mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
759f7ec13d
WDT: implement interrupt wdt and task wdt for ESP32-C2 (backport v5.0) See merge request espressif/esp-idf!20980
724 lines
26 KiB
C
724 lines
26 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include "sdkconfig.h"
|
|
#include <string.h>
|
|
#include "soc/soc_caps.h"
|
|
#include "soc/periph_defs.h"
|
|
#include "soc/system_reg.h"
|
|
#include "hal/systimer_hal.h"
|
|
#include "hal/systimer_ll.h"
|
|
#include "riscv/rvruntime-frames.h"
|
|
#include "riscv/rv_utils.h"
|
|
#include "riscv/interrupt.h"
|
|
#include "esp_private/crosscore_int.h"
|
|
#include "esp_private/esp_int_wdt.h"
|
|
#include "esp_private/periph_ctrl.h"
|
|
#include "esp_private/systimer.h"
|
|
#include "esp_attr.h"
|
|
#include "esp_system.h"
|
|
#include "esp_heap_caps_init.h"
|
|
#include "esp_task_wdt.h"
|
|
#include "esp_task.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "esp_log.h"
|
|
#include "FreeRTOS.h" /* This pulls in portmacro.h */
|
|
#include "task.h"
|
|
#include "portmacro.h"
|
|
#include "esp_memory_utils.h"
|
|
#ifdef CONFIG_FREERTOS_SYSTICK_USES_SYSTIMER
|
|
#include "soc/periph_defs.h"
|
|
#include "soc/system_reg.h"
|
|
#include "hal/systimer_hal.h"
|
|
#include "hal/systimer_ll.h"
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM_TRACE
|
|
#include "esp_private/pm_trace.h"
|
|
#endif //CONFIG_PM_TRACE
|
|
|
|
#ifdef CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
|
|
#include "esp_gdbstub.h"
|
|
#endif // CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
|
|
|
|
_Static_assert(portBYTE_ALIGNMENT == 16, "portBYTE_ALIGNMENT must be set to 16");
|
|
|
|
/* ---------------------------------------------------- Variables ------------------------------------------------------
|
|
*
|
|
* ------------------------------------------------------------------------------------------------------------------ */
|
|
|
|
static const char *TAG = "cpu_start"; // [refactor-todo]: might be appropriate to change in the future, but
|
|
|
|
BaseType_t uxSchedulerRunning = 0;
|
|
volatile UBaseType_t uxInterruptNesting = 0;
|
|
portMUX_TYPE port_xTaskLock = portMUX_INITIALIZER_UNLOCKED;
|
|
portMUX_TYPE port_xISRLock = portMUX_INITIALIZER_UNLOCKED;
|
|
volatile BaseType_t xPortSwitchFlag = 0;
|
|
__attribute__((aligned(16))) static StackType_t xIsrStack[configISR_STACK_SIZE];
|
|
StackType_t *xIsrStackTop = &xIsrStack[0] + (configISR_STACK_SIZE & (~((portPOINTER_SIZE_TYPE)portBYTE_ALIGNMENT_MASK)));
|
|
|
|
// Variables used for IDF style critical sections. These are orthogonal to FreeRTOS critical sections
|
|
static UBaseType_t port_uxCriticalNestingIDF = 0;
|
|
static UBaseType_t port_uxCriticalOldInterruptStateIDF = 0;
|
|
|
|
/* ------------------------------------------------ IDF Compatibility --------------------------------------------------
|
|
* - These need to be defined for IDF to compile
|
|
* ------------------------------------------------------------------------------------------------------------------ */
|
|
|
|
// ------------------ Critical Sections --------------------
|
|
|
|
void vPortEnterCritical(void)
|
|
{
|
|
// Save current interrupt threshold and disable interrupts
|
|
UBaseType_t old_thresh = ulPortSetInterruptMask();
|
|
// Update the IDF critical nesting count
|
|
port_uxCriticalNestingIDF++;
|
|
if (port_uxCriticalNestingIDF == 1) {
|
|
// Save a copy of the old interrupt threshold
|
|
port_uxCriticalOldInterruptStateIDF = (UBaseType_t) old_thresh;
|
|
}
|
|
}
|
|
|
|
void vPortExitCritical(void)
|
|
{
|
|
if (port_uxCriticalNestingIDF > 0) {
|
|
port_uxCriticalNestingIDF--;
|
|
if (port_uxCriticalNestingIDF == 0) {
|
|
// Restore the saved interrupt threshold
|
|
vPortClearInterruptMask((int)port_uxCriticalOldInterruptStateIDF);
|
|
}
|
|
}
|
|
}
|
|
|
|
// ----------------------- System --------------------------
|
|
|
|
#define STACK_WATCH_AREA_SIZE 32
|
|
#define STACK_WATCH_POINT_NUMBER (SOC_CPU_WATCHPOINTS_NUM - 1)
|
|
|
|
void vPortSetStackWatchpoint(void *pxStackStart)
|
|
{
|
|
uint32_t addr = (uint32_t)pxStackStart;
|
|
addr = (addr + (STACK_WATCH_AREA_SIZE - 1)) & (~(STACK_WATCH_AREA_SIZE - 1));
|
|
esp_cpu_set_watchpoint(STACK_WATCH_POINT_NUMBER, (char *)addr, STACK_WATCH_AREA_SIZE, ESP_CPU_WATCHPOINT_STORE);
|
|
}
|
|
|
|
// ---------------------- Tick Timer -----------------------
|
|
|
|
BaseType_t xPortSysTickHandler(void);
|
|
|
|
#ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
|
|
|
|
#ifdef CONFIG_FREERTOS_CORETIMER_0
|
|
#define SYSTICK_INTR_ID (ETS_INTERNAL_TIMER0_INTR_SOURCE+ETS_INTERNAL_INTR_SOURCE_OFF)
|
|
#endif
|
|
#ifdef CONFIG_FREERTOS_CORETIMER_1
|
|
#define SYSTICK_INTR_ID (ETS_INTERNAL_TIMER1_INTR_SOURCE+ETS_INTERNAL_INTR_SOURCE_OFF)
|
|
#endif
|
|
|
|
#elif CONFIG_FREERTOS_SYSTICK_USES_SYSTIMER
|
|
|
|
_Static_assert(SOC_CPU_CORES_NUM <= SOC_SYSTIMER_ALARM_NUM - 1, "the number of cores must match the number of core alarms in SYSTIMER");
|
|
|
|
void SysTickIsrHandler(void *arg);
|
|
|
|
static uint32_t s_handled_systicks[portNUM_PROCESSORS] = { 0 };
|
|
|
|
#define SYSTICK_INTR_ID (ETS_SYSTIMER_TARGET0_EDGE_INTR_SOURCE)
|
|
|
|
/**
|
|
* @brief Set up the systimer peripheral to generate the tick interrupt
|
|
*
|
|
* Both timer alarms are configured in periodic mode.
|
|
* It is done at the same time so SysTicks for both CPUs occur at the same time or very close.
|
|
* Shifts a time of triggering interrupts for core 0 and core 1.
|
|
*/
|
|
void vPortSetupTimer(void)
|
|
{
|
|
unsigned cpuid = xPortGetCoreID();
|
|
#ifdef CONFIG_FREERTOS_CORETIMER_SYSTIMER_LVL3
|
|
const unsigned level = ESP_INTR_FLAG_LEVEL3;
|
|
#else
|
|
const unsigned level = ESP_INTR_FLAG_LEVEL1;
|
|
#endif
|
|
/* Systimer HAL layer object */
|
|
static systimer_hal_context_t systimer_hal;
|
|
/* set system timer interrupt vector */
|
|
ESP_ERROR_CHECK(esp_intr_alloc(ETS_SYSTIMER_TARGET0_EDGE_INTR_SOURCE + cpuid, ESP_INTR_FLAG_IRAM | level, SysTickIsrHandler, &systimer_hal, NULL));
|
|
|
|
if (cpuid == 0) {
|
|
periph_module_enable(PERIPH_SYSTIMER_MODULE);
|
|
systimer_hal_init(&systimer_hal);
|
|
systimer_hal_tick_rate_ops_t ops = {
|
|
.ticks_to_us = systimer_ticks_to_us,
|
|
.us_to_ticks = systimer_us_to_ticks,
|
|
};
|
|
systimer_hal_set_tick_rate_ops(&systimer_hal, &ops);
|
|
systimer_ll_set_counter_value(systimer_hal.dev, SYSTIMER_LL_COUNTER_OS_TICK, 0);
|
|
systimer_ll_apply_counter_value(systimer_hal.dev, SYSTIMER_LL_COUNTER_OS_TICK);
|
|
|
|
for (cpuid = 0; cpuid < SOC_CPU_CORES_NUM; cpuid++) {
|
|
systimer_hal_counter_can_stall_by_cpu(&systimer_hal, SYSTIMER_LL_COUNTER_OS_TICK, cpuid, false);
|
|
}
|
|
|
|
for (cpuid = 0; cpuid < portNUM_PROCESSORS; ++cpuid) {
|
|
uint32_t alarm_id = SYSTIMER_LL_ALARM_OS_TICK_CORE0 + cpuid;
|
|
|
|
/* configure the timer */
|
|
systimer_hal_connect_alarm_counter(&systimer_hal, alarm_id, SYSTIMER_LL_COUNTER_OS_TICK);
|
|
systimer_hal_set_alarm_period(&systimer_hal, alarm_id, 1000000UL / CONFIG_FREERTOS_HZ);
|
|
systimer_hal_select_alarm_mode(&systimer_hal, alarm_id, SYSTIMER_ALARM_MODE_PERIOD);
|
|
systimer_hal_counter_can_stall_by_cpu(&systimer_hal, SYSTIMER_LL_COUNTER_OS_TICK, cpuid, true);
|
|
if (cpuid == 0) {
|
|
systimer_hal_enable_alarm_int(&systimer_hal, alarm_id);
|
|
systimer_hal_enable_counter(&systimer_hal, SYSTIMER_LL_COUNTER_OS_TICK);
|
|
#ifndef CONFIG_FREERTOS_UNICORE
|
|
// SysTick of core 0 and core 1 are shifted by half of period
|
|
systimer_hal_counter_value_advance(&systimer_hal, SYSTIMER_LL_COUNTER_OS_TICK, 1000000UL / CONFIG_FREERTOS_HZ / 2);
|
|
#endif
|
|
}
|
|
}
|
|
} else {
|
|
uint32_t alarm_id = SYSTIMER_LL_ALARM_OS_TICK_CORE0 + cpuid;
|
|
systimer_hal_enable_alarm_int(&systimer_hal, alarm_id);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Systimer interrupt handler.
|
|
*
|
|
* The Systimer interrupt for SysTick works in periodic mode no need to calc the next alarm.
|
|
* If a timer interrupt is ever serviced more than one tick late, it is necessary to process multiple ticks.
|
|
*/
|
|
IRAM_ATTR void SysTickIsrHandler(void *arg)
|
|
{
|
|
uint32_t cpuid = xPortGetCoreID();
|
|
systimer_hal_context_t *systimer_hal = (systimer_hal_context_t *)arg;
|
|
#ifdef CONFIG_PM_TRACE
|
|
ESP_PM_TRACE_ENTER(TICK, cpuid);
|
|
#endif
|
|
|
|
uint32_t alarm_id = SYSTIMER_LL_ALARM_OS_TICK_CORE0 + cpuid;
|
|
do {
|
|
systimer_ll_clear_alarm_int(systimer_hal->dev, alarm_id);
|
|
|
|
uint32_t diff = systimer_hal_get_counter_value(systimer_hal, SYSTIMER_LL_COUNTER_OS_TICK) / systimer_ll_get_alarm_period(systimer_hal->dev, alarm_id) - s_handled_systicks[cpuid];
|
|
if (diff > 0) {
|
|
if (s_handled_systicks[cpuid] == 0) {
|
|
s_handled_systicks[cpuid] = diff;
|
|
diff = 1;
|
|
} else {
|
|
s_handled_systicks[cpuid] += diff;
|
|
}
|
|
|
|
do {
|
|
xPortSysTickHandler();
|
|
} while (--diff);
|
|
}
|
|
} while (systimer_ll_is_alarm_int_fired(systimer_hal->dev, alarm_id));
|
|
|
|
#ifdef CONFIG_PM_TRACE
|
|
ESP_PM_TRACE_EXIT(TICK, cpuid);
|
|
#endif
|
|
}
|
|
|
|
#endif // CONFIG_FREERTOS_SYSTICK_USES_SYSTIMER
|
|
|
|
// --------------------- App Start-up ----------------------
|
|
|
|
extern void app_main(void);
|
|
|
|
static void main_task(void *args)
|
|
{
|
|
#if !CONFIG_FREERTOS_UNICORE
|
|
// Wait for FreeRTOS initialization to finish on APP CPU, before replacing its startup stack
|
|
while (uxSchedulerRunning == 0) {
|
|
;
|
|
}
|
|
#endif
|
|
|
|
// [refactor-todo] check if there is a way to move the following block to esp_system startup
|
|
heap_caps_enable_nonos_stack_heaps();
|
|
|
|
// Now we have startup stack RAM available for heap, enable any DMA pool memory
|
|
#if CONFIG_SPIRAM_MALLOC_RESERVE_INTERNAL
|
|
if (g_spiram_ok) {
|
|
esp_err_t r = esp_spiram_reserve_dma_pool(CONFIG_SPIRAM_MALLOC_RESERVE_INTERNAL);
|
|
if (r != ESP_OK) {
|
|
ESP_EARLY_LOGE(TAG, "Could not reserve internal/DMA pool (error 0x%x)", r);
|
|
abort();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//Initialize task wdt if configured to do so
|
|
#if CONFIG_ESP_TASK_WDT_INIT
|
|
esp_task_wdt_config_t twdt_config = {
|
|
.timeout_ms = CONFIG_ESP_TASK_WDT_TIMEOUT_S * 1000,
|
|
.idle_core_mask = 0,
|
|
#if CONFIG_ESP_TASK_WDT_PANIC
|
|
.trigger_panic = true,
|
|
#endif
|
|
};
|
|
#if CONFIG_ESP_TASK_WDT_CHECK_IDLE_TASK_CPU0
|
|
twdt_config.idle_core_mask |= (1 << 0);
|
|
#endif
|
|
#if CONFIG_ESP_TASK_WDT_CHECK_IDLE_TASK_CPU1
|
|
twdt_config.idle_core_mask |= (1 << 1);
|
|
#endif
|
|
ESP_ERROR_CHECK(esp_task_wdt_init(&twdt_config));
|
|
#endif // CONFIG_ESP_TASK_WDT_INIT
|
|
|
|
app_main();
|
|
vTaskDelete(NULL);
|
|
}
|
|
|
|
void esp_startup_start_app_common(void)
|
|
{
|
|
#if CONFIG_ESP_INT_WDT_INIT
|
|
esp_int_wdt_init();
|
|
//Initialize the interrupt watch dog for CPU0.
|
|
esp_int_wdt_cpu_init();
|
|
#endif
|
|
|
|
esp_crosscore_int_init();
|
|
|
|
#ifdef CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
|
|
esp_gdbstub_init();
|
|
#endif // CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
|
|
|
|
portBASE_TYPE res = xTaskCreatePinnedToCore(main_task, "main",
|
|
ESP_TASK_MAIN_STACK, NULL,
|
|
ESP_TASK_MAIN_PRIO, NULL, ESP_TASK_MAIN_CORE);
|
|
assert(res == pdTRUE);
|
|
(void)res;
|
|
}
|
|
|
|
void esp_startup_start_app(void)
|
|
{
|
|
esp_startup_start_app_common();
|
|
|
|
ESP_LOGI(TAG, "Starting scheduler.");
|
|
vTaskStartScheduler();
|
|
}
|
|
|
|
/* ---------------------------------------------- Port Implementations -------------------------------------------------
|
|
* Implementations of Porting Interface functions
|
|
* ------------------------------------------------------------------------------------------------------------------ */
|
|
|
|
// --------------------- Interrupts ------------------------
|
|
|
|
UBaseType_t ulPortSetInterruptMask(void)
|
|
{
|
|
int ret;
|
|
unsigned old_mstatus = RV_CLEAR_CSR(mstatus, MSTATUS_MIE);
|
|
ret = REG_READ(INTERRUPT_CORE0_CPU_INT_THRESH_REG);
|
|
REG_WRITE(INTERRUPT_CORE0_CPU_INT_THRESH_REG, RVHAL_EXCM_LEVEL);
|
|
RV_SET_CSR(mstatus, old_mstatus & MSTATUS_MIE);
|
|
/**
|
|
* In theory, this function should not return immediately as there is a
|
|
* delay between the moment we mask the interrupt threshold register and
|
|
* the moment a potential lower-priority interrupt is triggered (as said
|
|
* above), it should have a delay of 2 machine cycles/instructions.
|
|
*
|
|
* However, in practice, this function has an epilogue of one instruction,
|
|
* thus the instruction masking the interrupt threshold register is
|
|
* followed by two instructions: `ret` and `csrrs` (RV_SET_CSR).
|
|
* That's why we don't need any additional nop instructions here.
|
|
*/
|
|
return ret;
|
|
}
|
|
|
|
void vPortClearInterruptMask(UBaseType_t mask)
|
|
{
|
|
REG_WRITE(INTERRUPT_CORE0_CPU_INT_THRESH_REG, mask);
|
|
/**
|
|
* The delay between the moment we unmask the interrupt threshold register
|
|
* and the moment the potential requested interrupt is triggered is not
|
|
* null: up to three machine cycles/instructions can be executed.
|
|
*
|
|
* When compilation size optimization is enabled, this function and its
|
|
* callers returning void will have NO epilogue, thus the instruction
|
|
* following these calls will be executed.
|
|
*
|
|
* If the requested interrupt is a context switch to a higher priority
|
|
* task then the one currently running, we MUST NOT execute any instruction
|
|
* before the interrupt effectively happens.
|
|
* In order to prevent this, force this routine to have a 3-instruction
|
|
* delay before exiting.
|
|
*/
|
|
asm volatile ( "nop" );
|
|
asm volatile ( "nop" );
|
|
asm volatile ( "nop" );
|
|
}
|
|
|
|
BaseType_t xPortCheckIfInISR(void)
|
|
{
|
|
return uxInterruptNesting;
|
|
}
|
|
|
|
// ------------------ Critical Sections --------------------
|
|
|
|
void IRAM_ATTR vPortTakeLock( portMUX_TYPE *lock )
|
|
{
|
|
spinlock_acquire( lock, portMUX_NO_TIMEOUT);
|
|
}
|
|
|
|
void IRAM_ATTR vPortReleaseLock( portMUX_TYPE *lock )
|
|
{
|
|
spinlock_release( lock );
|
|
}
|
|
|
|
// ---------------------- Yielding -------------------------
|
|
|
|
void vPortYield(void)
|
|
{
|
|
if (uxInterruptNesting) {
|
|
vPortYieldFromISR();
|
|
} else {
|
|
|
|
esp_crosscore_int_send_yield(0);
|
|
/* There are 3-4 instructions of latency between triggering the software
|
|
interrupt and the CPU interrupt happening. Make sure it happened before
|
|
we return, otherwise vTaskDelay() may return and execute 1-2
|
|
instructions before the delay actually happens.
|
|
|
|
(We could use the WFI instruction here, but there is a chance that
|
|
the interrupt will happen while evaluating the other two conditions
|
|
for an instant yield, and if that happens then the WFI would be
|
|
waiting for the next interrupt to occur...)
|
|
*/
|
|
while (uxSchedulerRunning && REG_READ(SYSTEM_CPU_INTR_FROM_CPU_0_REG) != 0) {}
|
|
}
|
|
}
|
|
|
|
void vPortYieldFromISR( void )
|
|
{
|
|
//traceISR_EXIT_TO_SCHEDULER();
|
|
uxSchedulerRunning = 1;
|
|
xPortSwitchFlag = 1;
|
|
}
|
|
|
|
/* ------------------------------------------------ FreeRTOS Portable --------------------------------------------------
|
|
* - Provides implementation for functions required by FreeRTOS
|
|
* - Declared in portable.h
|
|
* ------------------------------------------------------------------------------------------------------------------ */
|
|
|
|
// ----------------- Scheduler Start/End -------------------
|
|
|
|
BaseType_t xPortStartScheduler(void)
|
|
{
|
|
uxInterruptNesting = 0;
|
|
port_uxCriticalNestingIDF = 0;
|
|
uxSchedulerRunning = 0;
|
|
|
|
/* Setup the hardware to generate the tick. */
|
|
vPortSetupTimer();
|
|
|
|
esprv_intc_int_set_threshold(1); /* set global INTC masking level */
|
|
rv_utils_intr_global_enable();
|
|
|
|
vPortYield();
|
|
|
|
/*Should not get here*/
|
|
return pdFALSE;
|
|
}
|
|
|
|
void vPortEndScheduler(void)
|
|
{
|
|
/* very unlikely this function will be called, so just trap here */
|
|
abort();
|
|
}
|
|
|
|
// ----------------------- Memory --------------------------
|
|
|
|
#define FREERTOS_SMP_MALLOC_CAPS (MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT)
|
|
|
|
void *pvPortMalloc( size_t xSize )
|
|
{
|
|
return heap_caps_malloc(xSize, FREERTOS_SMP_MALLOC_CAPS);
|
|
}
|
|
|
|
void vPortFree( void *pv )
|
|
{
|
|
heap_caps_free(pv);
|
|
}
|
|
|
|
void vPortInitialiseBlocks( void )
|
|
{
|
|
; //Does nothing, heap is initialized separately in ESP-IDF
|
|
}
|
|
|
|
size_t xPortGetFreeHeapSize( void )
|
|
{
|
|
return esp_get_free_heap_size();
|
|
}
|
|
|
|
#if( configSTACK_ALLOCATION_FROM_SEPARATE_HEAP == 1 )
|
|
void *pvPortMallocStack( size_t xSize )
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
void vPortFreeStack( void *pv )
|
|
{
|
|
|
|
}
|
|
#endif
|
|
|
|
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
|
|
void vApplicationGetIdleTaskMemory(StaticTask_t **ppxIdleTaskTCBBuffer,
|
|
StackType_t **ppxIdleTaskStackBuffer,
|
|
uint32_t *pulIdleTaskStackSize )
|
|
{
|
|
StackType_t *pxStackBufferTemp;
|
|
StaticTask_t *pxTCBBufferTemp;
|
|
/* Stack always grows downwards (from high address to low address) on all
|
|
* ESP RISC-V targets. Given that the heap allocator likely allocates memory
|
|
* from low to high address, we allocate the stack first and then the TCB so
|
|
* that the stack does not grow downwards into the TCB.
|
|
*
|
|
* Allocate TCB and stack buffer in internal memory. */
|
|
pxStackBufferTemp = pvPortMalloc(CONFIG_FREERTOS_IDLE_TASK_STACKSIZE);
|
|
pxTCBBufferTemp = pvPortMalloc(sizeof(StaticTask_t));
|
|
assert(pxStackBufferTemp != NULL);
|
|
assert(pxTCBBufferTemp != NULL);
|
|
// Write back pointers
|
|
*ppxIdleTaskStackBuffer = pxStackBufferTemp;
|
|
*ppxIdleTaskTCBBuffer = pxTCBBufferTemp;
|
|
*pulIdleTaskStackSize = CONFIG_FREERTOS_IDLE_TASK_STACKSIZE;
|
|
}
|
|
|
|
void vApplicationGetTimerTaskMemory(StaticTask_t **ppxTimerTaskTCBBuffer,
|
|
StackType_t **ppxTimerTaskStackBuffer,
|
|
uint32_t *pulTimerTaskStackSize )
|
|
{
|
|
StackType_t *pxStackBufferTemp;
|
|
StaticTask_t *pxTCBBufferTemp;
|
|
/* Stack always grows downwards (from high address to low address) on all
|
|
* ESP RISC-V targets. Given that the heap allocator likely allocates memory
|
|
* from low to high address, we allocate the stack first and then the TCB so
|
|
* that the stack does not grow downwards into the TCB.
|
|
*
|
|
* Allocate TCB and stack buffer in internal memory. */
|
|
pxStackBufferTemp = pvPortMalloc(configTIMER_TASK_STACK_DEPTH);
|
|
pxTCBBufferTemp = pvPortMalloc(sizeof(StaticTask_t));
|
|
assert(pxStackBufferTemp != NULL);
|
|
assert(pxTCBBufferTemp != NULL);
|
|
// Write back pointers
|
|
*ppxTimerTaskStackBuffer = pxStackBufferTemp;
|
|
*ppxTimerTaskTCBBuffer = pxTCBBufferTemp;
|
|
*pulTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
|
|
}
|
|
#endif //( configSUPPORT_STATIC_ALLOCATION == 1 )
|
|
|
|
// ------------------------ Stack --------------------------
|
|
|
|
__attribute__((noreturn)) static void _prvTaskExitError(void)
|
|
{
|
|
/* A function that implements a task must not exit or attempt to return to
|
|
its caller as there is nothing to return to. If a task wants to exit it
|
|
should instead call vTaskDelete( NULL ).
|
|
|
|
Artificially force an assert() to be triggered if configASSERT() is
|
|
defined, then stop here so application writers can catch the error. */
|
|
portDISABLE_INTERRUPTS();
|
|
abort();
|
|
}
|
|
|
|
__attribute__((naked)) static void prvTaskExitError(void)
|
|
{
|
|
asm volatile(".option push\n" \
|
|
".option norvc\n" \
|
|
"nop\n" \
|
|
".option pop");
|
|
/* Task entry's RA will point here. Shifting RA into prvTaskExitError is necessary
|
|
to make GDB backtrace ending inside that function.
|
|
Otherwise backtrace will end in the function laying just before prvTaskExitError in address space. */
|
|
_prvTaskExitError();
|
|
}
|
|
|
|
StackType_t *pxPortInitialiseStack(StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters)
|
|
{
|
|
extern uint32_t __global_pointer$;
|
|
uint8_t *task_thread_local_start;
|
|
uint8_t *threadptr;
|
|
extern char _thread_local_start, _thread_local_end, _flash_rodata_start;
|
|
|
|
/* Byte pointer, so that subsequent calculations don't depend on sizeof(StackType_t). */
|
|
uint8_t *sp = (uint8_t *) pxTopOfStack;
|
|
|
|
/* Set up TLS area.
|
|
* The following diagram illustrates the layout of link-time and run-time
|
|
* TLS sections.
|
|
*
|
|
* +-------------+
|
|
* |Section: | Linker symbols:
|
|
* |.flash.rodata| ---------------
|
|
* 0x0+-------------+ <-- _flash_rodata_start
|
|
* ^ | |
|
|
* | | Other data |
|
|
* | | ... |
|
|
* | +-------------+ <-- _thread_local_start
|
|
* | |.tbss | ^
|
|
* v | | |
|
|
* 0xNNNN|int example; | | (thread_local_size)
|
|
* |.tdata | v
|
|
* +-------------+ <-- _thread_local_end
|
|
* | Other data |
|
|
* | ... |
|
|
* | |
|
|
* +-------------+
|
|
*
|
|
* Local variables of
|
|
* pxPortInitialiseStack
|
|
* -----------------------
|
|
* +-------------+ <-- pxTopOfStack
|
|
* |.tdata (*) | ^
|
|
* ^ |int example; | |(thread_local_size
|
|
* | | | |
|
|
* | |.tbss (*) | v
|
|
* | +-------------+ <-- task_thread_local_start
|
|
* 0xNNNN | | | ^
|
|
* | | | |
|
|
* | | | |_thread_local_start - _rodata_start
|
|
* | | | |
|
|
* | | | v
|
|
* v +-------------+ <-- threadptr
|
|
*
|
|
* (*) The stack grows downward!
|
|
*/
|
|
|
|
uint32_t thread_local_sz = (uint32_t) (&_thread_local_end - &_thread_local_start);
|
|
thread_local_sz = ALIGNUP(0x10, thread_local_sz);
|
|
sp -= thread_local_sz;
|
|
task_thread_local_start = sp;
|
|
memcpy(task_thread_local_start, &_thread_local_start, thread_local_sz);
|
|
threadptr = task_thread_local_start - (&_thread_local_start - &_flash_rodata_start);
|
|
|
|
/* Simulate the stack frame as it would be created by a context switch interrupt. */
|
|
sp -= RV_STK_FRMSZ;
|
|
RvExcFrame *frame = (RvExcFrame *)sp;
|
|
memset(frame, 0, sizeof(*frame));
|
|
/* Shifting RA into prvTaskExitError is necessary to make GDB backtrace ending inside that function.
|
|
Otherwise backtrace will end in the function laying just before prvTaskExitError in address space. */
|
|
frame->ra = (UBaseType_t)prvTaskExitError + 4/*size of the nop insruction at the beginning of prvTaskExitError*/;
|
|
frame->mepc = (UBaseType_t)pxCode;
|
|
frame->a0 = (UBaseType_t)pvParameters;
|
|
frame->gp = (UBaseType_t)&__global_pointer$;
|
|
frame->tp = (UBaseType_t)threadptr;
|
|
|
|
//TODO: IDF-2393
|
|
configASSERT(((uint32_t) frame & portBYTE_ALIGNMENT_MASK) == 0);
|
|
return (StackType_t *)frame;
|
|
}
|
|
|
|
// ------- Thread Local Storage Pointers Deletion Callbacks -------
|
|
|
|
#if ( CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS )
|
|
void vPortTLSPointersDelCb( void *pxTCB )
|
|
{
|
|
/* Typecast pxTCB to StaticTask_t type to access TCB struct members.
|
|
* pvDummy15 corresponds to pvThreadLocalStoragePointers member of the TCB.
|
|
*/
|
|
StaticTask_t *tcb = ( StaticTask_t * )pxTCB;
|
|
|
|
/* The TLSP deletion callbacks are stored at an offset of (configNUM_THREAD_LOCAL_STORAGE_POINTERS/2) */
|
|
TlsDeleteCallbackFunction_t *pvThreadLocalStoragePointersDelCallback = ( TlsDeleteCallbackFunction_t * )( &( tcb->pvDummy15[ ( configNUM_THREAD_LOCAL_STORAGE_POINTERS / 2 ) ] ) );
|
|
|
|
/* We need to iterate over half the depth of the pvThreadLocalStoragePointers area
|
|
* to access all TLS pointers and their respective TLS deletion callbacks.
|
|
*/
|
|
for ( int x = 0; x < ( configNUM_THREAD_LOCAL_STORAGE_POINTERS / 2 ); x++ ) {
|
|
if ( pvThreadLocalStoragePointersDelCallback[ x ] != NULL ) { //If del cb is set
|
|
/* In case the TLSP deletion callback has been overwritten by a TLS pointer, gracefully abort. */
|
|
if ( !esp_ptr_executable( pvThreadLocalStoragePointersDelCallback[ x ] ) ) {
|
|
ESP_LOGE("FreeRTOS", "Fatal error: TLSP deletion callback at index %d overwritten with non-excutable pointer %p", x, pvThreadLocalStoragePointersDelCallback[ x ]);
|
|
abort();
|
|
}
|
|
|
|
pvThreadLocalStoragePointersDelCallback[ x ]( x, tcb->pvDummy15[ x ] ); //Call del cb
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS
|
|
|
|
// -------------------- Tick Handler -----------------------
|
|
|
|
extern void esp_vApplicationIdleHook(void);
|
|
extern void esp_vApplicationTickHook(void);
|
|
|
|
BaseType_t xPortSysTickHandler(void)
|
|
{
|
|
#if configBENCHMARK
|
|
portbenchmarkIntLatency();
|
|
#endif //configBENCHMARK
|
|
traceISR_ENTER(SYSTICK_INTR_ID);
|
|
BaseType_t ret = xTaskIncrementTick();
|
|
//Manually call the IDF tick hooks
|
|
esp_vApplicationTickHook();
|
|
if (ret != pdFALSE) {
|
|
portYIELD_FROM_ISR();
|
|
} else {
|
|
traceISR_EXIT();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// ------------------- Hook Functions ----------------------
|
|
|
|
void __attribute__((weak)) vApplicationStackOverflowHook(TaskHandle_t xTask, char *pcTaskName)
|
|
{
|
|
#define ERR_STR1 "***ERROR*** A stack overflow in task "
|
|
#define ERR_STR2 " has been detected."
|
|
const char *str[] = {ERR_STR1, pcTaskName, ERR_STR2};
|
|
|
|
char buf[sizeof(ERR_STR1) + CONFIG_FREERTOS_MAX_TASK_NAME_LEN + sizeof(ERR_STR2) + 1 /* null char */] = {0};
|
|
|
|
char *dest = buf;
|
|
for (int i = 0; i < sizeof(str) / sizeof(str[0]); i++) {
|
|
dest = strcat(dest, str[i]);
|
|
}
|
|
esp_system_abort(buf);
|
|
}
|
|
|
|
#if ( configUSE_TICK_HOOK > 0 )
|
|
void vApplicationTickHook( void )
|
|
{
|
|
esp_vApplicationTickHook();
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_FREERTOS_USE_MINIMAL_IDLE_HOOK
|
|
/*
|
|
By default, the port uses vApplicationMinimalIdleHook() to run IDF style idle
|
|
hooks. However, users may also want to provide their own vApplicationMinimalIdleHook().
|
|
In this case, we use to -Wl,--wrap option to wrap the user provided vApplicationMinimalIdleHook()
|
|
*/
|
|
extern void __real_vApplicationMinimalIdleHook( void );
|
|
void __wrap_vApplicationMinimalIdleHook( void )
|
|
{
|
|
esp_vApplicationIdleHook(); //Run IDF style hooks
|
|
__real_vApplicationMinimalIdleHook(); //Call the user provided vApplicationMinimalIdleHook()
|
|
}
|
|
#else // CONFIG_FREERTOS_USE_MINIMAL_IDLE_HOOK
|
|
void vApplicationMinimalIdleHook( void )
|
|
{
|
|
esp_vApplicationIdleHook(); //Run IDF style hooks
|
|
}
|
|
#endif // CONFIG_FREERTOS_USE_MINIMAL_IDLE_HOOK
|
|
|
|
/*
|
|
* Hook function called during prvDeleteTCB() to cleanup any
|
|
* user defined static memory areas in the TCB.
|
|
*/
|
|
void vPortCleanUpTCB ( void *pxTCB )
|
|
{
|
|
#if ( CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS )
|
|
/* Call TLS pointers deletion callbacks */
|
|
vPortTLSPointersDelCb( pxTCB );
|
|
#endif /* CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS */
|
|
}
|