.timer);
xSemaphoreGive(arg.notify_from_timer_cb);
}
test_arg_t args = {
.notify_from_timer_cb = xSemaphoreCreateBinary(),
};
esp_timer_create_args_t timer_args = {
.callback = &timer_func,
.arg = &args,
.name = "self_deleter"
};
esp_timer_create(&timer_args, &args.timer);
esp_timer_start_once(args.timer, 10000);
TEST_ASSERT_TRUE(xSemaphoreTake(args.notify_from_timer_cb, 1000 / portTICK_PERIOD_MS));
printf("Checking heap at %p\n", args.timer);
TEST_ASSERT_TRUE(heap_caps_check_integrity_addr((intptr_t) args.timer, true));
vSemaphoreDelete(args.notify_from_timer_cb);
}
typedef struct {
SemaphoreHandle_t delete_start;
SemaphoreHandle_t delete_done;
SemaphoreHandle_t test_done;
esp_timer_handle_t timer;
} timer_delete_test_args_t;
static void timer_delete_task(void* arg)
{
timer_delete_test_args_t* args = (timer_delete_test_args_t*) arg;
xSemaphoreTake(args->delete_start, portMAX_DELAY);
printf("Deleting the timer\n");
esp_timer_delete(args->timer);
printf("Timer deleted\n");
xSemaphoreGive(args->delete_done);
vTaskDelete(NULL);
}
static void timer_delete_test_callback(void* arg)
{
timer_delete_test_args_t* args = (timer_delete_test_args_t*) arg;
printf("Timer callback called\n");
xSemaphoreGive(args->delete_start);
xSemaphoreTake(args->delete_done, portMAX_DELAY);
printf("Callback complete\n");
xSemaphoreGive(args->test_done);
}
TEST_CASE("Can delete timer from a separate task, triggered from callback", "[esp_timer]")
{
timer_delete_test_args_t args = {
.delete_start = xSemaphoreCreateBinary(),
.delete_done = xSemaphoreCreateBinary(),
.test_done = xSemaphoreCreateBinary(),
};
esp_timer_create_args_t timer_args = {
.callback = &timer_delete_test_callback,
.arg = &args
};
esp_timer_handle_t timer;
TEST_ESP_OK(esp_timer_create(&timer_args, &timer));
args.timer = timer;
xTaskCreate(timer_delete_task, "deleter", 4096, &args, 5, NULL);
esp_timer_start_once(timer, 100);
TEST_ASSERT(xSemaphoreTake(args.test_done, pdMS_TO_TICKS(1000)));
vSemaphoreDelete(args.delete_done);
vSemaphoreDelete(args.delete_start);
vSemaphoreDelete(args.test_done);
}
TEST_CASE("esp_timer_impl_advance moves time base correctly", "[esp_timer]")
{
ref_clock_init();
int64_t t0 = esp_timer_get_time();
const int64_t diff_us = 1000000;
esp_timer_impl_advance(diff_us);
int64_t t1 = esp_timer_get_time();
int64_t t_delta = t1 - t0;
printf("diff_us=%lld t1-t0=%lld\n", diff_us, t_delta);
TEST_ASSERT_INT_WITHIN(1000, diff_us, (int) t_delta);
ref_clock_deinit();
}
TEST_CASE("after esp_timer_impl_advance, timers run when expected", "[esp_timer]")
{
typedef struct {
int64_t cb_time;
} test_state_t;
void timer_func(void* varg) {
test_state_t* arg = (test_state_t*) varg;
arg->cb_time = ref_clock_get();
}
ref_clock_init();
test_state_t state = { 0 };
esp_timer_create_args_t timer_args = {
.callback = &timer_func,
.arg = &state
};
esp_timer_handle_t timer;
TEST_ESP_OK(esp_timer_create(&timer_args, &timer));
const int64_t interval = 10000;
const int64_t advance = 2000;
printf("test 1\n");
int64_t t_start = ref_clock_get();
esp_timer_start_once(timer, interval);
esp_timer_impl_advance(advance);
vTaskDelay(2 * interval / 1000 / portTICK_PERIOD_MS);
TEST_ASSERT_INT_WITHIN(portTICK_PERIOD_MS * 1000, interval - advance, state.cb_time - t_start);
printf("test 2\n");
state.cb_time = 0;
t_start = ref_clock_get();
esp_timer_start_once(timer, interval);
esp_timer_impl_advance(interval);
vTaskDelay(1);
TEST_ASSERT(state.cb_time > t_start);
ref_clock_deinit();
}
#if !defined(CONFIG_FREERTOS_UNICORE) && defined(CONFIG_ESP32_DPORT_WORKAROUND)
#include "soc/dport_reg.h"
#include "soc/frc_timer_reg.h"
#include "esp_ipc.h"
static bool task_stop;
static bool time_jumped;
static void task_check_time(void *p)
{
int64_t t1 = 0, t2 = 0;
while (task_stop == false) {
t1 = t2;
t2 = esp_timer_get_time();
if (t1 > t2) {
int64_t shift_us = t2 - t1;
time_jumped = true;
printf("System clock jumps back: %lli us\n", shift_us);
}
vTaskDelay(1);
}
vTaskDelete(NULL);
}
static void timer_callback(void* arg)
{
}
static void dport_task(void *pvParameters)
{
while (task_stop == false) {
DPORT_STALL_OTHER_CPU_START();
ets_delay_us(3);
DPORT_STALL_OTHER_CPU_END();
}
vTaskDelete(NULL);
}
TEST_CASE("esp_timer_impl_set_alarm does not set an alarm below the current time", "[esp_timer][timeout=62]")
{
const int max_timers = 2;
time_jumped = false;
task_stop = false;
xTaskCreatePinnedToCore(task_check_time, "task_check_time", 4096, NULL, 5, NULL, 0);
// dport_task is used here to interrupt the esp_timer_impl_set_alarm function.
// To interrupt it we can use an interrupt with 4 or 5 levels which will run on CPU0.
// Instead, an interrupt we use the dport workaround which has 4 interrupt level for stall CPU0.
xTaskCreatePinnedToCore(dport_task, "dport_task", 4096, NULL, 5, NULL, 1);
const esp_timer_create_args_t periodic_timer_args = {
.callback = &timer_callback,
};
esp_timer_handle_t periodic_timer[max_timers];
printf("timers created\n");
esp_timer_create(&periodic_timer_args, &periodic_timer[0]);
esp_timer_start_periodic(periodic_timer[0], 9000);
esp_timer_create(&periodic_timer_args, &periodic_timer[1]);
esp_timer_start_periodic(periodic_timer[1], 9000);
vTaskDelay(60 * 1000 / portTICK_PERIOD_MS);
task_stop = true;
esp_timer_stop(periodic_timer[0]);
esp_timer_delete(periodic_timer[0]);
esp_timer_stop(periodic_timer[1]);
esp_timer_delete(periodic_timer[1]);
printf("timers deleted\n");
vTaskDelay(1000 / portTICK_PERIOD_MS);
TEST_ASSERT(time_jumped == false);
}
static esp_timer_handle_t oneshot_timer;
static void oneshot_timer_callback(void* arg)
{
esp_timer_start_once(oneshot_timer, 5000);
}
static const esp_timer_create_args_t oneshot_timer_args = {
.callback = &oneshot_timer_callback,
};
TEST_CASE("esp_timer_impl_set_alarm and using start_once do not lead that the System time jumps back", "[esp_timer][timeout=62]")
{
time_jumped = false;
task_stop = false;
xTaskCreatePinnedToCore(task_check_time, "task_check_time", 4096, NULL, 5, NULL, 0);
// dport_task is used here to interrupt the esp_timer_impl_set_alarm function.
// To interrupt it we can use an interrupt with 4 or 5 levels which will run on CPU0.
// Instead, an interrupt we use the dport workaround which has 4 interrupt level for stall CPU0.
xTaskCreatePinnedToCore(dport_task, "dport_task", 4096, NULL, 5, NULL, 1);
const esp_timer_create_args_t periodic_timer_args = {
.callback = &timer_callback,
};
esp_timer_handle_t periodic_timer;
esp_timer_create(&periodic_timer_args, &periodic_timer);
esp_timer_start_periodic(periodic_timer, 5000);
esp_timer_create(&oneshot_timer_args, &oneshot_timer);
esp_timer_start_once(oneshot_timer, 9990);
printf("timers created\n");
vTaskDelay(60 * 1000 / portTICK_PERIOD_MS);
task_stop = true;
esp_timer_stop(oneshot_timer);
esp_timer_delete(oneshot_timer);
printf("timers deleted\n");
vTaskDelay(1000 / portTICK_PERIOD_MS);
TEST_ASSERT(time_jumped == false);
}
#endif // !defined(CONFIG_FREERTOS_UNICORE) && defined(CONFIG_ESP32_DPORT_WORKAROUND)
TEST_CASE("Test case when esp_timer_impl_set_alarm needs set timer < now_time", "[esp_timer]")
{
REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
esp_timer_impl_advance(50331648); // 0xefffffff/80 = 50331647
ets_delay_us(2);
portDISABLE_INTERRUPTS();
esp_timer_impl_set_alarm(50331647);
uint32_t alarm_reg = REG_READ(FRC_TIMER_ALARM_REG(1));
uint32_t count_reg = REG_READ(FRC_TIMER_COUNT_REG(1));
portENABLE_INTERRUPTS();
const uint32_t offset = 80 * 2; // s_timer_ticks_per_us
printf("alarm_reg = 0x%x, count_reg 0x%x\n", alarm_reg, count_reg);
TEST_ASSERT(alarm_reg <= (count_reg + offset));
}
TEST_CASE("Test esp_timer_impl_set_alarm when the counter is near an overflow value", "[esp_timer]")
{
for (int i = 0; i < 1024; ++i) {
uint32_t count_reg = 0xeffffe00 + i;
REG_WRITE(FRC_TIMER_LOAD_REG(1), count_reg);
printf("%d) count_reg = 0x%x\n", i, count_reg);
esp_timer_impl_set_alarm(1); // timestamp is expired
}
}