esp-idf/components/hal/esp32s3/include/hal/clk_tree_ll.h

729 lines
23 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdint.h>
#include "soc/soc.h"
#include "soc/clk_tree_defs.h"
#include "soc/rtc.h"
#include "soc/system_reg.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/regi2c_defs.h"
#include "hal/regi2c_ctrl.h"
#include "soc/regi2c_bbpll.h"
#include "hal/assert.h"
#include "hal/log.h"
#include "esp32s3/rom/rtc.h"
#ifdef __cplusplus
extern "C" {
#endif
#define MHZ (1000000)
#define CLK_LL_PLL_80M_FREQ_MHZ (80)
#define CLK_LL_PLL_160M_FREQ_MHZ (160)
#define CLK_LL_PLL_240M_FREQ_MHZ (240)
#define CLK_LL_PLL_320M_FREQ_MHZ (320)
#define CLK_LL_PLL_480M_FREQ_MHZ (480)
#define CLK_LL_AHB_MAX_FREQ_MHZ CLK_LL_PLL_80M_FREQ_MHZ
#define CLK_LL_XTAL32K_CONFIG_DEFAULT() { \
.dac = 3, \
.dres = 3, \
.dgm = 3, \
.dbuf = 1, \
}
/**
* @brief XTAL32K_CLK enable modes
*/
typedef enum {
CLK_LL_XTAL32K_ENABLE_MODE_CRYSTAL, //!< Enable the external 32kHz crystal for XTAL32K_CLK
CLK_LL_XTAL32K_ENABLE_MODE_EXTERNAL, //!< Enable the external clock signal for XTAL32K_CLK
CLK_LL_XTAL32K_ENABLE_MODE_BOOTSTRAP, //!< Bootstrap the crystal oscillator for faster XTAL32K_CLK start up */
} clk_ll_xtal32k_enable_mode_t;
/**
* @brief XTAL32K_CLK configuration structure
*/
typedef struct {
uint32_t dac : 6;
uint32_t dres : 3;
uint32_t dgm : 3;
uint32_t dbuf: 1;
} clk_ll_xtal32k_config_t;
/**
* @brief Power up BBPLL circuit
*/
static inline __attribute__((always_inline)) void clk_ll_bbpll_enable(void)
{
REG_CLR_BIT(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BB_I2C_FORCE_PD |
RTC_CNTL_BBPLL_FORCE_PD | RTC_CNTL_BBPLL_I2C_FORCE_PD);
}
/**
* @brief Power down BBPLL circuit
*/
static inline __attribute__((always_inline)) void clk_ll_bbpll_disable(void)
{
REG_SET_BIT(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BB_I2C_FORCE_PD |
RTC_CNTL_BBPLL_FORCE_PD | RTC_CNTL_BBPLL_I2C_FORCE_PD);
}
/**
* @brief Enable the 32kHz crystal oscillator
*
* @param mode Used to determine the xtal32k configuration parameters
*/
static inline __attribute__((always_inline)) void clk_ll_xtal32k_enable(clk_ll_xtal32k_enable_mode_t mode)
{
// Configure xtal32k
clk_ll_xtal32k_config_t cfg = CLK_LL_XTAL32K_CONFIG_DEFAULT();
REG_SET_FIELD(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_DAC_XTAL_32K, cfg.dac);
REG_SET_FIELD(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_DRES_XTAL_32K, cfg.dres);
REG_SET_FIELD(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_DGM_XTAL_32K, cfg.dgm);
REG_SET_FIELD(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_DBUF_XTAL_32K, cfg.dbuf);
// Enable xtal32k xpd status
SET_PERI_REG_MASK(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_XPD_XTAL_32K);
if (mode == CLK_LL_XTAL32K_ENABLE_MODE_EXTERNAL) {
/* TODO: external 32k oscillator may need different settings */
;
}
}
/**
* @brief Disable the 32kHz crystal oscillator
*/
static inline __attribute__((always_inline)) void clk_ll_xtal32k_disable(void)
{
// Set xtal32k xpd to be controlled by software
SET_PERI_REG_MASK(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_XTAL32K_XPD_FORCE);
// Disable xtal32k xpd status
CLEAR_PERI_REG_MASK(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_XPD_XTAL_32K);
}
/**
* @brief Get the state of the 32kHz crystal clock
*
* @return True if the 32kHz XTAL is enabled
*/
static inline __attribute__((always_inline)) bool clk_ll_xtal32k_is_enabled(void)
{
uint32_t xtal_conf = READ_PERI_REG(RTC_CNTL_EXT_XTL_CONF_REG);
/* If xtal xpd is controlled by software */
bool xtal_xpd_sw = (xtal_conf & RTC_CNTL_XTAL32K_XPD_FORCE) >> RTC_CNTL_XTAL32K_XPD_FORCE_S;
/* If xtal xpd software control is on */
bool xtal_xpd_st = (xtal_conf & RTC_CNTL_XPD_XTAL_32K) >> RTC_CNTL_XPD_XTAL_32K_S;
// disabled = xtal_xpd_sw && !xtal_xpd_st; enabled = !disbaled
bool enabled = !xtal_xpd_sw || xtal_xpd_st;
return enabled;
}
/**
* @brief Enable the internal oscillator output for RC_FAST_CLK
*/
static inline __attribute__((always_inline)) void clk_ll_rc_fast_enable(void)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, RTC_CK8M_ENABLE_WAIT_DEFAULT);
}
/**
* @brief Disable the internal oscillator output for RC_FAST_CLK
*/
static inline __attribute__((always_inline)) void clk_ll_rc_fast_disable(void)
{
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, RTC_CNTL_CK8M_WAIT_DEFAULT);
}
/**
* @brief Get the state of the internal oscillator for RC_FAST_CLK
*
* @return True if the oscillator is enabled
*/
static inline __attribute__((always_inline)) bool clk_ll_rc_fast_is_enabled(void)
{
return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M) == 0;
}
/**
* @brief Enable the output from the internal oscillator to be passed into a configurable divider,
* which by default divides the input clock frequency by 256. i.e. RC_FAST_D256_CLK = RC_FAST_CLK / 256
*
* Divider values other than 256 may be configured, but this facility is not currently needed,
* so is not exposed in the code.
* The output of the divider, RC_FAST_D256_CLK, is referred as 8md256 or simply d256 in reg. descriptions.
*/
static inline __attribute__((always_inline)) void clk_ll_rc_fast_d256_enable(void)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV);
}
/**
* @brief Disable the output from the internal oscillator to be passed into a configurable divider.
* i.e. RC_FAST_D256_CLK = RC_FAST_CLK / 256
*
* Disabling this divider could reduce power consumption.
*/
static inline __attribute__((always_inline)) void clk_ll_rc_fast_d256_disable(void)
{
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV);
}
/**
* @brief Get the state of the divider which is applied to the output from the internal oscillator (RC_FAST_CLK)
*
* @return True if the divided output is enabled
*/
static inline __attribute__((always_inline)) bool clk_ll_rc_fast_d256_is_enabled(void)
{
return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV) == 0;
}
/**
* @brief Enable the digital RC_FAST_CLK, which is used to support peripherals.
*/
static inline __attribute__((always_inline)) void clk_ll_rc_fast_digi_enable(void)
{
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
}
/**
* @brief Disable the digital RC_FAST_CLK, which is used to support peripherals.
*/
static inline __attribute__((always_inline)) void clk_ll_rc_fast_digi_disable(void)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
}
/**
* @brief Get the state of the digital RC_FAST_CLK
*
* @return True if the digital RC_FAST_CLK is enabled
*/
static inline __attribute__((always_inline)) bool clk_ll_rc_fast_digi_is_enabled(void)
{
return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
}
/**
* @brief Enable the digital RC_FAST_D256_CLK, which is used to support peripherals.
*/
static inline __attribute__((always_inline)) void clk_ll_rc_fast_d256_digi_enable(void)
{
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN_M);
}
/**
* @brief Disable the digital RC_FAST_D256_CLK, which is used to support peripherals.
*/
static inline __attribute__((always_inline)) void clk_ll_rc_fast_d256_digi_disable(void)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN_M);
}
/**
* @brief Enable the digital XTAL32K_CLK, which is used to support peripherals.
*/
static inline __attribute__((always_inline)) void clk_ll_xtal32k_digi_enable(void)
{
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN_M);
}
/**
* @brief Disable the digital XTAL32K_CLK, which is used to support peripherals.
*/
static inline __attribute__((always_inline)) void clk_ll_xtal32k_digi_disable(void)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN_M);
}
/**
* @brief Get the state of the digital XTAL32K_CLK
*
* @return True if the digital XTAL32K_CLK is enabled
*/
static inline __attribute__((always_inline)) bool clk_ll_xtal32k_digi_is_enabled(void)
{
return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN);
}
/**
* @brief Get PLL_CLK frequency
*
* @return PLL clock frequency, in MHz. Returns 0 if register field value is invalid.
*/
static inline __attribute__((always_inline)) uint32_t clk_ll_bbpll_get_freq_mhz(void)
{
uint32_t pll_freq_sel = REG_GET_FIELD(SYSTEM_CPU_PER_CONF_REG, SYSTEM_PLL_FREQ_SEL);
switch (pll_freq_sel) {
case 0: // PLL_320M
return CLK_LL_PLL_320M_FREQ_MHZ;
case 1: // PLL_480M
return CLK_LL_PLL_480M_FREQ_MHZ;
default:
return 0;
}
}
/**
* @brief Set BBPLL frequency from XTAL source (Digital part)
*
* @param pll_freq_mhz PLL frequency, in MHz
*/
static inline __attribute__((always_inline)) void clk_ll_bbpll_set_freq_mhz(uint32_t pll_freq_mhz)
{
switch (pll_freq_mhz) {
case CLK_LL_PLL_320M_FREQ_MHZ: // PLL_320M
REG_SET_FIELD(SYSTEM_CPU_PER_CONF_REG, SYSTEM_PLL_FREQ_SEL, 0);
break;
case CLK_LL_PLL_480M_FREQ_MHZ: // PLL_480M
REG_SET_FIELD(SYSTEM_CPU_PER_CONF_REG, SYSTEM_PLL_FREQ_SEL, 1);
break;
default:
abort();
}
}
/**
* @brief Set BBPLL frequency from XTAL source (Analog part)
*
* @param pll_freq_mhz PLL frequency, in MHz
* @param xtal_freq_mhz XTAL frequency, in MHz
*/
static inline __attribute__((always_inline)) void clk_ll_bbpll_set_config(uint32_t pll_freq_mhz, uint32_t xtal_freq_mhz)
{
uint8_t div_ref;
uint8_t div7_0;
uint8_t dr1;
uint8_t dr3;
uint8_t dchgp;
uint8_t dcur;
uint8_t dbias;
if (pll_freq_mhz == CLK_LL_PLL_480M_FREQ_MHZ) {
/* Configure 480M PLL */
switch (xtal_freq_mhz) {
case RTC_XTAL_FREQ_40M:
div_ref = 0;
div7_0 = 8;
dr1 = 0;
dr3 = 0;
dchgp = 5;
dcur = 3;
dbias = 2;
break;
case RTC_XTAL_FREQ_32M:
div_ref = 1;
div7_0 = 26;
dr1 = 1;
dr3 = 1;
dchgp = 4;
dcur = 0;
dbias = 2;
break;
default:
div_ref = 0;
div7_0 = 8;
dr1 = 0;
dr3 = 0;
dchgp = 5;
dcur = 3;
dbias = 2;
break;
}
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_MODE_HF, 0x6B);
} else {
/* Configure 320M PLL */
switch (xtal_freq_mhz) {
case RTC_XTAL_FREQ_40M:
div_ref = 0;
div7_0 = 4;
dr1 = 0;
dr3 = 0;
dchgp = 5;
dcur = 3;
dbias = 2;
break;
case RTC_XTAL_FREQ_32M:
div_ref = 1;
div7_0 = 6;
dr1 = 0;
dr3 = 0;
dchgp = 5;
dcur = 3;
dbias = 2;
break;
default:
div_ref = 0;
div7_0 = 4;
dr1 = 0;
dr3 = 0;
dchgp = 5;
dcur = 3;
dbias = 2;
break;
}
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_MODE_HF, 0x69);
}
uint8_t i2c_bbpll_lref = (dchgp << I2C_BBPLL_OC_DCHGP_LSB) | (div_ref);
uint8_t i2c_bbpll_div_7_0 = div7_0;
uint8_t i2c_bbpll_dcur = (1 << I2C_BBPLL_OC_DLREF_SEL_LSB ) | (3 << I2C_BBPLL_OC_DHREF_SEL_LSB) | dcur;
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_REF_DIV, i2c_bbpll_lref);
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_DIV_7_0, i2c_bbpll_div_7_0);
REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_DR1, dr1);
REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_DR3, dr3);
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_DCUR, i2c_bbpll_dcur);
REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_VCO_DBIAS, dbias);
}
/**
* @brief Select the clock source for CPU_CLK
*
* @param in_sel One of the clock sources in soc_cpu_clk_src_t
*/
static inline __attribute__((always_inline)) void clk_ll_cpu_set_src(soc_cpu_clk_src_t in_sel)
{
switch (in_sel) {
case SOC_CPU_CLK_SRC_XTAL:
REG_SET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_SOC_CLK_SEL, 0);
break;
case SOC_CPU_CLK_SRC_PLL:
REG_SET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_SOC_CLK_SEL, 1);
break;
case SOC_CPU_CLK_SRC_RC_FAST:
REG_SET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_SOC_CLK_SEL, 2);
break;
default:
// Unsupported CPU_CLK mux input sel
abort();
}
}
/**
* @brief Get the clock source for CPU_CLK
*
* @return Currently selected clock source (one of soc_cpu_clk_src_t values)
*/
static inline __attribute__((always_inline)) soc_cpu_clk_src_t clk_ll_cpu_get_src(void)
{
uint32_t clk_sel = REG_GET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_SOC_CLK_SEL);
switch (clk_sel) {
case 0:
return SOC_CPU_CLK_SRC_XTAL;
case 1:
return SOC_CPU_CLK_SRC_PLL;
case 2:
return SOC_CPU_CLK_SRC_RC_FAST;
default:
// Invalid SOC_CLK_SEL value
return SOC_CPU_CLK_SRC_INVALID;
}
}
/**
* @brief Set CPU frequency from PLL clock
*
* @param cpu_mhz CPU frequency value, in MHz
*/
static inline __attribute__((always_inline)) void clk_ll_cpu_set_freq_mhz_from_pll(uint32_t cpu_mhz)
{
switch (cpu_mhz) {
case CLK_LL_PLL_80M_FREQ_MHZ:
REG_SET_FIELD(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPUPERIOD_SEL, 0);
break;
case CLK_LL_PLL_160M_FREQ_MHZ:
REG_SET_FIELD(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPUPERIOD_SEL, 1);
break;
case CLK_LL_PLL_240M_FREQ_MHZ:
REG_SET_FIELD(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPUPERIOD_SEL, 2);
break;
default:
// Unsupported CPU_CLK freq from PLL
abort();
}
}
/**
* @brief Get CPU_CLK frequency from PLL_CLK source
*
* @return CPU clock frequency, in MHz. Returns 0 if register field value is invalid.
*/
static inline __attribute__((always_inline)) uint32_t clk_ll_cpu_get_freq_mhz_from_pll(void)
{
uint32_t cpu_freq_sel = REG_GET_FIELD(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPUPERIOD_SEL);
switch (cpu_freq_sel) {
case 0:
return CLK_LL_PLL_80M_FREQ_MHZ;
case 1:
return CLK_LL_PLL_160M_FREQ_MHZ;
case 2:
// When PLL frequency selection is 320MHz but CPU frequency selection is 240MHz, it is an undetermined state.
// It is checked in the upper layer.
return CLK_LL_PLL_240M_FREQ_MHZ;
default:
// Invalid CPUPERIOD_SEL value
return 0;
}
}
/**
* @brief Set CPU_CLK's XTAL/FAST_RC clock source path divider
*
* @param divider Divider. Usually this divider is set to 1 in bootloader stage. PRE_DIV_CNT = divider - 1.
*/
static inline __attribute__((always_inline)) void clk_ll_cpu_set_divider(uint32_t divider)
{
HAL_ASSERT(divider > 0);
REG_SET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_PRE_DIV_CNT, divider - 1);
}
/**
* @brief Get CPU_CLK's XTAL/FAST_RC clock source path divider
*
* @return Divider. Divider = (PRE_DIV_CNT + 1).
*/
static inline __attribute__((always_inline)) uint32_t clk_ll_cpu_get_divider(void)
{
return REG_GET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_PRE_DIV_CNT) + 1;
}
/**
* @brief Select the clock source for RTC_SLOW_CLK
*
* @param in_sel One of the clock sources in soc_rtc_slow_clk_src_t
*/
static inline __attribute__((always_inline)) void clk_ll_rtc_slow_set_src(soc_rtc_slow_clk_src_t in_sel)
{
switch (in_sel) {
case SOC_RTC_SLOW_CLK_SRC_RC_SLOW:
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL, 0);
break;
case SOC_RTC_SLOW_CLK_SRC_XTAL32K:
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL, 1);
break;
case SOC_RTC_SLOW_CLK_SRC_RC_FAST_D256:
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL, 2);
break;
default:
// Unsupported RTC_SLOW_CLK mux input sel
abort();
}
}
/**
* @brief Get the clock source for RTC_SLOW_CLK
*
* @return Currently selected clock source (one of soc_rtc_slow_clk_src_t values)
*/
static inline __attribute__((always_inline)) soc_rtc_slow_clk_src_t clk_ll_rtc_slow_get_src(void)
{
uint32_t clk_sel = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL);
switch (clk_sel) {
case 0:
return SOC_RTC_SLOW_CLK_SRC_RC_SLOW;
case 1:
return SOC_RTC_SLOW_CLK_SRC_XTAL32K;
case 2:
return SOC_RTC_SLOW_CLK_SRC_RC_FAST_D256;
default:
// Invalid ANA_CLK_RTC_SEL value
HAL_ASSERT(false);
return SOC_RTC_SLOW_CLK_SRC_INVALID;
}
}
/**
* @brief Select the clock source for RTC_FAST_CLK
*
* @param in_sel One of the clock sources in soc_rtc_fast_clk_src_t
*/
static inline __attribute__((always_inline)) void clk_ll_rtc_fast_set_src(soc_rtc_fast_clk_src_t in_sel)
{
switch (in_sel) {
case SOC_RTC_FAST_CLK_SRC_XTAL_D2:
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL, 0);
break;
case SOC_RTC_FAST_CLK_SRC_RC_FAST:
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL, 1);
break;
default:
// Unsupported RTC_FAST_CLK mux input sel
abort();
}
}
/**
* @brief Get the clock source for RTC_FAST_CLK
*
* @return Currently selected clock source (one of soc_rtc_fast_clk_src_t values)
*/
static inline __attribute__((always_inline)) soc_rtc_fast_clk_src_t clk_ll_rtc_fast_get_src(void)
{
uint32_t clk_sel = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL);
switch (clk_sel) {
case 0:
return SOC_RTC_FAST_CLK_SRC_XTAL_D2;
case 1:
return SOC_RTC_FAST_CLK_SRC_RC_FAST;
default:
return SOC_RTC_FAST_CLK_SRC_INVALID;
}
}
/**
* @brief Set RC_FAST_CLK divider. The output from the divider is passed into rtc_fast_clk MUX.
*
* @param divider Divider of RC_FAST_CLK. Usually this divider is set to 1 (reg. value is 0) in bootloader stage.
*/
static inline __attribute__((always_inline)) void clk_ll_rc_fast_set_divider(uint32_t divider)
{
HAL_ASSERT(divider > 0);
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL_VLD);
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL, divider - 1);
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL_VLD);
}
/**
* @brief Get RC_FAST_CLK divider
*
* @return Divider. Divider = (CK8M_DIV_SEL + 1).
*/
static inline __attribute__((always_inline)) uint32_t clk_ll_rc_fast_get_divider(void)
{
return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL) + 1;
}
/**
* @brief Set RC_SLOW_CLK divider
*
* @param divider Divider of RC_SLOW_CLK. Usually this divider is set to 1 (reg. value is 0) in bootloader stage.
*/
static inline __attribute__((always_inline)) void clk_ll_rc_slow_set_divider(uint32_t divider)
{
HAL_ASSERT(divider > 0);
CLEAR_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_ANA_CLK_DIV_VLD);
REG_SET_FIELD(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_ANA_CLK_DIV, divider - 1);
SET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_ANA_CLK_DIV_VLD);
}
/************************* RTC STORAGE REGISTER STORE/LOAD **************************/
/**
* @brief Store XTAL_CLK frequency in RTC storage register
*
* Value of RTC_XTAL_FREQ_REG is stored as two copies in lower and upper 16-bit
* halves. These are the routines to work with that representation.
*
* @param xtal_freq_mhz XTAL frequency, in MHz. The frequency must necessarily be even,
* otherwise there will be a conflict with the low bit, which is used to disable logs
* in the ROM code.
*/
static inline __attribute__((always_inline)) void clk_ll_xtal_store_freq_mhz(uint32_t xtal_freq_mhz)
{
// Read the status of whether disabling logging from ROM code
uint32_t reg = READ_PERI_REG(RTC_XTAL_FREQ_REG) & RTC_DISABLE_ROM_LOG;
// If so, need to write back this setting
if (reg == RTC_DISABLE_ROM_LOG) {
xtal_freq_mhz |= 1;
}
WRITE_PERI_REG(RTC_XTAL_FREQ_REG, (xtal_freq_mhz & UINT16_MAX) | ((xtal_freq_mhz & UINT16_MAX) << 16));
}
/**
* @brief Load XTAL_CLK frequency from RTC storage register
*
* Value of RTC_XTAL_FREQ_REG is stored as two copies in lower and upper 16-bit
* halves. These are the routines to work with that representation.
*
* @return XTAL frequency, in MHz. Returns 0 if value in reg is invalid.
*/
static inline __attribute__((always_inline)) uint32_t clk_ll_xtal_load_freq_mhz(void)
{
// Read from the RTC storage register
uint32_t xtal_freq_reg = READ_PERI_REG(RTC_XTAL_FREQ_REG);
if ((xtal_freq_reg & 0xFFFF) == ((xtal_freq_reg >> 16) & 0xFFFF) &&
xtal_freq_reg != 0 && xtal_freq_reg != UINT32_MAX) {
return xtal_freq_reg & ~RTC_DISABLE_ROM_LOG & UINT16_MAX;
}
// If the format in reg is invalid
return 0;
}
/**
* @brief Store RTC_SLOW_CLK calibration value in RTC storage register
*
* Value of RTC_SLOW_CLK_CAL_REG has to be in the same format as returned by rtc_clk_cal (microseconds,
* in Q13.19 fixed-point format).
*
* @param cal_value The calibration value of slow clock period in microseconds, in Q13.19 fixed point format
*/
static inline __attribute__((always_inline)) void clk_ll_rtc_slow_store_cal(uint32_t cal_value)
{
REG_WRITE(RTC_SLOW_CLK_CAL_REG, cal_value);
}
/**
* @brief Load the calibration value of RTC_SLOW_CLK frequency from RTC storage register
*
* This value gets updated (i.e. rtc slow clock gets calibrated) every time RTC_SLOW_CLK source switches
*
* @return The calibration value of slow clock period in microseconds, in Q13.19 fixed point format
*/
static inline __attribute__((always_inline)) uint32_t clk_ll_rtc_slow_load_cal(void)
{
return REG_READ(RTC_SLOW_CLK_CAL_REG);
}
/**
* @brief Configure PLL frequency for MSPI timing tuning
* @note Only used by the MSPI Timing tuning driver
*
* @param xtal_freq Xtal frequency
* @param pll_freq PLL frequency
* @param oc_div OC divider
* @param oc_ref_div OC ref divider
*/
static inline __attribute__((always_inline))
void clk_ll_bbpll_set_frequency_for_mspi_tuning(rtc_xtal_freq_t xtal_freq, int pll_freq, uint8_t oc_div, uint8_t oc_ref_div)
{
HAL_ASSERT(xtal_freq == RTC_XTAL_FREQ_40M);
uint32_t pll_reg = GET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BB_I2C_FORCE_PD |
RTC_CNTL_BBPLL_FORCE_PD | RTC_CNTL_BBPLL_I2C_FORCE_PD);
HAL_ASSERT(pll_reg == 0);
/* Set this register to let the digital part know 480M PLL is used */
SET_PERI_REG_MASK(SYSTEM_CPU_PER_CONF_REG, SYSTEM_PLL_FREQ_SEL);
uint8_t dr1 = 0;
uint8_t dr3 = 0;
uint8_t dchgp = 5;
uint8_t dcur = 3;
uint8_t dbias = 2;
uint8_t i2c_bbpll_lref = (dchgp << I2C_BBPLL_OC_DCHGP_LSB) | (oc_ref_div);
uint8_t i2c_bbpll_div_7_0 = oc_div;
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_MODE_HF, 0x6B);
uint8_t i2c_bbpll_dcur = (1 << I2C_BBPLL_OC_DLREF_SEL_LSB ) | (3 << I2C_BBPLL_OC_DHREF_SEL_LSB) | dcur;
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_REF_DIV, i2c_bbpll_lref);
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_DIV_7_0, i2c_bbpll_div_7_0);
REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_DR1, dr1);
REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_DR3, dr3);
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_DCUR, i2c_bbpll_dcur);
REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_VCO_DBIAS, dbias);
REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_DHREF_SEL, 3);
REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_DLREF_SEL, 1);
}
#ifdef __cplusplus
}
#endif