esp-idf/components/esp32/cpu_start.c
Ivan Grokhotkov 777816cb99 phy_init: don’t rewrite valid calibration data
In the default PHY init routine, calibration data is loaded from NVS.
Most of the time the incremental changes to calibration will be fairly
small, so we don’t need to rewrite the existing calibration data stored
in the NVS.

Possible enhancement to be done in the future: expose a function in PHY
library to tell how big was the change in calibration data. If the
change was significant, then calibration data stored in NVS should be
updated.
2017-02-07 15:14:45 +08:00

307 lines
8.9 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <string.h>
#include "esp_attr.h"
#include "esp_err.h"
#include "rom/ets_sys.h"
#include "rom/uart.h"
#include "rom/rtc.h"
#include "rom/cache.h"
#include "soc/cpu.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/timer_group_reg.h"
#include "driver/rtc_io.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/portmacro.h"
#include "tcpip_adapter.h"
#include "heap_alloc_caps.h"
#include "sdkconfig.h"
#include "esp_system.h"
#include "esp_spi_flash.h"
#include "nvs_flash.h"
#include "esp_event.h"
#include "esp_spi_flash.h"
#include "esp_ipc.h"
#include "esp_crosscore_int.h"
#include "esp_log.h"
#include "esp_vfs_dev.h"
#include "esp_newlib.h"
#include "esp_brownout.h"
#include "esp_int_wdt.h"
#include "esp_task_wdt.h"
#include "esp_phy_init.h"
#include "esp_coexist.h"
#include "esp_core_dump.h"
#include "trax.h"
#define STRINGIFY(s) STRINGIFY2(s)
#define STRINGIFY2(s) #s
void start_cpu0(void) __attribute__((weak, alias("start_cpu0_default")));
void start_cpu0_default(void) IRAM_ATTR;
#if !CONFIG_FREERTOS_UNICORE
static void IRAM_ATTR call_start_cpu1();
void start_cpu1(void) __attribute__((weak, alias("start_cpu1_default")));
void start_cpu1_default(void) IRAM_ATTR;
static bool app_cpu_started = false;
#endif //!CONFIG_FREERTOS_UNICORE
static void do_global_ctors(void);
static void main_task(void* args);
extern void app_main(void);
#if CONFIG_ESP32_PHY_AUTO_INIT
static void do_phy_init();
#endif
extern int _bss_start;
extern int _bss_end;
extern int _rtc_bss_start;
extern int _rtc_bss_end;
extern int _init_start;
extern void (*__init_array_start)(void);
extern void (*__init_array_end)(void);
extern volatile int port_xSchedulerRunning[2];
static const char* TAG = "cpu_start";
/*
* We arrive here after the bootloader finished loading the program from flash. The hardware is mostly uninitialized,
* and the app CPU is in reset. We do have a stack, so we can do the initialization in C.
*/
void IRAM_ATTR call_start_cpu0()
{
cpu_configure_region_protection();
//Move exception vectors to IRAM
asm volatile (\
"wsr %0, vecbase\n" \
::"r"(&_init_start));
memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start));
/* Unless waking from deep sleep (implying RTC memory is intact), clear RTC bss */
if (rtc_get_reset_reason(0) != DEEPSLEEP_RESET) {
memset(&_rtc_bss_start, 0, (&_rtc_bss_end - &_rtc_bss_start) * sizeof(_rtc_bss_start));
}
// Initialize heap allocator
heap_alloc_caps_init();
ESP_EARLY_LOGI(TAG, "Pro cpu up.");
#if !CONFIG_FREERTOS_UNICORE
ESP_EARLY_LOGI(TAG, "Starting app cpu, entry point is %p", call_start_cpu1);
//Flush and enable icache for APP CPU
Cache_Flush(1);
Cache_Read_Enable(1);
esp_cpu_unstall(1);
//Enable clock gating and reset the app cpu.
SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN);
CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_C_REG, DPORT_APPCPU_RUNSTALL);
SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING);
CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING);
ets_set_appcpu_boot_addr((uint32_t)call_start_cpu1);
while (!app_cpu_started) {
ets_delay_us(100);
}
#else
ESP_EARLY_LOGI(TAG, "Single core mode");
CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN);
#endif
ESP_EARLY_LOGI(TAG, "Pro cpu start user code");
start_cpu0();
}
#if !CONFIG_FREERTOS_UNICORE
void IRAM_ATTR call_start_cpu1()
{
asm volatile (\
"wsr %0, vecbase\n" \
::"r"(&_init_start));
cpu_configure_region_protection();
#if CONFIG_CONSOLE_UART_NONE
ets_install_putc1(NULL);
ets_install_putc2(NULL);
#else // CONFIG_CONSOLE_UART_NONE
uartAttach();
ets_install_uart_printf();
uart_tx_switch(CONFIG_CONSOLE_UART_NUM);
#endif
ESP_EARLY_LOGI(TAG, "App cpu up.");
app_cpu_started = 1;
start_cpu1();
}
#endif //!CONFIG_FREERTOS_UNICORE
void start_cpu0_default(void)
{
esp_setup_syscall_table();
//Enable trace memory and immediately start trace.
#if CONFIG_MEMMAP_TRACEMEM
#if CONFIG_MEMMAP_TRACEMEM_TWOBANKS
trax_enable(TRAX_ENA_PRO_APP);
#else
trax_enable(TRAX_ENA_PRO);
#endif
trax_start_trace(TRAX_DOWNCOUNT_WORDS);
#endif
esp_set_cpu_freq(); // set CPU frequency configured in menuconfig
#ifndef CONFIG_CONSOLE_UART_NONE
uart_div_modify(CONFIG_CONSOLE_UART_NUM, (APB_CLK_FREQ << 4) / CONFIG_CONSOLE_UART_BAUDRATE);
#endif
#if CONFIG_BROWNOUT_DET
esp_brownout_init();
#endif
rtc_gpio_unhold_all();
esp_setup_time_syscalls();
esp_vfs_dev_uart_register();
esp_reent_init(_GLOBAL_REENT);
#ifndef CONFIG_CONSOLE_UART_NONE
const char* default_uart_dev = "/dev/uart/" STRINGIFY(CONFIG_CONSOLE_UART_NUM);
_GLOBAL_REENT->_stdin = fopen(default_uart_dev, "r");
_GLOBAL_REENT->_stdout = fopen(default_uart_dev, "w");
_GLOBAL_REENT->_stderr = fopen(default_uart_dev, "w");
#else
_GLOBAL_REENT->_stdin = (FILE*) &__sf_fake_stdin;
_GLOBAL_REENT->_stdout = (FILE*) &__sf_fake_stdout;
_GLOBAL_REENT->_stderr = (FILE*) &__sf_fake_stderr;
#endif
do_global_ctors();
#if CONFIG_INT_WDT
esp_int_wdt_init();
#endif
#if CONFIG_TASK_WDT
esp_task_wdt_init();
#endif
#if !CONFIG_FREERTOS_UNICORE
esp_crosscore_int_init();
#endif
esp_ipc_init();
spi_flash_init();
/* init default OS-aware flash access critical section */
spi_flash_guard_set(&g_flash_guard_default_ops);
#if CONFIG_ESP32_ENABLE_COREDUMP
esp_core_dump_init();
#endif
#if CONFIG_ESP32_PHY_AUTO_INIT
nvs_flash_init();
do_phy_init();
#endif
#if CONFIG_SW_COEXIST_ENABLE
if (coex_init() == ESP_OK) {
coexist_set_enable(true);
}
#endif
xTaskCreatePinnedToCore(&main_task, "main",
ESP_TASK_MAIN_STACK, NULL,
ESP_TASK_MAIN_PRIO, NULL, 0);
ESP_LOGI(TAG, "Starting scheduler on PRO CPU.");
vTaskStartScheduler();
}
#if !CONFIG_FREERTOS_UNICORE
void start_cpu1_default(void)
{
#if CONFIG_MEMMAP_TRACEMEM_TWOBANKS
trax_start_trace(TRAX_DOWNCOUNT_WORDS);
#endif
// Wait for FreeRTOS initialization to finish on PRO CPU
while (port_xSchedulerRunning[0] == 0) {
;
}
//Take care putting stuff here: if asked, FreeRTOS will happily tell you the scheduler
//has started, but it isn't active *on this CPU* yet.
esp_crosscore_int_init();
ESP_EARLY_LOGI(TAG, "Starting scheduler on APP CPU.");
xPortStartScheduler();
}
#endif //!CONFIG_FREERTOS_UNICORE
static void do_global_ctors(void)
{
void (**p)(void);
for (p = &__init_array_end - 1; p >= &__init_array_start; --p) {
(*p)();
}
}
static void main_task(void* args)
{
// Now that the application is about to start, disable boot watchdogs
REG_CLR_BIT(TIMG_WDTCONFIG0_REG(0), TIMG_WDT_FLASHBOOT_MOD_EN_S);
REG_CLR_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN);
app_main();
vTaskDelete(NULL);
}
#if CONFIG_ESP32_PHY_AUTO_INIT
static void do_phy_init()
{
esp_phy_calibration_mode_t calibration_mode = PHY_RF_CAL_PARTIAL;
if (rtc_get_reset_reason(0) == DEEPSLEEP_RESET) {
calibration_mode = PHY_RF_CAL_NONE;
}
const esp_phy_init_data_t* init_data = esp_phy_get_init_data();
if (init_data == NULL) {
ESP_LOGE(TAG, "failed to obtain PHY init data");
abort();
}
esp_phy_calibration_data_t* cal_data =
(esp_phy_calibration_data_t*) calloc(sizeof(esp_phy_calibration_data_t), 1);
if (cal_data == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for RF calibration data");
abort();
}
esp_err_t err = esp_phy_load_cal_data_from_nvs(cal_data);
if (err != ESP_OK) {
ESP_LOGW(TAG, "failed to load RF calibration data, falling back to full calibration");
calibration_mode = PHY_RF_CAL_FULL;
}
esp_phy_init(init_data, calibration_mode, cal_data);
if (calibration_mode != PHY_RF_CAL_NONE && err != ESP_OK) {
err = esp_phy_store_cal_data_to_nvs(cal_data);
} else {
err = ESP_OK;
}
esp_phy_release_init_data(init_data);
free(cal_data); // PHY maintains a copy of calibration data, so we can free this
}
#endif //CONFIG_ESP32_PHY_AUTO_INIT