mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
55f1a63faf
- Implements application tracing module which allows to send arbitrary data to host over JTAG. This feature is useful for analyzing program modules behavior, dumping run-time application data etc. - Implements printf-like logging functions on top of apptrace module. This feature is a kind of semihosted printf functionality with lower overhead and impact on system behaviour as compared to standard printf.
995 lines
41 KiB
C
995 lines
41 KiB
C
// Copyright 2017 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// Hot It Works
|
|
// ************
|
|
|
|
// 1. Components Overview
|
|
// ======================
|
|
|
|
// Xtensa has useful feature: TRAX debug module. It allows recording program execution flow during run-time without disturbing CPU commands flow.
|
|
// Exectution flow data are written to configurable Trace RAM block. Besides accessing Trace RAM itself TRAX module also allows to read/write
|
|
// trace memory via its registers by means of JTAG, APB or ERI transactions.
|
|
// ESP32 has two Xtensa cores with separate TRAX modules on them and provides two special memory regions to be used as trace memory.
|
|
// ESP32 allows muxing access to trace memory blocks in such a way that while one block is accessed by CPUs another can be accessed via JTAG by host
|
|
// via reading/writing TRAX registers. Block muxing is configurable at run-time and allows switching trace memory blocks between
|
|
// accessors in round-robin fashion so they can read/write separate memory blocks without disturbing each other.
|
|
// This moduile implements application tracing feature based on above mechanisms. This feature allows to transfer arbitrary user data to
|
|
// host via JTAG with minimal impact on system performance. This module is implied to be used in the following tracing scheme.
|
|
|
|
// ------>------ ----- (host components) -----
|
|
// | | | |
|
|
// --------------- ----------------------- ----------------------- ---------------- ------ --------- -----------------
|
|
// |apptrace user|-->|target tracing module|<--->|TRAX_MEM0 | TRAX_MEM1|---->|TRAX_DATA_REGS|<-->|JTAG|<--->|OpenOCD|-->|trace data file|
|
|
// --------------- ----------------------- ----------------------- ---------------- ------ --------- -----------------
|
|
// | | | |
|
|
// | ------<------ ---------------- |
|
|
// |<------------------------------------------->|TRAX_CTRL_REGS|<---->|
|
|
// ----------------
|
|
|
|
// In general tracing happens in the following way. User aplication requests tracing module to send some data by calling esp_apptrace_buffer_get(),
|
|
// moduile allocates necessary buffer in current input trace block. Then user fills received buffer with data and calls esp_apptrace_buffer_put().
|
|
// When current input trace block is filled with app data it is exposed to host and the second block becomes input one and buffer filling restarts.
|
|
// While target application fills one memory block host reads another block via JTAG.
|
|
// To control buffer switching and for other communication purposes this implementation uses some TRAX registers. It is safe since HW TRAX tracing
|
|
// can not be used along with application tracing feature so these registers are freely readable/writeable via JTAG from host and via ERI from ESP32 cores.
|
|
// So this implementation's target CPU overhead is produced only by calls to allocate/manage buffers and data copying.
|
|
// On host special OpenOCD command must be used to read trace data.
|
|
|
|
// 2.1.1.1 TRAX Registers layout
|
|
// =============================
|
|
|
|
// This module uses two TRAX HW registers to communicate with host SW (OpenOCD).
|
|
// - Control register uses TRAX_DELAYCNT as storage. Only lower 24 bits of TRAX_DELAYCNT are writable. Control register has the following bitfields:
|
|
// | 31..XXXXXX..24 | 23 .(host_connect). 23| 22..(block_id)..15 | 14..(block_len)..0 |
|
|
// 14..0 bits - actual length of user data in trace memory block. Target updates it every time it fills memory block and exposes it to host.
|
|
// Host writes zero to this field when it finishes reading exposed block;
|
|
// 22..15 bits - trace memory block transfer ID. Block counter. It can overflow. Updated by target, host should not modify it. Actually can be 1-2 bits;
|
|
// 23 bit - 'host connected' flag. If zero then host is not connected and tracing module works in post-mortem mode, otherwise in streaming mode;
|
|
// - Status register uses TRAX_TRIGGERPC as storage. If this register is not zero then currentlly CPU is changing TRAX registers and
|
|
// this register holds address of the instruction which application will execute when it finishes with those registers modifications.
|
|
// See 'Targets Connection' setion for details.
|
|
|
|
// 3. Modes of operation
|
|
// =====================
|
|
|
|
// This module supports two modes of operation:
|
|
// - Post-mortem mode. This is the default mode. In this mode application tracing module does not check whether host has read all the data from block
|
|
// exposed to it and switches block in any case. The mode does not need host interaction for operation and so can be useful when only the latest
|
|
// trace data are necessary, e.g. for analyzing crashes. On panic the latest data from current input block are exposed to host and host can read them.
|
|
// There is menuconfig option CONFIG_ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TRAX_THRESH which control the threshold for flushing data on panic.
|
|
// - Streaming mode. Tracing module enters this mode when host connects to targets and sets respective bit in control register. In this mode tracing
|
|
// module waits for specified time until host read all the data from exposed block.
|
|
// On panic tracing module waits (timeout is configured via menuconfig via ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TMO) for the host to read all data
|
|
// from the previously exposed block.
|
|
|
|
// 4. Communication Protocol
|
|
// =========================
|
|
|
|
// 4.1 Trace Memory Blocks
|
|
// ^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
// Communication is controlled via special register. Host periodically polls control register on each core to find out if there are any data avalable.
|
|
// When current input trace memory block is filled tracing module exposes block to host and updates block_len and block_id fields in control register.
|
|
// Host reads new register value and according to it starts reading data from exposed block. Meanwhile target starts filling another trace block.
|
|
// When host finishes reading the block it clears block_len field in control register indicating to target that it is ready to accept the next block.
|
|
|
|
// 4.2 User Data Chunks Level
|
|
// --------------------------
|
|
|
|
// Since trace memory block is shared between user data chunks and data copying is performed on behalf of the API user (in its normal context) in
|
|
// multithreading environment it can happen that task/ISR which copies data is preempted by another high prio task/ISR. So it is possible situation
|
|
// that task/ISR will fail to complete filling its data chunk before the whole trace block is exposed to the host. To handle such conditions tracing
|
|
// module prepends all user data chunks with 4 bytes header which contains allocated buffer size and actual data length within it. OpenOCD command
|
|
// which reads application traces will report error when it will read incompleted user data block.
|
|
|
|
// 4.3 Targets Connection/Disconnection
|
|
// ------------------------------------
|
|
|
|
// When host is going to start tracing in streaming mode it needs to put both ESP32 cores into initial state when 'host connected' bit is set
|
|
// on both cores. To accomplish this host halts both cores and sets this bit in TRAX registers. But target code can be halted in state when it has read control
|
|
// register but has not updated its value. To handle such situations target code indicates to the host that it is updating control register by writing
|
|
// non-zero value to status register. Actually it writes address of the instruction which it will execute when it finishes with
|
|
// the registers update. When target is halted during control register update host sets breakpoint at the address from status register and resumes CPU.
|
|
// After target code finishes with register update it is halted on breakpoint, host detects it and safely sets 'host connected' bit. When both cores
|
|
// are set up they are resumed. Tracing starts without further intrusion into CPUs work.
|
|
// When host is going to stop tracing in streaming mode it needs to disconnect targets. Disconnection process is done using the same algorithm
|
|
// as for connecting, but 'host connected' bits are cleared on ESP32 cores.
|
|
|
|
// 5. Module Access Synchronization
|
|
// ================================
|
|
|
|
// Access to internal module's data is synchronized with custom mutex. Mutex is a wrapper for portMUX_TYPE and uses almost the same sync mechanism as in
|
|
// vPortCPUAcquireMutex/vPortCPUReleaseMutex. The mechanism uses S32C1I Xtensa instruction to implement exclusive access to module's data from tasks and
|
|
// ISRs running on both cores. Also custom mutex allows specifying timeout for locking operation. Locking routine checks underlaying mutex in cycle until
|
|
// it gets its ownership or timeout expires. The differences of application tracing module's mutex implementation from vPortCPUAcquireMutex/vPortCPUReleaseMutex are:
|
|
// - Support for timeouts.
|
|
// - Local IRQs for CPU which owns the mutex are disabled till the call to unlocking routine. This is made to avoid possible task's prio inversion.
|
|
// When low prio task takes mutex and enables local IRQs gets preempted by high prio task which in its turn can try to acquire mutex using infinite timeout.
|
|
// So no local task switch occurs when mutex is locked. But this does not apply to tasks on another CPU.
|
|
// WARNING: Priority inversion can happen when low prio task works on one CPU and medium and high prio tasks work on another.
|
|
// There are some differences how mutex behaves when it is used from task and ISR context when timeout is non-zero:
|
|
// - In task context when mutex can not be locked portYIELD() is called before check for timeout condition to alow othet tasks work on the same CPU.
|
|
// - In ISR context when mutex can not be locked nothing is done before expired time check.
|
|
// WARNING: Care must be taken when selecting timeout values for trace calls from ISRs. Tracing module does not care about watchdogs when waiting on internal locks
|
|
// and when waiting for host to complete previous block reading, so if wating timeout value exceedes watchdog's one it can lead to system reboot.
|
|
|
|
// 6. Timeouts
|
|
// ------------
|
|
|
|
// Timeout mechanism is based on xthal_get_ccount() routine and supports timeout values in micorseconds.
|
|
// There are two situations when task/ISR can be delayed by tracing API call. Timeout mechanism takes into account both conditions:
|
|
// - Trace data are locked by another task/ISR. When wating on trace data lock.
|
|
// - Current TRAX memory input block is full when working in streaming mode (host is connected). When waiting for host to complete previous block reading.
|
|
// When wating for any of above conditions xthal_get_ccount() is called periodically to calculate time elapsed from trace API routine entry. When elapsed
|
|
// time exceeds specified timeout value operation is canceled and ESP_ERR_TIMEOUT code is returned.
|
|
|
|
// ALSO SEE example usage of application tracing module in 'components/log/README.rst'
|
|
|
|
#include <string.h>
|
|
#include "soc/soc.h"
|
|
#include "soc/dport_reg.h"
|
|
#include "eri.h"
|
|
#include "trax.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/portmacro.h"
|
|
#include "freertos/semphr.h"
|
|
#include "freertos/task.h"
|
|
#include "soc/timer_group_struct.h"
|
|
#include "soc/timer_group_reg.h"
|
|
#include "esp_app_trace.h"
|
|
|
|
#if CONFIG_ESP32_APPTRACE_ENABLE
|
|
#define ESP_APPTRACE_DEBUG_STATS_ENABLE 0
|
|
#define ESP_APPTRACE_BUF_HISTORY_DEPTH (16*100)
|
|
|
|
#define ESP_APPTRACE_MAX_VPRINTF_ARGS 256
|
|
|
|
#define ESP_APPTRACE_PRINT_LOCK_NONE 0
|
|
#define ESP_APPTRACE_PRINT_LOCK_SEM 1
|
|
#define ESP_APPTRACE_PRINT_LOCK_MUX 2
|
|
#define ESP_APPTRACE_PRINT_LOCK ESP_APPTRACE_PRINT_LOCK_NONE//ESP_APPTRACE_PRINT_LOCK_SEM
|
|
|
|
#define ESP_APPTRACE_USE_LOCK_SEM 0 // 1 - semaphore (now may be broken), 0 - portMUX_TYPE
|
|
|
|
#define LOG_LOCAL_LEVEL ESP_LOG_VERBOSE
|
|
#include "esp_log.h"
|
|
const static char *TAG = "esp_apptrace";
|
|
|
|
#if ESP_APPTRACE_PRINT_LOCK != ESP_APPTRACE_PRINT_LOCK_NONE
|
|
#define ESP_APPTRACE_LOG( format, ... ) \
|
|
do { \
|
|
esp_apptrace_log_lock(); \
|
|
ets_printf(format, ##__VA_ARGS__); \
|
|
esp_apptrace_log_unlock(); \
|
|
} while(0)
|
|
#else
|
|
#define ESP_APPTRACE_LOG( format, ... ) \
|
|
do { \
|
|
ets_printf(format, ##__VA_ARGS__); \
|
|
} while(0)
|
|
#endif
|
|
|
|
#define ESP_APPTRACE_LOG_LEV( _L_, level, format, ... ) \
|
|
do { \
|
|
if (LOG_LOCAL_LEVEL >= level) { \
|
|
ESP_APPTRACE_LOG(LOG_FORMAT(_L_, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); \
|
|
} \
|
|
} while(0)
|
|
|
|
#define ESP_APPTRACE_LOGE( format, ... ) ESP_APPTRACE_LOG_LEV(E, ESP_LOG_ERROR, format, ##__VA_ARGS__)
|
|
#define ESP_APPTRACE_LOGW( format, ... ) ESP_APPTRACE_LOG_LEV(W, ESP_LOG_WARN, format, ##__VA_ARGS__)
|
|
#define ESP_APPTRACE_LOGI( format, ... ) ESP_APPTRACE_LOG_LEV(I, ESP_LOG_INFO, format, ##__VA_ARGS__)
|
|
#define ESP_APPTRACE_LOGD( format, ... ) ESP_APPTRACE_LOG_LEV(D, ESP_LOG_DEBUG, format, ##__VA_ARGS__)
|
|
#define ESP_APPTRACE_LOGV( format, ... ) ESP_APPTRACE_LOG_LEV(V, ESP_LOG_VERBOSE, format, ##__VA_ARGS__)
|
|
#define ESP_APPTRACE_LOGO( format, ... ) ESP_APPTRACE_LOG_LEV(E, ESP_LOG_NONE, format, ##__VA_ARGS__)
|
|
|
|
#define ESP_APPTRACE_CPUTICKS2US(_t_) ((_t_)/(XT_CLOCK_FREQ/1000000))
|
|
|
|
// TODO: move these (and same definitions in trax.c to dport_reg.h)
|
|
#define TRACEMEM_MUX_PROBLK0_APPBLK1 0
|
|
#define TRACEMEM_MUX_BLK0_ONLY 1
|
|
#define TRACEMEM_MUX_BLK1_ONLY 2
|
|
#define TRACEMEM_MUX_PROBLK1_APPBLK0 3
|
|
|
|
// TRAX is disabled, so we use its registers for our own purposes
|
|
// | 31..XXXXXX..24 | 23 .(host_connect). 23| 22..(block_id)..15 | 14..(block_len)..0 |
|
|
#define ESP_APPTRACE_TRAX_CTRL_REG ERI_TRAX_DELAYCNT
|
|
#define ESP_APPTRACE_TRAX_STAT_REG ERI_TRAX_TRIGGERPC
|
|
|
|
#define ESP_APPTRACE_TRAX_BLOCK_LEN_MSK 0x7FFFUL
|
|
#define ESP_APPTRACE_TRAX_BLOCK_LEN(_l_) ((_l_) & ESP_APPTRACE_TRAX_BLOCK_LEN_MSK)
|
|
#define ESP_APPTRACE_TRAX_BLOCK_LEN_GET(_v_) ((_v_) & ESP_APPTRACE_TRAX_BLOCK_LEN_MSK)
|
|
#define ESP_APPTRACE_TRAX_BLOCK_ID_MSK 0xFFUL
|
|
#define ESP_APPTRACE_TRAX_BLOCK_ID(_id_) (((_id_) & ESP_APPTRACE_TRAX_BLOCK_ID_MSK) << 15)
|
|
#define ESP_APPTRACE_TRAX_BLOCK_ID_GET(_v_) (((_v_) >> 15) & ESP_APPTRACE_TRAX_BLOCK_ID_MSK)
|
|
#define ESP_APPTRACE_TRAX_HOST_CONNECT (1 << 23)
|
|
|
|
static volatile uint8_t *s_trax_blocks[] = {
|
|
(volatile uint8_t *) 0x3FFFC000,
|
|
(volatile uint8_t *) 0x3FFF8000
|
|
};
|
|
|
|
#define ESP_APPTRACE_TRAX_BLOCKS_NUM (sizeof(s_trax_blocks)/sizeof(s_trax_blocks[0]))
|
|
|
|
//#define ESP_APPTRACE_TRAX_BUFFER_SIZE (ESP_APPTRACE_TRAX_BLOCK_SIZE/4)
|
|
|
|
#define ESP_APPTRACE_TRAX_INBLOCK_START 0//(ESP_APPTRACE_TRAX_BLOCK_ID_MSK - 4)
|
|
|
|
|
|
#define ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET() (&s_trace_buf.trax.state.markers[s_trace_buf.trax.state.in_block % 2])
|
|
#define ESP_APPTRACE_TRAX_INBLOCK_GET() (&s_trace_buf.trax.blocks[s_trace_buf.trax.state.in_block % 2])
|
|
|
|
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
|
|
/** keeps info about apptrace API (write/get buffer) caller and internal module's data related to that call
|
|
* NOTE: used for module debug purposes, currently this functionality is partially broken,
|
|
* but can be useful in future
|
|
*/
|
|
typedef struct {
|
|
uint32_t hnd; // task/ISR handle
|
|
uint32_t ts; // timestamp
|
|
uint32_t stamp; // test (user) trace buffer stamp
|
|
uint32_t in_block; // TRAX input block ID
|
|
uint32_t eri_len[2]; // contents of ERI control register upon entry to / exit from API routine
|
|
uint32_t wr_err; // number of trace write errors
|
|
} esp_trace_buffer_wr_hitem_t;
|
|
|
|
/** apptrace API calls history. History is organized as ring buffer*/
|
|
typedef struct {
|
|
uint32_t hist_rd; // the first history entry index
|
|
uint32_t hist_wr; // the last history entry index
|
|
esp_trace_buffer_wr_hitem_t hist[ESP_APPTRACE_BUF_HISTORY_DEPTH]; // history data
|
|
} esp_trace_buffer_wr_stats_t;
|
|
|
|
/** trace module stats */
|
|
typedef struct {
|
|
esp_trace_buffer_wr_stats_t wr;
|
|
} esp_trace_buffer_stats_t;
|
|
#endif
|
|
|
|
/** Trace data header. Every user data chunk is prepended with this header.
|
|
* User allocates block with esp_apptrace_buffer_get and then fills it with data,
|
|
* in multithreading environment it can happen that tasks gets buffer and then gets interrupted,
|
|
* so it is possible that user data are incomplete when TRAX memory block is exposed to the host.
|
|
* In this case host SW will see that wr_sz < block_sz and will report error.
|
|
*/
|
|
typedef struct {
|
|
uint16_t block_sz; // size of allocated block for user data
|
|
uint16_t wr_sz; // size of actually written data
|
|
} esp_tracedata_hdr_t;
|
|
|
|
/** TRAX HW transport state */
|
|
typedef struct {
|
|
uint32_t in_block; // input block ID
|
|
uint32_t markers[ESP_APPTRACE_TRAX_BLOCKS_NUM]; // block filling level markers
|
|
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
|
|
esp_trace_buffer_stats_t stats; // stats
|
|
#endif
|
|
} esp_apptrace_trax_state_t;
|
|
|
|
/** memory block parameters */
|
|
typedef struct {
|
|
uint8_t *start; // start address
|
|
uint32_t sz; // size
|
|
} esp_apptrace_mem_block_t;
|
|
|
|
/** TRAX HW transport data */
|
|
typedef struct {
|
|
volatile esp_apptrace_trax_state_t state; // state
|
|
esp_apptrace_mem_block_t blocks[ESP_APPTRACE_TRAX_BLOCKS_NUM]; // memory blocks
|
|
} esp_apptrace_trax_data_t;
|
|
|
|
/** tracing module synchronization lock */
|
|
typedef struct {
|
|
volatile unsigned int irq_stat; // local (on 1 CPU) IRQ state
|
|
portMUX_TYPE portmux; // mux for synchronization
|
|
} esp_apptrace_lock_t;
|
|
|
|
#define ESP_APPTRACE_MUX_GET(_m_) (&(_m_)->portmux)
|
|
|
|
/** tracing module internal data */
|
|
typedef struct {
|
|
#if ESP_APPTRACE_USE_LOCK_SEM == 1
|
|
SemaphoreHandle_t lock;
|
|
#else
|
|
esp_apptrace_lock_t lock; // sync lock
|
|
#endif
|
|
uint8_t inited; // module initialization state flag
|
|
esp_apptrace_trax_data_t trax; // TRAX HW transport data
|
|
} esp_apptrace_buffer_t;
|
|
|
|
/** waiting timeout data */
|
|
typedef struct {
|
|
uint32_t start; // waiting start (in ticks)
|
|
uint32_t tmo; // timeout (in us)
|
|
} esp_apptrace_tmo_t;
|
|
|
|
static esp_apptrace_buffer_t s_trace_buf;
|
|
|
|
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
|
|
static SemaphoreHandle_t s_log_lock;
|
|
#elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
|
|
static esp_apptrace_lock_t s_log_lock;
|
|
#endif
|
|
|
|
static inline void esp_apptrace_tmo_init(esp_apptrace_tmo_t *tmo, uint32_t user_tmo)
|
|
{
|
|
tmo->start = xthal_get_ccount();
|
|
tmo->tmo = user_tmo;
|
|
}
|
|
|
|
static esp_err_t esp_apptrace_tmo_check(esp_apptrace_tmo_t *tmo)
|
|
{
|
|
unsigned cur, elapsed;
|
|
|
|
if (tmo->tmo != ESP_APPTRACE_TMO_INFINITE) {
|
|
cur = xthal_get_ccount();
|
|
if (tmo->start <= cur) {
|
|
elapsed = cur - tmo->start;
|
|
} else {
|
|
elapsed = 0xFFFFFFFF - tmo->start + cur;
|
|
}
|
|
if (ESP_APPTRACE_CPUTICKS2US(elapsed) >= tmo->tmo) {
|
|
return ESP_ERR_TIMEOUT;
|
|
}
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX || ESP_APPTRACE_USE_LOCK_SEM == 0
|
|
static inline void esp_apptrace_mux_init(esp_apptrace_lock_t *mux)
|
|
{
|
|
ESP_APPTRACE_MUX_GET(mux)->mux = portMUX_FREE_VAL;
|
|
mux->irq_stat = 0;
|
|
}
|
|
|
|
static esp_err_t esp_apptrace_lock_take(esp_apptrace_lock_t *mux, uint32_t tmo)
|
|
{
|
|
uint32_t res = ~portMUX_FREE_VAL;
|
|
esp_apptrace_tmo_t sleeping_tmo;
|
|
|
|
esp_apptrace_tmo_init(&sleeping_tmo, tmo);
|
|
while (1) {
|
|
res = (xPortGetCoreID() << portMUX_VAL_SHIFT) | portMUX_MAGIC_VAL;
|
|
// first disable IRQs on this CPU, this will prevent current task from been
|
|
// preempted by higher prio tasks, otherwise deadlock can happen:
|
|
// when lower prio task took mux and then preempted by higher prio one which also tries to
|
|
// get mux with INFINITE timeout
|
|
unsigned int irq_stat = portENTER_CRITICAL_NESTED();
|
|
// Now try to lock mux
|
|
uxPortCompareSet(&ESP_APPTRACE_MUX_GET(mux)->mux, portMUX_FREE_VAL, &res);
|
|
if (res == portMUX_FREE_VAL) {
|
|
// do not enable IRQs, we will held them disabled until mux is unlocked
|
|
// we do not need to flush cache region for mux->irq_stat because it is used
|
|
// to hold and restore IRQ state only for CPU which took mux, other CPUs will not use this value
|
|
mux->irq_stat = irq_stat;
|
|
break;
|
|
}
|
|
// if mux is locked by other task/ISR enable IRQs and let other guys work
|
|
portEXIT_CRITICAL_NESTED(irq_stat);
|
|
|
|
if (!xPortInIsrContext()) {
|
|
portYIELD();
|
|
}
|
|
|
|
int err = esp_apptrace_tmo_check(&sleeping_tmo);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_apptrace_mux_give(esp_apptrace_lock_t *mux)
|
|
{
|
|
esp_err_t ret = ESP_OK;
|
|
uint32_t res = 0;
|
|
unsigned int irq_stat;
|
|
|
|
res = portMUX_FREE_VAL;
|
|
|
|
// first of all save a copy of IRQ status for this locker because uxPortCompareSet will unlock mux and tasks/ISRs
|
|
// from other core can overwrite mux->irq_stat
|
|
irq_stat = mux->irq_stat;
|
|
uxPortCompareSet(&ESP_APPTRACE_MUX_GET(mux)->mux, (xPortGetCoreID() << portMUX_VAL_SHIFT) | portMUX_MAGIC_VAL, &res);
|
|
// enable local interrupts
|
|
portEXIT_CRITICAL_NESTED(irq_stat);
|
|
|
|
if ( ((res & portMUX_VAL_MASK) >> portMUX_VAL_SHIFT) == xPortGetCoreID() ) {
|
|
// nothing to do
|
|
} else if ( res == portMUX_FREE_VAL ) {
|
|
ret = ESP_FAIL; // should never get here
|
|
} else {
|
|
ret = ESP_FAIL; // should never get here
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static inline esp_err_t esp_apptrace_log_init()
|
|
{
|
|
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
|
|
s_log_lock = xSemaphoreCreateBinary();
|
|
if (!s_log_lock) {
|
|
ets_printf("%s: Failed to create print lock sem!", TAG);
|
|
return ESP_FAIL;
|
|
}
|
|
xSemaphoreGive(s_log_lock);
|
|
#elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
|
|
esp_apptrace_mux_init(&s_log_lock);
|
|
#endif
|
|
return ESP_OK;
|
|
}
|
|
|
|
static inline void esp_apptrace_log_cleanup()
|
|
{
|
|
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
|
|
vSemaphoreDelete(s_log_lock);
|
|
#endif
|
|
}
|
|
|
|
static inline int esp_apptrace_log_lock()
|
|
{
|
|
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
|
|
BaseType_t ret;
|
|
if (xPortInIsrContext()) {
|
|
ret = xSemaphoreTakeFromISR(s_print_lock, NULL);
|
|
} else {
|
|
ret = xSemaphoreTake(s_print_lock, portMAX_DELAY);
|
|
}
|
|
return ret;
|
|
#elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
|
|
int ret = esp_apptrace_lock_take(&s_log_lock, ESP_APPTRACE_TMO_INFINITE);
|
|
return ret;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static inline void esp_apptrace_log_unlock()
|
|
{
|
|
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
|
|
if (xPortInIsrContext()) {
|
|
xSemaphoreGiveFromISR(s_log_lock, NULL);
|
|
} else {
|
|
xSemaphoreGive(s_log_lock);
|
|
}
|
|
#elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
|
|
esp_apptrace_mux_give(&s_log_lock);
|
|
#endif
|
|
}
|
|
|
|
esp_err_t esp_apptrace_lock_init()
|
|
{
|
|
#if ESP_APPTRACE_USE_LOCK_SEM == 1
|
|
s_trace_buf.lock = xSemaphoreCreateBinary();
|
|
if (!s_trace_buf.lock) {
|
|
ESP_APPTRACE_LOGE("Failed to create lock!");
|
|
return ESP_FAIL;
|
|
}
|
|
xSemaphoreGive(s_trace_buf.lock);
|
|
#else
|
|
esp_apptrace_mux_init(&s_trace_buf.lock);
|
|
#endif
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_apptrace_lock_cleanup()
|
|
{
|
|
#if ESP_APPTRACE_USE_LOCK_SEM == 1
|
|
vSemaphoreDelete(s_trace_buf.lock);
|
|
#endif
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_apptrace_lock(uint32_t *tmo)
|
|
{
|
|
unsigned cur, elapsed, start = xthal_get_ccount();
|
|
|
|
#if ESP_APPTRACE_USE_LOCK_SEM == 1
|
|
BaseType_t ret;
|
|
if (xPortInIsrContext()) {
|
|
ret = xSemaphoreTakeFromISR(s_trace_buf.lock, NULL);
|
|
} else {
|
|
ret = xSemaphoreTake(s_trace_buf.lock, portTICK_PERIOD_MS * (*tmo) / 1000);
|
|
}
|
|
if (ret != pdTRUE) {
|
|
return ESP_FAIL;
|
|
}
|
|
#else
|
|
esp_err_t ret = esp_apptrace_lock_take(&s_trace_buf.lock, *tmo);
|
|
if (ret != ESP_OK) {
|
|
return ESP_FAIL;
|
|
}
|
|
#endif
|
|
// decrease tmo by actual waiting time
|
|
cur = xthal_get_ccount();
|
|
if (start <= cur) {
|
|
elapsed = cur - start;
|
|
} else {
|
|
elapsed = ULONG_MAX - start + cur;
|
|
}
|
|
if (ESP_APPTRACE_CPUTICKS2US(elapsed) > *tmo) {
|
|
*tmo = 0;
|
|
} else {
|
|
*tmo -= ESP_APPTRACE_CPUTICKS2US(elapsed);
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_apptrace_unlock()
|
|
{
|
|
esp_err_t ret = ESP_OK;
|
|
#if ESP_APPTRACE_USE_LOCK_SEM == 1
|
|
if (xPortInIsrContext()) {
|
|
xSemaphoreGiveFromISR(s_trace_buf.lock, NULL);
|
|
} else {
|
|
xSemaphoreGive(s_trace_buf.lock);
|
|
}
|
|
#else
|
|
ret = esp_apptrace_mux_give(&s_trace_buf.lock);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
|
|
static void esp_apptrace_trax_init()
|
|
{
|
|
// Stop trace, if any (on the current CPU)
|
|
eri_write(ERI_TRAX_TRAXCTRL, TRAXCTRL_TRSTP);
|
|
eri_write(ERI_TRAX_TRAXCTRL, TRAXCTRL_TMEN);
|
|
eri_write(ESP_APPTRACE_TRAX_CTRL_REG, ESP_APPTRACE_TRAX_BLOCK_ID(ESP_APPTRACE_TRAX_INBLOCK_START));
|
|
eri_write(ESP_APPTRACE_TRAX_STAT_REG, 0);
|
|
|
|
ESP_APPTRACE_LOGI("Initialized TRAX on CPU%d", xPortGetCoreID());
|
|
}
|
|
|
|
// assumed to be protected by caller from multi-core/thread access
|
|
static esp_err_t esp_apptrace_trax_block_switch()
|
|
{
|
|
int prev_block_num = s_trace_buf.trax.state.in_block % 2;
|
|
int new_block_num = prev_block_num ? (0) : (1);
|
|
int res = ESP_OK;
|
|
extern uint32_t __esp_apptrace_trax_eri_updated;
|
|
|
|
// indicate to host that we are about to update.
|
|
// this is used only to place CPU into streaming mode at tracing startup
|
|
// before starting streaming host can halt us after we read ESP_APPTRACE_TRAX_CTRL_REG and before we updated it
|
|
// HACK: in this case host will set breakpoint just after ESP_APPTRACE_TRAX_CTRL_REG update,
|
|
// here we set address to set bp at
|
|
// enter ERI update critical section
|
|
eri_write(ESP_APPTRACE_TRAX_STAT_REG, (uint32_t)&__esp_apptrace_trax_eri_updated);
|
|
|
|
uint32_t ctrl_reg = eri_read(ESP_APPTRACE_TRAX_CTRL_REG);
|
|
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
|
|
if (s_trace_buf.state.stats.wr.hist_wr < ESP_APPTRACE_BUF_HISTORY_DEPTH) {
|
|
esp_trace_buffer_wr_hitem_t *hi = (esp_trace_buffer_wr_hitem_t *)&s_trace_buf.state.stats.wr.hist[s_trace_buf.state.stats.wr.hist_wr - 1];
|
|
hi->eri_len[1] = ctrl_reg;
|
|
}
|
|
#endif
|
|
uint32_t host_connected = ESP_APPTRACE_TRAX_HOST_CONNECT & ctrl_reg;
|
|
if (host_connected) {
|
|
uint32_t acked_block = ESP_APPTRACE_TRAX_BLOCK_ID_GET(ctrl_reg);
|
|
uint32_t host_to_read = ESP_APPTRACE_TRAX_BLOCK_LEN_GET(ctrl_reg);
|
|
if (host_to_read != 0 || acked_block != (s_trace_buf.trax.state.in_block & ESP_APPTRACE_TRAX_BLOCK_ID_MSK)) {
|
|
// ESP_APPTRACE_LOGE("HC[%d]: Can not switch %x %d %x %x/%lx", xPortGetCoreID(), ctrl_reg, host_to_read, acked_block,
|
|
// s_trace_buf.trax.state.in_block & ESP_APPTRACE_TRAX_BLOCK_ID_MSK, s_trace_buf.trax.state.in_block);
|
|
res = ESP_ERR_NO_MEM;
|
|
goto _on_func_exit;
|
|
}
|
|
}
|
|
s_trace_buf.trax.state.markers[new_block_num] = 0;
|
|
// switch to new block
|
|
s_trace_buf.trax.state.in_block++;
|
|
|
|
WRITE_PERI_REG(DPORT_TRACEMEM_MUX_MODE_REG, new_block_num ? TRACEMEM_MUX_BLK0_ONLY : TRACEMEM_MUX_BLK1_ONLY);
|
|
eri_write(ESP_APPTRACE_TRAX_CTRL_REG, ESP_APPTRACE_TRAX_BLOCK_ID(s_trace_buf.trax.state.in_block) |
|
|
host_connected | ESP_APPTRACE_TRAX_BLOCK_LEN(s_trace_buf.trax.state.markers[prev_block_num]));
|
|
|
|
_on_func_exit:
|
|
// exit ERI update critical section
|
|
eri_write(ESP_APPTRACE_TRAX_STAT_REG, 0x0);
|
|
asm volatile (
|
|
" .global __esp_apptrace_trax_eri_updated\n"
|
|
"__esp_apptrace_trax_eri_updated:\n"); // host will set bp here to resolve collision at streaming start
|
|
return res;
|
|
}
|
|
|
|
static esp_err_t esp_apptrace_trax_block_switch_waitus(uint32_t tmo)
|
|
{
|
|
int res;
|
|
esp_apptrace_tmo_t sleeping_tmo;
|
|
|
|
esp_apptrace_tmo_init(&sleeping_tmo, tmo);
|
|
|
|
while ((res = esp_apptrace_trax_block_switch()) != ESP_OK) {
|
|
res = esp_apptrace_tmo_check(&sleeping_tmo);
|
|
if (res != ESP_OK) {
|
|
break;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static uint8_t *esp_apptrace_trax_get_buffer(size_t size, uint32_t *tmo)
|
|
{
|
|
uint8_t *buf_ptr = NULL;
|
|
volatile uint32_t *cur_block_marker;
|
|
esp_apptrace_mem_block_t *cur_block;
|
|
|
|
int res = esp_apptrace_lock(tmo);
|
|
if (res != ESP_OK) {
|
|
return NULL;
|
|
}
|
|
|
|
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
|
|
esp_trace_buffer_wr_hitem_t *hi = NULL;
|
|
if (s_trace_buf.state.stats.wr.hist_wr < ESP_APPTRACE_BUF_HISTORY_DEPTH) {
|
|
hi = (esp_trace_buffer_wr_hitem_t *)&s_trace_buf.state.stats.wr.hist[s_trace_buf.state.stats.wr.hist_wr++];
|
|
hi->hnd = *(uint32_t *)(buf + 0);
|
|
hi->ts = *(uint32_t *)(buf + sizeof(uint32_t));
|
|
hi->stamp = *(buf + 2 * sizeof(uint32_t));
|
|
hi->in_block = s_trace_buf.state.in_block;
|
|
hi->wr_err = 0;
|
|
hi->eri_len[0] = eri_read(ESP_APPTRACE_TRAX_CTRL_REG);
|
|
if (s_trace_buf.state.stats.wr.hist_wr == ESP_APPTRACE_BUF_HISTORY_DEPTH) {
|
|
s_trace_buf.state.stats.wr.hist_wr = 0;
|
|
}
|
|
if (s_trace_buf.state.stats.wr.hist_wr == s_trace_buf.state.stats.wr.hist_rd) {
|
|
s_trace_buf.state.stats.wr.hist_rd++;
|
|
if (s_trace_buf.state.stats.wr.hist_rd == ESP_APPTRACE_BUF_HISTORY_DEPTH) {
|
|
s_trace_buf.state.stats.wr.hist_rd = 0;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
cur_block_marker = ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET();
|
|
cur_block = ESP_APPTRACE_TRAX_INBLOCK_GET();
|
|
|
|
if (*cur_block_marker + size + sizeof(esp_tracedata_hdr_t) >= cur_block->sz) {
|
|
// flush data, we can not unlock apptrace until we have buffer for all user data
|
|
// otherwise other tasks/ISRs can get control and write their data between chunks of this data
|
|
res = esp_apptrace_trax_block_switch_waitus(/*size + sizeof(esp_tracedata_hdr_t),*/*tmo);
|
|
if (res != ESP_OK) {
|
|
if (esp_apptrace_unlock() != ESP_OK) {
|
|
ESP_APPTRACE_LOGE("Failed to unlock apptrace data!");
|
|
// there is a bug, should never get here
|
|
}
|
|
return NULL;
|
|
}
|
|
// we switched to new block, update TRAX block pointers
|
|
cur_block_marker = ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET();
|
|
cur_block = ESP_APPTRACE_TRAX_INBLOCK_GET();
|
|
}
|
|
|
|
buf_ptr = cur_block->start + *cur_block_marker;
|
|
((esp_tracedata_hdr_t *)buf_ptr)->block_sz = size;
|
|
((esp_tracedata_hdr_t *)buf_ptr)->wr_sz = 0;
|
|
|
|
*cur_block_marker += size + sizeof(esp_tracedata_hdr_t);
|
|
|
|
// now we can safely unlock apptrace to allow other tasks/ISRs to get other buffers and write their data
|
|
if (esp_apptrace_unlock() != ESP_OK) {
|
|
ESP_APPTRACE_LOGE("Failed to unlock apptrace data!");
|
|
// there is a bug, should never get here
|
|
}
|
|
|
|
return buf_ptr + sizeof(esp_tracedata_hdr_t);
|
|
}
|
|
|
|
static esp_err_t esp_apptrace_trax_put_buffer(uint8_t *ptr, uint32_t *tmo)
|
|
{
|
|
int res = ESP_OK;
|
|
esp_tracedata_hdr_t *hdr = (esp_tracedata_hdr_t *)(ptr - sizeof(esp_tracedata_hdr_t));
|
|
|
|
// update written size
|
|
hdr->wr_sz = hdr->block_sz;
|
|
|
|
// TODO: mark block as busy in order not to re-use it for other tracing calls until it is completely written
|
|
// TODO: avoid potential situation when all memory is consumed by low prio tasks which can not complete writing due to
|
|
// higher prio tasks and the latter can not allocate buffers at all
|
|
// this is abnormal situation can be detected on host which will receive only uncompleted buffers
|
|
// workaround: use own memcpy which will kick-off dead tracing calls
|
|
|
|
return res;
|
|
}
|
|
|
|
static esp_err_t esp_apptrace_trax_flush(uint32_t min_sz, uint32_t tmo)
|
|
{
|
|
volatile uint32_t *in_block_marker;
|
|
int res = ESP_OK;
|
|
|
|
in_block_marker = ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET();
|
|
if (*in_block_marker > min_sz) {
|
|
ESP_APPTRACE_LOGD("Wait until block switch for %u us", tmo);
|
|
res = esp_apptrace_trax_block_switch_waitus(/*0 query any size,*/tmo);
|
|
if (res != ESP_OK) {
|
|
ESP_APPTRACE_LOGE("Failed to switch to another block");
|
|
return res;
|
|
}
|
|
ESP_APPTRACE_LOGD("Flushed last block %u bytes", *in_block_marker);
|
|
*in_block_marker = 0;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static esp_err_t esp_apptrace_trax_dest_init()
|
|
{
|
|
for (int i = 0; i < ESP_APPTRACE_TRAX_BLOCKS_NUM; i++) {
|
|
s_trace_buf.trax.blocks[i].start = (uint8_t *)s_trax_blocks[i];
|
|
s_trace_buf.trax.blocks[i].sz = ESP_APPTRACE_TRAX_BLOCK_SIZE;
|
|
s_trace_buf.trax.state.markers[i] = 0;
|
|
}
|
|
s_trace_buf.trax.state.in_block = ESP_APPTRACE_TRAX_INBLOCK_START;
|
|
|
|
WRITE_PERI_REG(DPORT_PRO_TRACEMEM_ENA_REG, DPORT_PRO_TRACEMEM_ENA_M);
|
|
#if CONFIG_FREERTOS_UNICORE == 0
|
|
WRITE_PERI_REG(DPORT_APP_TRACEMEM_ENA_REG, DPORT_APP_TRACEMEM_ENA_M);
|
|
#endif
|
|
// Expose block 1 to host, block 0 is current trace input buffer
|
|
WRITE_PERI_REG(DPORT_TRACEMEM_MUX_MODE_REG, TRACEMEM_MUX_BLK1_ONLY);
|
|
|
|
return ESP_OK;
|
|
}
|
|
#endif
|
|
|
|
esp_err_t esp_apptrace_init()
|
|
{
|
|
int res;
|
|
|
|
if (!s_trace_buf.inited) {
|
|
res = esp_apptrace_log_init();
|
|
if (res != ESP_OK) {
|
|
ets_printf("%s: Failed to init log lock (%d)!", TAG, res);
|
|
return res;
|
|
}
|
|
//memset(&s_trace_buf, 0, sizeof(s_trace_buf));
|
|
res = esp_apptrace_lock_init(&s_trace_buf.lock);
|
|
if (res != ESP_OK) {
|
|
ESP_APPTRACE_LOGE("Failed to init log lock (%d)!", res);
|
|
esp_apptrace_log_cleanup();
|
|
return res;
|
|
}
|
|
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
|
|
res = esp_apptrace_trax_dest_init();
|
|
if (res != ESP_OK) {
|
|
ESP_APPTRACE_LOGE("Failed to init TRAX dest data (%d)!", res);
|
|
esp_apptrace_lock_cleanup();
|
|
esp_apptrace_log_cleanup();
|
|
return res;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
|
|
// init TRAX on this CPU
|
|
esp_apptrace_trax_init();
|
|
#endif
|
|
|
|
s_trace_buf.inited |= 1 << xPortGetCoreID(); // global and this CPU-specific data are inited
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_apptrace_write(esp_apptrace_dest_t dest, void *data, size_t size, uint32_t user_tmo)
|
|
{
|
|
uint8_t *ptr = NULL;
|
|
uint32_t tmo = user_tmo;
|
|
//TODO: use ptr to HW transport iface struct
|
|
uint8_t *(*apptrace_get_buffer)(size_t, uint32_t *);
|
|
esp_err_t (*apptrace_put_buffer)(uint8_t *, uint32_t *);
|
|
|
|
if (dest == ESP_APPTRACE_DEST_TRAX) {
|
|
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
|
|
apptrace_get_buffer = esp_apptrace_trax_get_buffer;
|
|
apptrace_put_buffer = esp_apptrace_trax_put_buffer;
|
|
#else
|
|
ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
#endif
|
|
} else {
|
|
ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
|
|
ptr = apptrace_get_buffer(size, &tmo);
|
|
if (ptr == NULL) {
|
|
//ESP_APPTRACE_LOGE("Failed to get buffer!");
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
|
|
// actually can be suspended here by higher prio tasks/ISRs
|
|
//TODO: use own memcpy with dead trace calls kick-off algo, and tmo expiration check
|
|
memcpy(ptr, data, size);
|
|
|
|
// now indicate that this buffer is ready to be sent off to host
|
|
return apptrace_put_buffer(ptr, &tmo);
|
|
}
|
|
|
|
int esp_apptrace_vprintf_to(esp_apptrace_dest_t dest, uint32_t user_tmo, const char *fmt, va_list ap)
|
|
{
|
|
uint16_t nargs = 0;
|
|
uint8_t *pout, *p = (uint8_t *)fmt;
|
|
uint32_t tmo = user_tmo;
|
|
//TODO: use ptr to HW transport iface struct
|
|
uint8_t *(*apptrace_get_buffer)(size_t, uint32_t *);
|
|
esp_err_t (*apptrace_put_buffer)(uint8_t *, uint32_t *);
|
|
|
|
if (dest == ESP_APPTRACE_DEST_TRAX) {
|
|
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
|
|
apptrace_get_buffer = esp_apptrace_trax_get_buffer;
|
|
apptrace_put_buffer = esp_apptrace_trax_put_buffer;
|
|
#else
|
|
ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
#endif
|
|
} else {
|
|
ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
|
|
// ESP_APPTRACE_LOGI("fmt %x", fmt);
|
|
while ((p = (uint8_t *)strchr((char *)p, '%')) && nargs < ESP_APPTRACE_MAX_VPRINTF_ARGS) {
|
|
p++;
|
|
if (*p != '%' && *p != 0) {
|
|
nargs++;
|
|
}
|
|
}
|
|
// ESP_APPTRACE_LOGI("nargs = %d", nargs);
|
|
if (p) {
|
|
ESP_APPTRACE_LOGE("Failed to store all printf args!");
|
|
}
|
|
|
|
pout = apptrace_get_buffer(1 + sizeof(char *) + nargs * sizeof(uint32_t), &tmo);
|
|
if (pout == NULL) {
|
|
ESP_APPTRACE_LOGE("Failed to get buffer!");
|
|
return -1;
|
|
}
|
|
p = pout;
|
|
*pout = nargs;
|
|
pout++;
|
|
*(const char **)pout = fmt;
|
|
pout += sizeof(char *);
|
|
while (nargs-- > 0) {
|
|
uint32_t arg = va_arg(ap, uint32_t);
|
|
*(uint32_t *)pout = arg;
|
|
pout += sizeof(uint32_t);
|
|
// ESP_APPTRACE_LOGI("arg %x", arg);
|
|
}
|
|
|
|
int ret = apptrace_put_buffer(p, &tmo);
|
|
if (ret != ESP_OK) {
|
|
ESP_APPTRACE_LOGE("Failed to put printf buf (%d)!", ret);
|
|
return -1;
|
|
}
|
|
|
|
return (pout - p);
|
|
}
|
|
|
|
int esp_apptrace_vprintf(const char *fmt, va_list ap)
|
|
{
|
|
return esp_apptrace_vprintf_to(ESP_APPTRACE_DEST_TRAX, /*ESP_APPTRACE_TMO_INFINITE*/0, fmt, ap);
|
|
}
|
|
|
|
uint8_t *esp_apptrace_buffer_get(esp_apptrace_dest_t dest, size_t size, uint32_t user_tmo)
|
|
{
|
|
uint32_t tmo = user_tmo;
|
|
//TODO: use ptr to HW transport iface struct
|
|
uint8_t *(*apptrace_get_buffer)(size_t, uint32_t *);
|
|
|
|
if (dest == ESP_APPTRACE_DEST_TRAX) {
|
|
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
|
|
apptrace_get_buffer = esp_apptrace_trax_get_buffer;
|
|
#else
|
|
ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
|
|
return NULL;
|
|
#endif
|
|
} else {
|
|
ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
|
|
return NULL;
|
|
}
|
|
|
|
return apptrace_get_buffer(size, &tmo);
|
|
}
|
|
|
|
esp_err_t esp_apptrace_buffer_put(esp_apptrace_dest_t dest, uint8_t *ptr, uint32_t user_tmo)
|
|
{
|
|
uint32_t tmo = user_tmo;
|
|
//TODO: use ptr to HW transport iface struct
|
|
esp_err_t (*apptrace_put_buffer)(uint8_t *, uint32_t *);
|
|
|
|
if (dest == ESP_APPTRACE_DEST_TRAX) {
|
|
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
|
|
apptrace_put_buffer = esp_apptrace_trax_put_buffer;
|
|
#else
|
|
ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
#endif
|
|
} else {
|
|
ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
|
|
return apptrace_put_buffer(ptr, &tmo);
|
|
}
|
|
|
|
esp_err_t esp_apptrace_flush_nolock(esp_apptrace_dest_t dest, uint32_t min_sz, uint32_t tmo)
|
|
{
|
|
//TODO: use ptr to HW transport iface struct
|
|
esp_err_t (*apptrace_flush)(uint32_t, uint32_t);
|
|
|
|
if (dest == ESP_APPTRACE_DEST_TRAX) {
|
|
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
|
|
apptrace_flush = esp_apptrace_trax_flush;
|
|
#else
|
|
ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
#endif
|
|
} else {
|
|
ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
|
|
return apptrace_flush(min_sz, tmo);
|
|
}
|
|
|
|
esp_err_t esp_apptrace_flush(esp_apptrace_dest_t dest, uint32_t tmo)
|
|
{
|
|
int res;
|
|
|
|
res = esp_apptrace_lock(&tmo);
|
|
if (res != ESP_OK) {
|
|
ESP_APPTRACE_LOGE("Failed to lock apptrace data (%d)!", res);
|
|
return res;
|
|
}
|
|
|
|
res = esp_apptrace_flush_nolock(dest, 0, tmo);
|
|
if (res != ESP_OK) {
|
|
ESP_APPTRACE_LOGE("Failed to fluch apptrace data (%d)!", res);
|
|
}
|
|
|
|
if (esp_apptrace_unlock() != ESP_OK) {
|
|
ESP_APPTRACE_LOGE("Failed to unlock apptrace data (%d)!", res);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
|
|
void esp_apptrace_print_stats()
|
|
{
|
|
uint32_t i;
|
|
uint32_t tmo = ESP_APPTRACE_TMO_INFINITE;
|
|
|
|
esp_apptrace_lock(&tmo);
|
|
|
|
for (i = s_trace_buf.state.stats.wr.hist_rd; (i < s_trace_buf.state.stats.wr.hist_wr) && (i < ESP_APPTRACE_BUF_HISTORY_DEPTH); i++) {
|
|
esp_trace_buffer_wr_hitem_t *hi = (esp_trace_buffer_wr_hitem_t *)&s_trace_buf.state.stats.wr.hist[i];
|
|
ESP_APPTRACE_LOGO("hist[%u] = {%x, %x}", i, hi->hnd, hi->ts);
|
|
}
|
|
if (i == ESP_APPTRACE_BUF_HISTORY_DEPTH) {
|
|
for (i = 0; i < s_trace_buf.state.stats.wr.hist_wr; i++) {
|
|
esp_trace_buffer_wr_hitem_t *hi = (esp_trace_buffer_wr_hitem_t *)&s_trace_buf.state.stats.wr.hist[i];
|
|
ESP_APPTRACE_LOGO("hist[%u] = {%x, %x}", i, hi->hnd, hi->ts);
|
|
}
|
|
}
|
|
|
|
esp_apptrace_unlock();
|
|
}
|
|
#endif
|
|
#endif
|