esp-idf/components/esp_serial_slave_link/essl_sdio.c
2020-08-07 11:59:00 +08:00

463 lines
17 KiB
C

// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "essl_sdio.h"
#include "esp_log.h"
#include "freertos/task.h"
#include "essl_internal.h"
#include "soc/soc_caps.h"
#if SOC_SDIO_SLAVE_SUPPORTED
#include "soc/host_reg.h"
static const char TAG[] = "essl_sdio";
#define HOST_SLCHOST_CONF_W_REG(pos) (HOST_SLCHOST_CONF_W0_REG+pos+(pos>23?4:0)+(pos>31?12:0))
#define ESSL_CMD53_END_ADDR 0x1f800
#define TX_BUFFER_MAX 0x1000
#define TX_BUFFER_MASK 0xFFF
#define RX_BYTE_MAX 0x100000
#define RX_BYTE_MASK 0xFFFFF
#define FUNC1_EN_MASK (BIT(1))
/**
* Initialize ``void`` over SDIO by this macro.
*/
#define ESSL_SDIO_DEFAULT_CONTEXT() (essl_dev_t){\
.init = essl_sdio_init, \
.wait_for_ready = essl_sdio_wait_for_ready, \
.get_tx_buffer_num = essl_sdio_get_tx_buffer_num,\
.update_tx_buffer_num = essl_sdio_update_tx_buffer_num,\
.get_rx_data_size = essl_sdio_get_rx_data_size,\
.update_rx_data_size = essl_sdio_update_rx_data_size,\
.send_packet = essl_sdio_send_packet,\
.get_packet = essl_sdio_get_packet,\
.write_reg = essl_sdio_write_reg,\
.read_reg = essl_sdio_read_reg,\
.wait_int = essl_sdio_wait_int,\
.send_slave_intr = essl_sdio_send_slave_intr, \
.get_intr = essl_sdio_get_intr, \
.clear_intr = essl_sdio_clear_intr, \
.set_intr_ena = essl_sdio_set_intr_ena, \
.reset_cnt = essl_sdio_reset_cnt, \
}
typedef struct{
//common part
uint16_t buffer_size;
///< All data that do not fully fill a buffer is still counted as one buffer. E.g. 10 bytes data costs 2 buffers if the size is 8 bytes per buffer.
///< Buffer size of the slave pre-defined between host and slave before communication.
size_t tx_sent_buffers; ///< Counter holding the amount of buffers already sent to ESP32 slave. Should be set to 0 when initialization.
size_t tx_sent_buffers_latest; ///< The latest reading (from the slave) of counter holding the amount of buffers loaded. Should be set to 0 when initialization.
size_t rx_got_bytes; ///< Counter holding the amount of bytes already received from ESP32 slave. Should be set to 0 when initialization.
size_t rx_got_bytes_latest; ///< The latest reading (from the slave) of counter holding the amount of bytes to send. Should be set to 0 when initialization.
sdmmc_card_t* card; ///< Initialized sdmmc_cmd card
uint16_t block_size;
///< If this is too large, it takes time to send stuff bits; while if too small, intervals between blocks cost much.
///< Should be set according to length of data, and larger than ``TRANS_LEN_MAX/511``.
///< Block size of the SDIO function 1. After the initialization this will hold the value the slave really do. Valid value is 1-2048.
} essl_sdio_context_t;
esp_err_t essl_sdio_update_tx_buffer_num(void *arg, uint32_t wait_ms);
esp_err_t essl_sdio_update_rx_data_size(void *arg, uint32_t wait_ms);
static inline esp_err_t essl_sdio_write_byte(sdmmc_card_t *card, uint32_t addr, uint8_t val, uint8_t *val_o)
{
return sdmmc_io_write_byte(card, 1, addr&0x3FF, val, val_o);
}
static inline esp_err_t essl_sdio_write_bytes(sdmmc_card_t *card, uint32_t addr, uint8_t *val, int len)
{
return sdmmc_io_write_bytes(card, 1, addr&0x3FF, val, len);
}
static inline esp_err_t essl_sdio_read_byte(sdmmc_card_t *card, uint32_t addr, uint8_t *val_o)
{
return sdmmc_io_read_byte(card, 1, addr&0x3FF, val_o);
}
static inline esp_err_t essl_sdio_read_bytes(sdmmc_card_t *card, uint32_t addr, uint8_t *val_o, int len)
{
return sdmmc_io_read_bytes(card, 1, addr&0x3FF, val_o, len);
}
esp_err_t essl_sdio_init_dev(essl_handle_t *out_handle, const essl_sdio_config_t *config)
{
esp_err_t ret = ESP_OK;
essl_sdio_context_t* arg = NULL;
essl_dev_t* dev = NULL;
arg = (essl_sdio_context_t*)heap_caps_malloc(sizeof(essl_sdio_context_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
dev = (essl_dev_t*)heap_caps_malloc(sizeof(essl_dev_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
if (arg == NULL || dev == NULL) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
*dev = ESSL_SDIO_DEFAULT_CONTEXT();
dev->args = arg;
*arg = (essl_sdio_context_t) {
.card = config->card,
.block_size = 0x200,
.buffer_size = config->recv_buffer_size,
.tx_sent_buffers = 0,
.rx_got_bytes = 0,
};
*out_handle = dev;
return ESP_OK;
cleanup:
free(arg);
free(dev);
return ret;
}
esp_err_t essl_sdio_deinit_dev(essl_handle_t handle)
{
if (handle) free (handle->args);
free(handle);
return ESP_OK;
}
esp_err_t essl_sdio_init(void *arg, uint32_t wait_ms)
{
essl_sdio_context_t* ctx = arg;
esp_err_t err;
uint8_t ioe;
sdmmc_card_t* card = ctx->card;
err = sdmmc_io_read_byte(card, 0, SD_IO_CCCR_FN_ENABLE, &ioe);
if (err != ESP_OK) return err;
ESP_LOGD(TAG, "IOE: 0x%02x", ioe);
uint8_t ior = 0;
err = sdmmc_io_read_byte(card, 0, SD_IO_CCCR_FN_READY, &ior);
if (err != ESP_OK) return err;
ESP_LOGD(TAG, "IOR: 0x%02x", ior);
// enable function 1
ioe |= FUNC1_EN_MASK;
err = sdmmc_io_write_byte(card, 0, SD_IO_CCCR_FN_ENABLE, ioe, &ioe);
if (err != ESP_OK) return err;
ESP_LOGD(TAG, "IOE: 0x%02x", ioe);
// wait for the card to become ready
while ((ior & FUNC1_EN_MASK) == 0) {
err = sdmmc_io_read_byte(card, 0, SD_IO_CCCR_FN_READY, &ior);
if (err != ESP_OK) return err;
ESP_LOGD(TAG, "IOR: 0x%02x", ior);
}
// get interrupt status
uint8_t ie;
err = sdmmc_io_read_byte(card, 0, SD_IO_CCCR_INT_ENABLE, &ie);
if (err != ESP_OK) return err;
ESP_LOGD(TAG,"IE: 0x%02x", ie);
// enable interrupts for function 1&2 and master enable
ie |= BIT(0) | FUNC1_EN_MASK;
err = sdmmc_io_write_byte(card, 0, SD_IO_CCCR_INT_ENABLE, ie, &ie);
if (err != ESP_OK) return err;
ESP_LOGD(TAG, "IE: 0x%02x", ie);
// get bus width register
uint8_t bus_width;
err = sdmmc_io_read_byte(card, 0, SD_IO_CCCR_BUS_WIDTH, &bus_width);
if (err != ESP_OK) return err;
ESP_LOGD(TAG,"BUS_WIDTH: 0x%02x", bus_width);
// enable continuous SPI interrupts
bus_width |= CCCR_BUS_WIDTH_ECSI;
err = sdmmc_io_write_byte(card, 0, SD_IO_CCCR_BUS_WIDTH, bus_width, &bus_width);
if (err != ESP_OK) return err;
ESP_LOGD(TAG, "BUS_WIDTH: 0x%02x", bus_width);
uint16_t bs = 512;
const uint8_t* bs_u8 = (const uint8_t*) &bs;
uint16_t bs_read = 0;
uint8_t* bs_read_u8 = (uint8_t*) &bs_read;
// Set block sizes for functions 0 to 512 bytes
ESP_ERROR_CHECK(sdmmc_io_read_byte(card, 0, SD_IO_CCCR_BLKSIZEL, &bs_read_u8[0]));
ESP_ERROR_CHECK(sdmmc_io_read_byte(card, 0, SD_IO_CCCR_BLKSIZEH, &bs_read_u8[1]));
ESP_LOGD(TAG, "Function 0 BS: %04x", (int) bs_read);
ESP_ERROR_CHECK(sdmmc_io_write_byte(card, 0, SD_IO_CCCR_BLKSIZEL, bs_u8[0], NULL));
ESP_ERROR_CHECK(sdmmc_io_write_byte(card, 0, SD_IO_CCCR_BLKSIZEH, bs_u8[1], NULL));
ESP_ERROR_CHECK(sdmmc_io_read_byte(card, 0, SD_IO_CCCR_BLKSIZEL, &bs_read_u8[0]));
ESP_ERROR_CHECK(sdmmc_io_read_byte(card, 0, SD_IO_CCCR_BLKSIZEH, &bs_read_u8[1]));
ESP_LOGD(TAG, "Function 0 BS: %04x", (int) bs_read);
// Set block sizes for functions 1 to given value (default value = 512).
if (ctx->block_size > 0 || ctx->block_size <= 2048) {
bs = ctx->block_size;
} else {
bs = 512;
}
size_t offset = SD_IO_FBR_START * 1;
ESP_ERROR_CHECK(sdmmc_io_read_byte(card, 0, offset + SD_IO_CCCR_BLKSIZEL, &bs_read_u8[0]));
ESP_ERROR_CHECK(sdmmc_io_read_byte(card, 0, offset + SD_IO_CCCR_BLKSIZEH, &bs_read_u8[1]));
ESP_LOGD(TAG, "Function 1 BS: %04x", (int) bs_read);
ESP_ERROR_CHECK(sdmmc_io_write_byte(card, 0, offset + SD_IO_CCCR_BLKSIZEL, bs_u8[0], NULL));
ESP_ERROR_CHECK(sdmmc_io_write_byte(card, 0, offset + SD_IO_CCCR_BLKSIZEH, bs_u8[1], NULL));
ESP_ERROR_CHECK(sdmmc_io_read_byte(card, 0, offset + SD_IO_CCCR_BLKSIZEL, &bs_read_u8[0]));
ESP_ERROR_CHECK(sdmmc_io_read_byte(card, 0, offset + SD_IO_CCCR_BLKSIZEH, &bs_read_u8[1]));
ESP_LOGD(TAG, "Function 1 BS: %04x", (int) bs_read);
if (bs_read != ctx->block_size) {
ESP_LOGW(TAG, "Function1 block size %d different than set value %d", bs_read, ctx->block_size);
ctx->block_size = bs_read;
}
return ESP_OK;
}
esp_err_t essl_sdio_wait_for_ready(void *arg, uint32_t wait_ms)
{
ESP_LOGV(TAG, "wait_for_ioready");
esp_err_t err;
sdmmc_card_t *card = ((essl_sdio_context_t*)arg)->card;
// wait for the card to become ready
uint8_t ior = 0;
while ((ior & FUNC1_EN_MASK) == 0) {
err = sdmmc_io_read_byte(card, 0, SD_IO_CCCR_FN_READY, &ior);
if (err != ESP_OK) return err;
ESP_LOGD(TAG, "IOR: 0x%02x", ior);
}
return ESP_OK;
}
esp_err_t essl_sdio_send_packet(void *arg, const void *start, size_t length, uint32_t wait_ms)
{
essl_sdio_context_t* ctx = arg;
uint16_t buffer_size = ctx->buffer_size;
int buffer_used = (length + buffer_size - 1)/buffer_size;
esp_err_t err;
if (essl_sdio_get_tx_buffer_num(arg) < buffer_used) {
//slave has no enough buffer, try update for once
esp_err_t err = essl_sdio_update_tx_buffer_num(arg, wait_ms);
if (err != ESP_OK) {
return err;
}
if (essl_sdio_get_tx_buffer_num(arg) < buffer_used) {
ESP_LOGV(TAG, "buffer is not enough: %d, %d required.", ctx->tx_sent_buffers_latest, ctx->tx_sent_buffers + buffer_used);
return ESP_ERR_NOT_FOUND;
}
}
ESP_LOGV(TAG, "send_packet: len: %d", length);
uint8_t *start_ptr = (uint8_t*)start;
uint32_t len_remain = length;
do {
const int block_size = 512;
/* Though the driver supports to split packet of unaligned size into
* length of 4x and 1~3, we still send aligned size of data to get
* higher effeciency. The length is determined by the SDIO address, and
* the remainning will be discard by the slave hardware.
*/
int block_n = len_remain/block_size;
int len_to_send;
if (block_n) {
len_to_send = block_n * block_size;
err = sdmmc_io_write_blocks(ctx->card, 1, ESSL_CMD53_END_ADDR - len_remain, start_ptr, len_to_send);
} else {
len_to_send = len_remain;
err = sdmmc_io_write_bytes(ctx->card, 1, ESSL_CMD53_END_ADDR - len_remain, start_ptr, (len_to_send + 3) & (~3));
}
if (err != ESP_OK) return err;
start_ptr += len_to_send;
len_remain -= len_to_send;
} while (len_remain);
ctx->tx_sent_buffers += buffer_used;
return ESP_OK;
}
esp_err_t essl_sdio_get_packet(void *arg, void *out_data, size_t size, uint32_t wait_ms)
{
essl_sdio_context_t* ctx = arg;
esp_err_t err;
ESP_LOGV(TAG, "get_packet: read size=%d", size);
if (essl_sdio_get_rx_data_size(arg) < size) {
err = essl_sdio_update_rx_data_size(arg, wait_ms);
if (err != ESP_OK) {
return err;
}
if (essl_sdio_get_rx_data_size(arg) < size) {
return ESP_ERR_NOT_FOUND;
}
}
uint8_t *start = out_data;
uint32_t len_remain = size;
do {
const int block_size = 512; //currently our driver don't support block size other than 512
int len_to_send;
int block_n = len_remain/block_size;
if (block_n != 0) {
len_to_send = block_n * block_size;
err = sdmmc_io_read_blocks(ctx->card, 1, ESSL_CMD53_END_ADDR - len_remain, start, len_to_send);
} else {
len_to_send = len_remain;
/* though the driver supports to split packet of unaligned size into length
* of 4x and 1~3, we still get aligned size of data to get higher
* effeciency. The length is determined by the SDIO address, and the
* remainning will be ignored by the slave hardware.
*/
err = sdmmc_io_read_bytes(ctx->card, 1, ESSL_CMD53_END_ADDR - len_remain, start, (len_to_send + 3) & (~3));
}
if (err != ESP_OK) return err;
start += len_to_send;
len_remain -= len_to_send;
ctx->rx_got_bytes += len_to_send;
} while(len_remain!=0);
return err;
}
uint32_t essl_sdio_get_tx_buffer_num(void *arg)
{
essl_sdio_context_t* ctx = arg;
ESP_LOGV(TAG, "tx latest: %d, sent: %d", ctx->tx_sent_buffers_latest, ctx->tx_sent_buffers);
return (ctx->tx_sent_buffers_latest + TX_BUFFER_MAX - ctx->tx_sent_buffers)%TX_BUFFER_MAX;
}
esp_err_t essl_sdio_update_tx_buffer_num(void *arg, uint32_t wait_ms)
{
essl_sdio_context_t* ctx = arg;
uint32_t len;
esp_err_t err;
err = essl_sdio_read_bytes(ctx->card, HOST_SLC0HOST_TOKEN_RDATA_REG, (uint8_t *) &len, 4);
if (err != ESP_OK) return err;
len = (len>>16)&TX_BUFFER_MASK;
ctx->tx_sent_buffers_latest = len;
ESP_LOGV(TAG, "update_tx_buffer_num: %d", len);
return ESP_OK;
}
uint32_t essl_sdio_get_rx_data_size(void *arg)
{
essl_sdio_context_t* ctx = arg;
ESP_LOGV(TAG, "rx latest: %d, read: %d", ctx->rx_got_bytes_latest, ctx->rx_got_bytes);
return (ctx->rx_got_bytes_latest + RX_BYTE_MAX - ctx->rx_got_bytes)%RX_BYTE_MAX;
}
esp_err_t essl_sdio_update_rx_data_size(void *arg, uint32_t wait_ms)
{
essl_sdio_context_t* ctx = arg;
uint32_t len;
esp_err_t err;
ESP_LOGV(TAG, "get_rx_data_size: got_bytes: %d", ctx->rx_got_bytes);
err = essl_sdio_read_bytes(ctx->card, HOST_SLCHOST_PKT_LEN_REG, (uint8_t *) &len, 4);
if (err != ESP_OK) return err;
len &= RX_BYTE_MASK;
ctx->rx_got_bytes_latest = len;
return ESP_OK;
}
esp_err_t essl_sdio_write_reg(void *arg, uint8_t addr, uint8_t value, uint8_t *value_o, uint32_t wait_ms)
{
ESP_LOGV(TAG, "write_reg: %08X", value);
// addrress over range
if (addr >= 60) return ESP_ERR_INVALID_ARG;
//W7 is reserved for interrupts
if (addr >= 28) addr += 4;
return essl_sdio_write_byte(((essl_sdio_context_t*)arg)->card, HOST_SLCHOST_CONF_W_REG(addr), value, value_o);
}
esp_err_t essl_sdio_read_reg(void *arg, uint8_t add, uint8_t *value_o, uint32_t wait_ms)
{
ESP_LOGV(TAG, "read_reg");
// address over range
if (add >= 60) return ESP_ERR_INVALID_ARG;
//W7 is reserved for interrupts
if (add >= 28) add += 4;
esp_err_t ret = essl_sdio_read_byte(((essl_sdio_context_t*)arg)->card, HOST_SLCHOST_CONF_W_REG(add), value_o);
ESP_LOGV(TAG, "reg: %08X", *value_o);
return ret;
}
esp_err_t essl_sdio_clear_intr(void *arg, uint32_t intr_mask, uint32_t wait_ms)
{
ESP_LOGV(TAG, "clear_intr: %08X", intr_mask);
return essl_sdio_write_bytes(((essl_sdio_context_t *) arg)->card, HOST_SLC0HOST_INT_CLR_REG, (uint8_t *) &intr_mask, 4);
}
esp_err_t essl_sdio_get_intr(void *arg, uint32_t *intr_raw, uint32_t *intr_st, uint32_t wait_ms)
{
essl_sdio_context_t* ctx = arg;
esp_err_t r;
ESP_LOGV(TAG, "get_intr");
if (intr_raw == NULL && intr_st == NULL) return ESP_ERR_INVALID_ARG;
if (intr_raw != NULL) {
r= essl_sdio_read_bytes(ctx->card, HOST_SLC0HOST_INT_RAW_REG, (uint8_t *) intr_raw, 4);
if (r != ESP_OK) return r;
}
if (intr_st != NULL) {
r = essl_sdio_read_bytes(ctx->card, HOST_SLC0HOST_INT_ST_REG, (uint8_t *) intr_st, 4);
if (r != ESP_OK) return r;
}
return ESP_OK;
}
esp_err_t essl_sdio_set_intr_ena(void *arg, uint32_t ena_mask, uint32_t wait_ms)
{
ESP_LOGV(TAG, "set_intr_ena: %08X", ena_mask);
return essl_sdio_write_bytes(((essl_sdio_context_t*)arg)->card, HOST_SLC0HOST_FUNC1_INT_ENA_REG,
(uint8_t *) &ena_mask, 4);
}
esp_err_t essl_sdio_get_intr_ena(void *arg, uint32_t *ena_mask_o, uint32_t wait_ms)
{
ESP_LOGV(TAG, "get_intr_ena");
esp_err_t ret = essl_sdio_read_bytes(((essl_sdio_context_t*)arg)->card, HOST_SLC0HOST_FUNC1_INT_ENA_REG,
(uint8_t *) ena_mask_o, 4);
ESP_LOGV(TAG, "ena: %08X", *ena_mask_o);
return ret;
}
esp_err_t essl_sdio_send_slave_intr(void *arg, uint32_t intr_mask, uint32_t wait_ms)
{
ESP_LOGV(TAG, "send_slave_intr: %02x", intr_mask);
return essl_sdio_write_byte(((essl_sdio_context_t*)arg)->card, HOST_SLCHOST_CONF_W7_REG + 0, intr_mask, NULL);
}
esp_err_t essl_sdio_wait_int(void *arg, uint32_t wait_ms)
{
return sdmmc_io_wait_int(((essl_sdio_context_t*)arg)->card, wait_ms);
}
void essl_sdio_reset_cnt(void *arg)
{
essl_sdio_context_t* ctx = arg;
ctx->rx_got_bytes = 0;
ctx->tx_sent_buffers = 0;
}
#endif // #if SOC_SDIO_SLAVE_SUPPORTED