mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
877 lines
33 KiB
C
877 lines
33 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <sys/param.h>
|
|
#include <sys/queue.h>
|
|
#include <inttypes.h>
|
|
#include "sdkconfig.h"
|
|
#include "esp_attr.h"
|
|
#include "esp_log.h"
|
|
#include "esp_check.h"
|
|
#include "esp_heap_caps.h"
|
|
|
|
#include "soc/soc_caps.h"
|
|
#include "hal/cache_types.h"
|
|
#include "hal/cache_hal.h"
|
|
#include "hal/cache_ll.h"
|
|
#include "hal/mmu_types.h"
|
|
#include "hal/mmu_hal.h"
|
|
#include "hal/mmu_ll.h"
|
|
|
|
#include "esp_private/cache_utils.h"
|
|
#include "esp_private/esp_cache_esp32_private.h"
|
|
#include "esp_private/esp_mmu_map_private.h"
|
|
#include "ext_mem_layout.h"
|
|
#include "esp_mmu_map.h"
|
|
|
|
|
|
//This is for size align
|
|
#define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
|
|
//This is for vaddr align
|
|
#define ALIGN_DOWN_BY(num, align) ((num) & (~((align) - 1)))
|
|
|
|
//This flag indicates the memory region is merged, we don't care about it anymore
|
|
#define MEM_REGION_MERGED -1
|
|
|
|
/**
|
|
* We have some hw related tests for vaddr region capabilites
|
|
* Use this macro to disable paddr check as we need to reuse certain paddr blocks
|
|
*/
|
|
#define ENABLE_PADDR_CHECK !ESP_MMAP_TEST_ALLOW_MAP_TO_MAPPED_PADDR
|
|
|
|
static DRAM_ATTR const char *TAG = "mmap";
|
|
|
|
/**
|
|
* @brief MMU Memory Mapping Driver
|
|
*
|
|
* Driver Backgrounds:
|
|
*
|
|
* --------------------------------------------------------------------------------------------------------
|
|
* Memory Pool |
|
|
* --------------------------------------------------------------------------------------------------------
|
|
* | Memory Region 0 | Memory Region 1 | ... |
|
|
* --------------------------------------------------------------------------------------------------------
|
|
* | Block 0 | Slot 0 | Block 1 | Block 2 | ... | Slot 1 (final slot) | ... |
|
|
* --------------------------------------------------------------------------------------------------------
|
|
*
|
|
* - A block is a piece of vaddr range that is dynamically mapped. Blocks are doubly linked:
|
|
* Block 0 <-> Block 1 <-> Block 2
|
|
* - A Slot is the vaddr range between 2 blocks.
|
|
*/
|
|
|
|
/**
|
|
* Struct for a block
|
|
*/
|
|
typedef struct mem_block_ {
|
|
uint32_t laddr_start; //linear address start of this block
|
|
uint32_t laddr_end; //linear address end of this block
|
|
intptr_t vaddr_start; //virtual address start of this block
|
|
intptr_t vaddr_end; //virtual address end of this block
|
|
size_t size; //size of this block, should be aligned to MMU page size
|
|
int caps; //caps of this block, `mmu_mem_caps_t`
|
|
uint32_t paddr_start; //physical address start of this block
|
|
uint32_t paddr_end; //physical address end of this block
|
|
mmu_target_t target; //physical target that this block is mapped to
|
|
TAILQ_ENTRY(mem_block_) entries; //link entry
|
|
} mem_block_t;
|
|
|
|
/**
|
|
* Struct for a memory region
|
|
*/
|
|
typedef struct mem_region_ {
|
|
cache_bus_mask_t bus_id; //cache bus mask of this region
|
|
uint32_t start; //linear address start of this region
|
|
uint32_t end; //linear address end of this region
|
|
size_t region_size; //region size, in bytes
|
|
uint32_t free_head; //linear address free head of this region
|
|
size_t max_slot_size; //max slot size within this region
|
|
int caps; //caps of this region, `mmu_mem_caps_t`
|
|
mmu_target_t targets; //physical targets that this region is supported
|
|
TAILQ_HEAD(mem_block_head_, mem_block_) mem_block_head; //link head of allocated blocks within this region
|
|
} mem_region_t;
|
|
|
|
typedef struct {
|
|
/**
|
|
* number of memory regions that are available, after coalescing, this number should be smaller than or equal to `SOC_MMU_LINEAR_ADDRESS_REGION_NUM`
|
|
*/
|
|
uint32_t num_regions;
|
|
/**
|
|
* This saves the available MMU linear address regions,
|
|
* after reserving flash .rodata and .text, and after coalescing.
|
|
* Only the first `num_regions` items are valid
|
|
*/
|
|
mem_region_t mem_regions[SOC_MMU_LINEAR_ADDRESS_REGION_NUM];
|
|
} mmu_ctx_t;
|
|
|
|
|
|
static mmu_ctx_t s_mmu_ctx;
|
|
|
|
#if ENABLE_PADDR_CHECK
|
|
static bool s_is_enclosed(uint32_t block_start, uint32_t block_end, uint32_t new_block_start, uint32_t new_block_size);
|
|
static bool s_is_overlapped(uint32_t block_start, uint32_t block_end, uint32_t new_block_start, uint32_t new_block_size);
|
|
#endif //#if ENABLE_PADDR_CHECK
|
|
|
|
|
|
#if CONFIG_APP_BUILD_USE_FLASH_SECTIONS
|
|
static void s_reserve_irom_region(mem_region_t *hw_mem_regions, int region_nums)
|
|
{
|
|
/**
|
|
* We follow the way how 1st bootloader load flash .text:
|
|
*
|
|
* - Now IBUS addresses (between `_instruction_reserved_start` and `_instruction_reserved_end`) are consecutive on all chips,
|
|
* we strongly rely on this to calculate the .text length
|
|
*/
|
|
extern int _instruction_reserved_start;
|
|
extern int _instruction_reserved_end;
|
|
size_t irom_len_to_reserve = (uint32_t)&_instruction_reserved_end - (uint32_t)&_instruction_reserved_start;
|
|
assert((mmu_ll_vaddr_to_laddr((uint32_t)&_instruction_reserved_end) - mmu_ll_vaddr_to_laddr((uint32_t)&_instruction_reserved_start)) == irom_len_to_reserve);
|
|
|
|
irom_len_to_reserve += (uint32_t)&_instruction_reserved_start - ALIGN_DOWN_BY((uint32_t)&_instruction_reserved_start, CONFIG_MMU_PAGE_SIZE);
|
|
irom_len_to_reserve = ALIGN_UP_BY(irom_len_to_reserve, CONFIG_MMU_PAGE_SIZE);
|
|
cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, (uint32_t)&_instruction_reserved_start, irom_len_to_reserve);
|
|
|
|
for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
|
|
if (bus_mask & hw_mem_regions[i].bus_id) {
|
|
if (hw_mem_regions[i].region_size <= irom_len_to_reserve) {
|
|
hw_mem_regions[i].free_head = hw_mem_regions[i].end;
|
|
hw_mem_regions[i].max_slot_size = 0;
|
|
irom_len_to_reserve -= hw_mem_regions[i].region_size;
|
|
} else {
|
|
hw_mem_regions[i].free_head = hw_mem_regions[i].free_head + irom_len_to_reserve;
|
|
hw_mem_regions[i].max_slot_size -= irom_len_to_reserve;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void s_reserve_drom_region(mem_region_t *hw_mem_regions, int region_nums)
|
|
{
|
|
/**
|
|
* Similarly, we follow the way how 1st bootloader load flash .rodata:
|
|
*/
|
|
extern int _rodata_reserved_start;
|
|
extern int _rodata_reserved_end;
|
|
size_t drom_len_to_reserve = (uint32_t)&_rodata_reserved_end - (uint32_t)&_rodata_reserved_start;
|
|
assert((mmu_ll_vaddr_to_laddr((uint32_t)&_rodata_reserved_end) - mmu_ll_vaddr_to_laddr((uint32_t)&_rodata_reserved_start)) == drom_len_to_reserve);
|
|
|
|
drom_len_to_reserve += (uint32_t)&_rodata_reserved_start - ALIGN_DOWN_BY((uint32_t)&_rodata_reserved_start, CONFIG_MMU_PAGE_SIZE);
|
|
drom_len_to_reserve = ALIGN_UP_BY(drom_len_to_reserve, CONFIG_MMU_PAGE_SIZE);
|
|
cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, (uint32_t)&_rodata_reserved_start, drom_len_to_reserve);
|
|
|
|
for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
|
|
if (bus_mask & hw_mem_regions[i].bus_id) {
|
|
if (hw_mem_regions[i].region_size <= drom_len_to_reserve) {
|
|
hw_mem_regions[i].free_head = hw_mem_regions[i].end;
|
|
hw_mem_regions[i].max_slot_size = 0;
|
|
drom_len_to_reserve -= hw_mem_regions[i].region_size;
|
|
} else {
|
|
hw_mem_regions[i].free_head = hw_mem_regions[i].free_head + drom_len_to_reserve;
|
|
hw_mem_regions[i].max_slot_size -= drom_len_to_reserve;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif //#if CONFIG_APP_BUILD_USE_FLASH_SECTIONS
|
|
|
|
void esp_mmu_map_init(void)
|
|
{
|
|
mem_region_t hw_mem_regions[SOC_MMU_LINEAR_ADDRESS_REGION_NUM] = {};
|
|
|
|
for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
|
|
hw_mem_regions[i].start = g_mmu_mem_regions[i].start;
|
|
hw_mem_regions[i].end = g_mmu_mem_regions[i].end;
|
|
hw_mem_regions[i].region_size = g_mmu_mem_regions[i].size;
|
|
hw_mem_regions[i].max_slot_size = g_mmu_mem_regions[i].size;
|
|
hw_mem_regions[i].free_head = g_mmu_mem_regions[i].start;
|
|
hw_mem_regions[i].bus_id = g_mmu_mem_regions[i].bus_id;
|
|
hw_mem_regions[i].caps = g_mmu_mem_regions[i].caps;
|
|
hw_mem_regions[i].targets = g_mmu_mem_regions[i].targets;
|
|
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
|
|
assert(__builtin_popcount(hw_mem_regions[i].bus_id) == 1);
|
|
#endif
|
|
assert(hw_mem_regions[i].region_size % CONFIG_MMU_PAGE_SIZE == 0);
|
|
}
|
|
|
|
#if CONFIG_APP_BUILD_USE_FLASH_SECTIONS
|
|
//First reserve memory regions used for irom and drom, as we must follow the way how 1st bootloader load them
|
|
s_reserve_irom_region(hw_mem_regions, SOC_MMU_LINEAR_ADDRESS_REGION_NUM);
|
|
s_reserve_drom_region(hw_mem_regions, SOC_MMU_LINEAR_ADDRESS_REGION_NUM);
|
|
#endif //#if CONFIG_APP_BUILD_USE_FLASH_SECTIONS
|
|
|
|
if (SOC_MMU_LINEAR_ADDRESS_REGION_NUM > 1) {
|
|
//Now we can coalesce adjacent regions
|
|
for (int i = 1; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
|
|
mem_region_t *a = &hw_mem_regions[i - 1];
|
|
mem_region_t *b = &hw_mem_regions[i];
|
|
if ((b->free_head == a->end) && (b->caps == a->caps) && (b->targets == a->targets)) {
|
|
a->caps = MEM_REGION_MERGED;
|
|
b->bus_id |= a->bus_id;
|
|
b->start = a->start;
|
|
b->region_size += a->region_size;
|
|
b->free_head = a->free_head;
|
|
b->max_slot_size += a->max_slot_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
//Count the mem regions left after coalescing
|
|
uint32_t region_num = 0;
|
|
for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
|
|
if(hw_mem_regions[i].caps != MEM_REGION_MERGED) {
|
|
region_num++;
|
|
}
|
|
}
|
|
ESP_EARLY_LOGV(TAG, "after coalescing, %d regions are left", region_num);
|
|
|
|
//Initialise `s_mmu_ctx.mem_regions[]`, as we've done all static allocation, to prepare available virtual memory regions
|
|
uint32_t available_region_idx = 0;
|
|
s_mmu_ctx.num_regions = region_num;
|
|
for (int i = 0; i < SOC_MMU_LINEAR_ADDRESS_REGION_NUM; i++) {
|
|
if (hw_mem_regions[i].caps == MEM_REGION_MERGED) {
|
|
continue;
|
|
}
|
|
|
|
memcpy(&s_mmu_ctx.mem_regions[available_region_idx], &hw_mem_regions[i], sizeof(mem_region_t));
|
|
available_region_idx++;
|
|
}
|
|
|
|
for (int i = 0; i < available_region_idx; i++) {
|
|
TAILQ_INIT(&s_mmu_ctx.mem_regions[i].mem_block_head);
|
|
}
|
|
|
|
assert(available_region_idx == region_num);
|
|
}
|
|
|
|
|
|
static esp_err_t s_mem_caps_check(mmu_mem_caps_t caps)
|
|
{
|
|
if (caps & MMU_MEM_CAP_EXEC) {
|
|
if ((caps & MMU_MEM_CAP_8BIT) || (caps & MMU_MEM_CAP_WRITE)) {
|
|
//None of the executable memory are expected to be 8-bit accessible or writable.
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
caps |= MMU_MEM_CAP_32BIT;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_mmu_map_get_max_consecutive_free_block_size(mmu_mem_caps_t caps, mmu_target_t target, size_t *out_len)
|
|
{
|
|
ESP_RETURN_ON_FALSE(out_len, ESP_ERR_INVALID_ARG, TAG, "null pointer");
|
|
ESP_RETURN_ON_ERROR(s_mem_caps_check(caps), TAG, "invalid caps");
|
|
*out_len = 0;
|
|
|
|
size_t max = 0;
|
|
|
|
for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
|
|
if (((s_mmu_ctx.mem_regions[i].caps & caps) == caps) && ((s_mmu_ctx.mem_regions[i].targets & target) == target)) {
|
|
if (s_mmu_ctx.mem_regions[i].max_slot_size > max) {
|
|
max = s_mmu_ctx.mem_regions[i].max_slot_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
*out_len = max;
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
static int32_t s_find_available_region(mem_region_t *mem_regions, uint32_t region_nums, size_t size, mmu_mem_caps_t caps, mmu_target_t target)
|
|
{
|
|
int32_t found_region_id = -1;
|
|
for (int i = 0; i < region_nums; i++) {
|
|
if (((mem_regions[i].caps & caps) == caps) && ((mem_regions[i].targets & target) == target)) {
|
|
if (mem_regions[i].max_slot_size >= size) {
|
|
found_region_id = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return found_region_id;
|
|
}
|
|
|
|
esp_err_t esp_mmu_map_reserve_block_with_caps(size_t size, mmu_mem_caps_t caps, mmu_target_t target, const void **out_ptr)
|
|
{
|
|
ESP_RETURN_ON_FALSE(out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
|
|
ESP_RETURN_ON_ERROR(s_mem_caps_check(caps), TAG, "invalid caps");
|
|
|
|
size_t aligned_size = ALIGN_UP_BY(size, CONFIG_MMU_PAGE_SIZE);
|
|
uint32_t laddr = 0;
|
|
|
|
int32_t found_region_id = s_find_available_region(s_mmu_ctx.mem_regions, s_mmu_ctx.num_regions, aligned_size, caps, target);
|
|
if (found_region_id == -1) {
|
|
ESP_EARLY_LOGE(TAG, "no such vaddr range");
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
|
|
laddr = (uint32_t)s_mmu_ctx.mem_regions[found_region_id].free_head;
|
|
s_mmu_ctx.mem_regions[found_region_id].free_head += aligned_size;
|
|
s_mmu_ctx.mem_regions[found_region_id].max_slot_size -= aligned_size;
|
|
ESP_EARLY_LOGV(TAG, "found laddr is 0x%x", laddr);
|
|
|
|
uint32_t vaddr = 0;
|
|
if (caps & MMU_MEM_CAP_EXEC) {
|
|
vaddr = mmu_ll_laddr_to_vaddr(laddr, MMU_VADDR_INSTRUCTION, target);
|
|
} else {
|
|
vaddr = mmu_ll_laddr_to_vaddr(laddr, MMU_VADDR_DATA, target);
|
|
}
|
|
*out_ptr = (void *)vaddr;
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
IRAM_ATTR esp_err_t esp_mmu_paddr_find_caps(const esp_paddr_t paddr, mmu_mem_caps_t *out_caps)
|
|
{
|
|
mem_region_t *region = NULL;
|
|
mem_block_t *mem_block = NULL;
|
|
bool found = false;
|
|
mem_block_t *found_block = NULL;
|
|
if (out_caps == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
|
|
region = &s_mmu_ctx.mem_regions[i];
|
|
|
|
TAILQ_FOREACH(mem_block, ®ion->mem_block_head, entries) {
|
|
if (mem_block == TAILQ_FIRST(®ion->mem_block_head) || mem_block == TAILQ_LAST(®ion->mem_block_head, mem_block_head_)) {
|
|
//we don't care the dummy_head and the dummy_tail
|
|
continue;
|
|
}
|
|
|
|
//now we are only traversing the actual dynamically allocated blocks, dummy_head and dummy_tail are excluded already
|
|
if (mem_block->paddr_start == paddr) {
|
|
found = true;
|
|
found_block = mem_block;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
|
|
*out_caps = found_block->caps;
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
static void IRAM_ATTR NOINLINE_ATTR s_do_cache_invalidate(uint32_t vaddr_start, uint32_t size)
|
|
{
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
/**
|
|
* On ESP32, due to hardware limitation, we don't have an
|
|
* easy way to sync between cache and external memory wrt
|
|
* certain range. So we do a full sync here
|
|
*/
|
|
cache_sync();
|
|
#else //Other chips
|
|
cache_hal_invalidate_addr(vaddr_start, size);
|
|
#endif // CONFIG_IDF_TARGET_ESP32
|
|
}
|
|
|
|
|
|
#if MMU_LL_MMU_PER_TARGET
|
|
FORCE_INLINE_ATTR uint32_t s_mapping_operation(mmu_target_t target, uint32_t vaddr_start, esp_paddr_t paddr_start, uint32_t size)
|
|
{
|
|
uint32_t actual_mapped_len = 0;
|
|
uint32_t mmu_id = 0;
|
|
if (target == MMU_TARGET_FLASH0) {
|
|
mmu_id = MMU_LL_FLASH_MMU_ID;
|
|
} else {
|
|
mmu_id = MMU_LL_PSRAM_MMU_ID;
|
|
}
|
|
mmu_hal_map_region(mmu_id, target, vaddr_start, paddr_start, size, &actual_mapped_len);
|
|
|
|
return actual_mapped_len;
|
|
}
|
|
#else
|
|
FORCE_INLINE_ATTR uint32_t s_mapping_operation(mmu_target_t target, uint32_t vaddr_start, esp_paddr_t paddr_start, uint32_t size)
|
|
{
|
|
uint32_t actual_mapped_len = 0;
|
|
|
|
mmu_hal_map_region(0, target, vaddr_start, paddr_start, size, &actual_mapped_len);
|
|
#if (SOC_MMU_PERIPH_NUM == 2)
|
|
#if !CONFIG_FREERTOS_UNICORE
|
|
mmu_hal_map_region(1, target, vaddr_start, paddr_start, size, &actual_mapped_len);
|
|
#endif // #if !CONFIG_FREERTOS_UNICORE
|
|
#endif // #if (SOC_MMU_PERIPH_NUM == 2)
|
|
|
|
return actual_mapped_len;
|
|
}
|
|
#endif
|
|
|
|
|
|
static void IRAM_ATTR NOINLINE_ATTR s_do_mapping(mmu_target_t target, uint32_t vaddr_start, esp_paddr_t paddr_start, uint32_t size)
|
|
{
|
|
/**
|
|
* Disable Cache, after this function, involved code and data should be placed in internal RAM.
|
|
*
|
|
* @note we call this for now, but this will be refactored to move out of `spi_flash`
|
|
*/
|
|
spi_flash_disable_interrupts_caches_and_other_cpu();
|
|
|
|
uint32_t actual_mapped_len = s_mapping_operation(target, vaddr_start, paddr_start, size);
|
|
|
|
cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, vaddr_start, size);
|
|
cache_ll_l1_enable_bus(0, bus_mask);
|
|
#if !CONFIG_FREERTOS_UNICORE
|
|
bus_mask = cache_ll_l1_get_bus(0, vaddr_start, size);
|
|
cache_ll_l1_enable_bus(1, bus_mask);
|
|
#endif
|
|
|
|
s_do_cache_invalidate(vaddr_start, size);
|
|
|
|
//enable Cache, after this function, internal RAM access is no longer mandatory
|
|
spi_flash_enable_interrupts_caches_and_other_cpu();
|
|
|
|
ESP_EARLY_LOGV(TAG, "actual_mapped_len is 0x%"PRIx32, actual_mapped_len);
|
|
}
|
|
|
|
esp_err_t esp_mmu_map(esp_paddr_t paddr_start, size_t size, mmu_target_t target, mmu_mem_caps_t caps, int flags, void **out_ptr)
|
|
{
|
|
esp_err_t ret = ESP_FAIL;
|
|
ESP_RETURN_ON_FALSE(out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
|
|
#if !SOC_SPIRAM_SUPPORTED || CONFIG_IDF_TARGET_ESP32
|
|
ESP_RETURN_ON_FALSE(!(target & MMU_TARGET_PSRAM0), ESP_ERR_NOT_SUPPORTED, TAG, "PSRAM is not supported");
|
|
#endif
|
|
ESP_RETURN_ON_FALSE((paddr_start % CONFIG_MMU_PAGE_SIZE == 0), ESP_ERR_INVALID_ARG, TAG, "paddr must be rounded up to the nearest multiple of CONFIG_MMU_PAGE_SIZE");
|
|
ESP_RETURN_ON_ERROR(s_mem_caps_check(caps), TAG, "invalid caps");
|
|
|
|
size_t aligned_size = ALIGN_UP_BY(size, CONFIG_MMU_PAGE_SIZE);
|
|
int32_t found_region_id = s_find_available_region(s_mmu_ctx.mem_regions, s_mmu_ctx.num_regions, aligned_size, caps, target);
|
|
if (found_region_id == -1) {
|
|
ESP_EARLY_LOGE(TAG, "no such vaddr range");
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
|
|
//Now we're sure we can find an available block inside a certain region
|
|
mem_region_t *found_region = &s_mmu_ctx.mem_regions[found_region_id];
|
|
mem_block_t *dummy_head = NULL;
|
|
mem_block_t *dummy_tail = NULL;
|
|
mem_block_t *new_block = NULL;
|
|
|
|
if (TAILQ_EMPTY(&found_region->mem_block_head)) {
|
|
dummy_head = (mem_block_t *)heap_caps_calloc(1, sizeof(mem_block_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
|
ESP_GOTO_ON_FALSE(dummy_head, ESP_ERR_NO_MEM, err, TAG, "no mem");
|
|
|
|
dummy_head->laddr_start = found_region->free_head;
|
|
dummy_head->laddr_end = found_region->free_head;
|
|
//We don't care vaddr or paddr address for dummy head
|
|
dummy_head->size = 0;
|
|
dummy_head->caps = caps;
|
|
TAILQ_INSERT_HEAD(&found_region->mem_block_head, dummy_head, entries);
|
|
|
|
dummy_tail = (mem_block_t *)heap_caps_calloc(1, sizeof(mem_block_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
|
ESP_GOTO_ON_FALSE(dummy_tail, ESP_ERR_NO_MEM, err, TAG, "no mem");
|
|
|
|
dummy_tail->laddr_start = found_region->end;
|
|
dummy_tail->laddr_end = found_region->end;
|
|
//We don't care vaddr or paddr address for dummy tail
|
|
dummy_tail->size = 0;
|
|
dummy_tail->caps = caps;
|
|
TAILQ_INSERT_TAIL(&found_region->mem_block_head, dummy_tail, entries);
|
|
}
|
|
|
|
//Check if paddr is overlapped
|
|
mem_block_t *mem_block = NULL;
|
|
|
|
#if ENABLE_PADDR_CHECK
|
|
bool is_enclosed = false;
|
|
bool is_overlapped = false;
|
|
bool allow_overlap = flags & ESP_MMU_MMAP_FLAG_PADDR_SHARED;
|
|
|
|
TAILQ_FOREACH(mem_block, &found_region->mem_block_head, entries) {
|
|
if (target == mem_block->target) {
|
|
if ((s_is_enclosed(mem_block->paddr_start, mem_block->paddr_end, paddr_start, aligned_size))) {
|
|
//the to-be-mapped paddr block is mapped already
|
|
is_enclosed = true;
|
|
break;
|
|
}
|
|
|
|
if (!allow_overlap && (s_is_overlapped(mem_block->paddr_start, mem_block->paddr_end, paddr_start, aligned_size))) {
|
|
is_overlapped = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (is_enclosed) {
|
|
ESP_LOGW(TAG, "paddr block is mapped already, vaddr_start: %p, size: 0x%x", (void *)mem_block->vaddr_start, mem_block->size);
|
|
*out_ptr = (void *)mem_block->vaddr_start;
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
if (!allow_overlap && is_overlapped) {
|
|
ESP_LOGE(TAG, "paddr block is overlapped with an already mapped paddr block");
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
#endif //#if ENABLE_PADDR_CHECK
|
|
|
|
new_block = (mem_block_t *)heap_caps_calloc(1, sizeof(mem_block_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
|
ESP_GOTO_ON_FALSE(new_block, ESP_ERR_NO_MEM, err, TAG, "no mem");
|
|
|
|
//Reserve this block as it'll be mapped
|
|
bool found = false;
|
|
// Get the end address of the dummy_head block, which is always first block on the list
|
|
uint32_t last_end = TAILQ_FIRST(&found_region->mem_block_head)->laddr_end;
|
|
size_t slot_len = 0;
|
|
size_t max_slot_len = 0;
|
|
mem_block_t *found_block = NULL; //This stands for the block we found, whose slot between its prior block is where we will insert the new block to
|
|
|
|
TAILQ_FOREACH(mem_block, &found_region->mem_block_head, entries) {
|
|
slot_len = mem_block->laddr_start - last_end;
|
|
|
|
if (!found) {
|
|
if (slot_len >= aligned_size) {
|
|
//Found it
|
|
found = true;
|
|
found_block = mem_block;
|
|
slot_len -= aligned_size;
|
|
new_block->laddr_start = last_end;
|
|
}
|
|
}
|
|
|
|
max_slot_len = (slot_len > max_slot_len) ? slot_len : max_slot_len;
|
|
last_end = mem_block->laddr_end;
|
|
}
|
|
|
|
assert(found);
|
|
//insert the to-be-mapped new block to the list
|
|
TAILQ_INSERT_BEFORE(found_block, new_block, entries);
|
|
|
|
//Finally, we update the max_slot_size
|
|
found_region->max_slot_size = max_slot_len;
|
|
|
|
//Now we fill others according to the found `new_block->laddr_start`
|
|
new_block->laddr_end = new_block->laddr_start + aligned_size;
|
|
new_block->size = aligned_size;
|
|
new_block->caps = caps;
|
|
new_block->paddr_start = paddr_start;
|
|
new_block->paddr_end = paddr_start + aligned_size;
|
|
new_block->target = target;
|
|
if (caps & MMU_MEM_CAP_EXEC) {
|
|
new_block->vaddr_start = mmu_ll_laddr_to_vaddr(new_block->laddr_start, MMU_VADDR_INSTRUCTION, target);
|
|
new_block->vaddr_end = mmu_ll_laddr_to_vaddr(new_block->laddr_end, MMU_VADDR_INSTRUCTION, target);
|
|
} else {
|
|
new_block->vaddr_start = mmu_ll_laddr_to_vaddr(new_block->laddr_start, MMU_VADDR_DATA, target);
|
|
new_block->vaddr_end = mmu_ll_laddr_to_vaddr(new_block->laddr_end, MMU_VADDR_DATA, target);
|
|
}
|
|
|
|
//do mapping
|
|
s_do_mapping(target, new_block->vaddr_start, paddr_start, aligned_size);
|
|
*out_ptr = (void *)new_block->vaddr_start;
|
|
|
|
return ESP_OK;
|
|
|
|
err:
|
|
if (dummy_tail) {
|
|
free(dummy_tail);
|
|
}
|
|
if (dummy_head) {
|
|
free(dummy_head);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
#if MMU_LL_MMU_PER_TARGET
|
|
FORCE_INLINE_ATTR void s_unmapping_operation(uint32_t vaddr_start, uint32_t size)
|
|
{
|
|
uint32_t mmu_id = 0;
|
|
mmu_target_t target = mmu_ll_vaddr_to_target(vaddr_start);
|
|
|
|
if (target == MMU_TARGET_FLASH0) {
|
|
mmu_id = MMU_LL_FLASH_MMU_ID;
|
|
} else {
|
|
mmu_id = MMU_LL_PSRAM_MMU_ID;
|
|
}
|
|
mmu_hal_unmap_region(mmu_id, vaddr_start, size);
|
|
}
|
|
#else
|
|
FORCE_INLINE_ATTR void s_unmapping_operation(uint32_t vaddr_start, uint32_t size)
|
|
{
|
|
mmu_hal_unmap_region(0, vaddr_start, size);
|
|
#if (SOC_MMU_PERIPH_NUM == 2)
|
|
#if !CONFIG_FREERTOS_UNICORE
|
|
mmu_hal_unmap_region(1, vaddr_start, size);
|
|
#endif // #if !CONFIG_FREERTOS_UNICORE
|
|
#endif // #if (SOC_MMU_PERIPH_NUM == 2)
|
|
}
|
|
#endif
|
|
|
|
|
|
static void IRAM_ATTR NOINLINE_ATTR s_do_unmapping(uint32_t vaddr_start, uint32_t size)
|
|
{
|
|
/**
|
|
* Disable Cache, after this function, involved code and data should be placed in internal RAM.
|
|
*
|
|
* @note we call this for now, but this will be refactored to move out of `spi_flash`
|
|
*/
|
|
spi_flash_disable_interrupts_caches_and_other_cpu();
|
|
|
|
s_unmapping_operation(vaddr_start, size);
|
|
|
|
//enable Cache, after this function, internal RAM access is no longer mandatory
|
|
spi_flash_enable_interrupts_caches_and_other_cpu();
|
|
}
|
|
|
|
esp_err_t esp_mmu_unmap(void *ptr)
|
|
{
|
|
ESP_RETURN_ON_FALSE(ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
|
|
|
|
mem_region_t *region = NULL;
|
|
mem_block_t *mem_block = NULL;
|
|
uint32_t ptr_laddr = mmu_ll_vaddr_to_laddr((uint32_t)ptr);
|
|
size_t slot_len = 0;
|
|
|
|
for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
|
|
if (ptr_laddr >= s_mmu_ctx.mem_regions[i].free_head && ptr_laddr < s_mmu_ctx.mem_regions[i].end) {
|
|
region = &s_mmu_ctx.mem_regions[i];
|
|
}
|
|
}
|
|
ESP_RETURN_ON_FALSE(region, ESP_ERR_NOT_FOUND, TAG, "munmap target pointer is outside external memory regions");
|
|
|
|
bool found = false;
|
|
mem_block_t *found_block = NULL;
|
|
TAILQ_FOREACH(mem_block, ®ion->mem_block_head, entries) {
|
|
if (mem_block == TAILQ_FIRST(®ion->mem_block_head) || mem_block == TAILQ_LAST(®ion->mem_block_head, mem_block_head_)) {
|
|
//we don't care the dummy_head and the dummy_tail
|
|
continue;
|
|
}
|
|
|
|
//now we are only traversing the actual dynamically allocated blocks, dummy_head and dummy_tail are excluded already
|
|
if (mem_block->laddr_start == ptr_laddr) {
|
|
slot_len = TAILQ_NEXT(mem_block, entries)->laddr_start - TAILQ_PREV(mem_block, mem_block_head_, entries)->laddr_end;
|
|
region->max_slot_size = (slot_len > region->max_slot_size) ? slot_len : region->max_slot_size;
|
|
|
|
found = true;
|
|
found_block = mem_block;
|
|
break;
|
|
}
|
|
}
|
|
|
|
ESP_RETURN_ON_FALSE(found, ESP_ERR_NOT_FOUND, TAG, "munmap target pointer isn't mapped yet");
|
|
|
|
//do unmap
|
|
s_do_unmapping(mem_block->vaddr_start, mem_block->size);
|
|
//remove the already unmapped block from the list
|
|
TAILQ_REMOVE(®ion->mem_block_head, found_block, entries);
|
|
free(found_block);
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
esp_err_t esp_mmu_map_dump_mapped_blocks(FILE* stream)
|
|
{
|
|
char line[100];
|
|
for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
|
|
fprintf(stream, "region %d:\n", i);
|
|
fprintf(stream, "%-15s %-14s %-14s %-12s %-12s %-12s\n", "Bus ID", "Start", "Free Head", "End", "Caps", "Max Slot Size");
|
|
|
|
char *buf = line;
|
|
size_t len = sizeof(line);
|
|
memset(line, 0x0, len);
|
|
snprintf(buf, len, "0x%-13x 0x%-12"PRIx32" 0x%-11"PRIx32" 0x%-10"PRIx32" 0x%-10x 0x%-8x\n",
|
|
s_mmu_ctx.mem_regions[i].bus_id,
|
|
s_mmu_ctx.mem_regions[i].start,
|
|
s_mmu_ctx.mem_regions[i].free_head,
|
|
s_mmu_ctx.mem_regions[i].end,
|
|
s_mmu_ctx.mem_regions[i].caps,
|
|
s_mmu_ctx.mem_regions[i].max_slot_size);
|
|
fputs(line, stream);
|
|
|
|
fprintf(stream, "mapped blocks:\n");
|
|
fprintf(stream, "%-4s %-13s %-12s %-12s %-6s %-13s %-11s\n", "ID", "Vaddr Start", "Vaddr End", "Block Size", "Caps", "Paddr Start", "Paddr End");
|
|
mem_region_t *region = &s_mmu_ctx.mem_regions[i];
|
|
mem_block_t *mem_block = NULL;
|
|
int id = 0;
|
|
TAILQ_FOREACH(mem_block, ®ion->mem_block_head, entries) {
|
|
if (mem_block != TAILQ_FIRST(®ion->mem_block_head) && mem_block != TAILQ_LAST(®ion->mem_block_head, mem_block_head_)) {
|
|
snprintf(buf, len, "%-4d 0x%-11x 0x%-10x 0x%-10x 0x%-4x 0x%-11"PRIx32" 0x%-8"PRIx32"\n",
|
|
id,
|
|
mem_block->vaddr_start,
|
|
mem_block->vaddr_end,
|
|
mem_block->size,
|
|
mem_block->caps,
|
|
mem_block->paddr_start,
|
|
mem_block->paddr_end);
|
|
fputs(line, stream);
|
|
id++;
|
|
}
|
|
}
|
|
fprintf(stream, "\n");
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------
|
|
Private dump functions, IRAM Safe
|
|
---------------------------------------------------------------*/
|
|
esp_err_t IRAM_ATTR esp_mmu_map_dump_mapped_blocks_private(void)
|
|
{
|
|
for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
|
|
mem_region_t *region = &s_mmu_ctx.mem_regions[i];
|
|
mem_block_t *mem_block = NULL;
|
|
TAILQ_FOREACH(mem_block, ®ion->mem_block_head, entries) {
|
|
if (mem_block != TAILQ_FIRST(®ion->mem_block_head) && mem_block != TAILQ_LAST(®ion->mem_block_head, mem_block_head_)) {
|
|
ESP_DRAM_LOGI(TAG, "block vaddr_start: 0x%x", mem_block->vaddr_start);
|
|
ESP_DRAM_LOGI(TAG, "block vaddr_end: 0x%x", mem_block->vaddr_end);
|
|
ESP_DRAM_LOGI(TAG, "block size: 0x%x", mem_block->size);
|
|
ESP_DRAM_LOGI(TAG, "block caps: 0x%x\n", mem_block->caps);
|
|
ESP_DRAM_LOGI(TAG, "block paddr_start: 0x%x\n", mem_block->paddr_start);
|
|
ESP_DRAM_LOGI(TAG, "block paddr_end: 0x%x\n", mem_block->paddr_end);
|
|
}
|
|
}
|
|
ESP_DRAM_LOGI(TAG, "region bus_id: 0x%x", s_mmu_ctx.mem_regions[i].bus_id);
|
|
ESP_DRAM_LOGI(TAG, "region start: 0x%x", s_mmu_ctx.mem_regions[i].start);
|
|
ESP_DRAM_LOGI(TAG, "region end: 0x%x", s_mmu_ctx.mem_regions[i].end);
|
|
ESP_DRAM_LOGI(TAG, "region caps: 0x%x\n", s_mmu_ctx.mem_regions[i].caps);
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------
|
|
Helper APIs for conversion between vaddr and paddr
|
|
---------------------------------------------------------------*/
|
|
static bool NOINLINE_ATTR IRAM_ATTR s_vaddr_to_paddr(uint32_t vaddr, esp_paddr_t *out_paddr, mmu_target_t *out_target)
|
|
{
|
|
//we call this for now, but this will be refactored to move out of `spi_flash`
|
|
spi_flash_disable_interrupts_caches_and_other_cpu();
|
|
//On ESP32, core 1 settings should be the same as the core 0
|
|
bool is_mapped = mmu_hal_vaddr_to_paddr(0, vaddr, out_paddr, out_target);
|
|
spi_flash_enable_interrupts_caches_and_other_cpu();
|
|
|
|
return is_mapped;
|
|
}
|
|
|
|
esp_err_t esp_mmu_vaddr_to_paddr(void *vaddr, esp_paddr_t *out_paddr, mmu_target_t *out_target)
|
|
{
|
|
ESP_RETURN_ON_FALSE(vaddr && out_paddr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
|
|
ESP_RETURN_ON_FALSE(mmu_hal_check_valid_ext_vaddr_region(0, (uint32_t)vaddr, 1, MMU_VADDR_DATA | MMU_VADDR_INSTRUCTION), ESP_ERR_INVALID_ARG, TAG, "not a valid external virtual address");
|
|
|
|
esp_paddr_t paddr = 0;
|
|
mmu_target_t target = 0;
|
|
|
|
bool is_mapped = s_vaddr_to_paddr((uint32_t)vaddr, &paddr, &target);
|
|
ESP_RETURN_ON_FALSE(is_mapped, ESP_ERR_NOT_FOUND, TAG, "vaddr isn't mapped");
|
|
|
|
*out_paddr = paddr;
|
|
*out_target = target;
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
static bool NOINLINE_ATTR IRAM_ATTR s_paddr_to_vaddr(esp_paddr_t paddr, mmu_target_t target, mmu_vaddr_t type, uint32_t *out_vaddr)
|
|
{
|
|
//we call this for now, but this will be refactored to move out of `spi_flash`
|
|
spi_flash_disable_interrupts_caches_and_other_cpu();
|
|
//On ESP32, core 1 settings should be the same as the core 0
|
|
bool found = mmu_hal_paddr_to_vaddr(0, paddr, target, type, out_vaddr);
|
|
spi_flash_enable_interrupts_caches_and_other_cpu();
|
|
|
|
return found;
|
|
}
|
|
|
|
esp_err_t esp_mmu_paddr_to_vaddr(esp_paddr_t paddr, mmu_target_t target, mmu_vaddr_t type, void **out_vaddr)
|
|
{
|
|
ESP_RETURN_ON_FALSE(out_vaddr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
|
|
|
|
uint32_t vaddr = 0;
|
|
bool found = false;
|
|
|
|
found = s_paddr_to_vaddr(paddr, target, type, &vaddr);
|
|
ESP_RETURN_ON_FALSE(found, ESP_ERR_NOT_FOUND, TAG, "paddr isn't mapped");
|
|
|
|
*out_vaddr = (void *)vaddr;
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
#if ENABLE_PADDR_CHECK
|
|
/*---------------------------------------------------------------
|
|
Helper functions to check block
|
|
---------------------------------------------------------------*/
|
|
/**
|
|
* Check if a new block is enclosed by another, e.g.
|
|
*
|
|
* This is enclosed:
|
|
*
|
|
* new_block_start new_block_end
|
|
* |-------- New Block --------|
|
|
* |--------------- Block ---------------|
|
|
* block_start block_end
|
|
*
|
|
* @note Note the difference between `s_is_overlapped()` below
|
|
*
|
|
* @param block_start An original block start
|
|
* @param block_end An original block end
|
|
* @param new_block_start New block start
|
|
* @param new_block_size New block size
|
|
*
|
|
* @return True: new block is enclosed; False: new block is not enclosed
|
|
*/
|
|
static bool s_is_enclosed(uint32_t block_start, uint32_t block_end, uint32_t new_block_start, uint32_t new_block_size)
|
|
{
|
|
bool is_enclosed = false;
|
|
uint32_t new_block_end = new_block_start + new_block_size;
|
|
|
|
if ((new_block_start >= block_start) && (new_block_end <= block_end)) {
|
|
is_enclosed = true;
|
|
} else {
|
|
is_enclosed = false;
|
|
}
|
|
|
|
return is_enclosed;
|
|
}
|
|
|
|
/**
|
|
* Check if a new block is overlapped by another, e.g.
|
|
*
|
|
* This is overlapped:
|
|
*
|
|
* new_block_start new_block_end
|
|
* |---------- New Block ----------|
|
|
* |--------------- Block ---------------|
|
|
* block_start block_end
|
|
*
|
|
* @note Note the difference between `s_is_enclosed()` above
|
|
*
|
|
* @param block_start An original block start
|
|
* @param block_end An original block end
|
|
* @param new_block_start New block start
|
|
* @param new_block_size New block size
|
|
*
|
|
* @return True: new block is overlapped; False: new block is not overlapped
|
|
*/
|
|
static bool s_is_overlapped(uint32_t block_start, uint32_t block_end, uint32_t new_block_start, uint32_t new_block_size)
|
|
{
|
|
bool is_overlapped = false;
|
|
uint32_t new_block_end = new_block_start + new_block_size;
|
|
|
|
if (((new_block_start < block_start) && (new_block_end > block_start)) ||
|
|
((new_block_start < block_end) && (new_block_end > block_end))) {
|
|
is_overlapped = true;
|
|
} else {
|
|
is_overlapped = false;
|
|
}
|
|
|
|
return is_overlapped;
|
|
}
|
|
#endif //#if ENABLE_PADDR_CHECK
|