esp-idf/components/driver/gptimer.c

531 lines
20 KiB
C

/*
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG // uncomment this line to enable debug logs
#include <stdlib.h>
#include <sys/lock.h>
#include "freertos/FreeRTOS.h"
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_heap_caps.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "esp_check.h"
#include "esp_pm.h"
#include "driver/gptimer.h"
#include "hal/timer_types.h"
#include "hal/timer_hal.h"
#include "hal/timer_ll.h"
#include "soc/timer_periph.h"
#include "soc/soc_memory_types.h"
#include "esp_private/periph_ctrl.h"
#include "esp_private/esp_clk.h"
// If ISR handler is allowed to run whilst cache is disabled,
// Make sure all the code and related variables used by the handler are in the SRAM
#if CONFIG_GPTIMER_ISR_IRAM_SAFE
#define GPTIMER_INTR_ALLOC_FLAGS (ESP_INTR_FLAG_IRAM | ESP_INTR_FLAG_INTRDISABLED)
#define GPTIMER_MEM_ALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT)
#else
#define GPTIMER_INTR_ALLOC_FLAGS ESP_INTR_FLAG_INTRDISABLED
#define GPTIMER_MEM_ALLOC_CAPS MALLOC_CAP_DEFAULT
#endif //CONFIG_GPTIMER_ISR_IRAM_SAFE
#if CONFIG_GPTIMER_CTRL_FUNC_IN_IRAM
#define GPTIMER_CTRL_FUNC_ATTR IRAM_ATTR
#else
#define GPTIMER_CTRL_FUNC_ATTR
#endif // CONFIG_GPTIMER_CTRL_FUNC_IN_IRAM
#define GPTIMER_PM_LOCK_NAME_LEN_MAX 16
static const char *TAG = "gptimer";
typedef struct gptimer_platform_t gptimer_platform_t;
typedef struct gptimer_group_t gptimer_group_t;
typedef struct gptimer_t gptimer_t;
struct gptimer_platform_t {
_lock_t mutex; // platform level mutex lock
gptimer_group_t *groups[SOC_TIMER_GROUPS]; // timer group pool
int group_ref_counts[SOC_TIMER_GROUPS]; // reference count used to protect group install/uninstall
};
struct gptimer_group_t {
int group_id;
portMUX_TYPE spinlock; // to protect per-group register level concurrent access
gptimer_t *timers[SOC_TIMER_GROUP_TIMERS_PER_GROUP];
};
typedef enum {
GPTIMER_FSM_STOP,
GPTIMER_FSM_START,
} gptimer_lifecycle_fsm_t;
struct gptimer_t {
gptimer_group_t *group;
int timer_id;
unsigned int resolution_hz;
unsigned long long reload_count;
unsigned long long alarm_count;
gptimer_count_direction_t direction;
timer_hal_context_t hal;
gptimer_lifecycle_fsm_t fsm; // access to fsm should be protect by spinlock, as fsm is also accessed from ISR handler
intr_handle_t intr;
_lock_t mutex; // to protect other resource allocation, like interrupt handle
portMUX_TYPE spinlock; // to protect per-timer resources concurent accessed by task and ISR handler
gptimer_alarm_cb_t on_alarm;
void *user_ctx;
esp_pm_lock_handle_t pm_lock; // power management lock
#if CONFIG_PM_ENABLE
char pm_lock_name[GPTIMER_PM_LOCK_NAME_LEN_MAX]; // pm lock name
#endif
struct {
uint32_t intr_shared: 1;
uint32_t auto_reload_on_alarm: 1;
uint32_t alarm_en: 1;
} flags;
};
// gptimer driver platform, it's always a singleton
static gptimer_platform_t s_platform;
static gptimer_group_t *gptimer_acquire_group_handle(int group_id);
static void gptimer_release_group_handle(gptimer_group_t *group);
static esp_err_t gptimer_select_periph_clock(gptimer_t *timer, gptimer_clock_source_t src_clk, uint32_t resolution_hz);
static esp_err_t gptimer_install_interrupt(gptimer_t *timer);
IRAM_ATTR static void gptimer_default_isr(void *args);
esp_err_t gptimer_new_timer(const gptimer_config_t *config, gptimer_handle_t *ret_timer)
{
esp_err_t ret = ESP_OK;
gptimer_group_t *group = NULL;
gptimer_t *timer = NULL;
int group_id = -1;
int timer_id = -1;
ESP_GOTO_ON_FALSE(config && ret_timer, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
ESP_GOTO_ON_FALSE(config->resolution_hz, ESP_ERR_INVALID_ARG, err, TAG, "invalid timer resolution:%d", config->resolution_hz);
timer = heap_caps_calloc(1, sizeof(gptimer_t), GPTIMER_MEM_ALLOC_CAPS);
ESP_GOTO_ON_FALSE(timer, ESP_ERR_NO_MEM, err, TAG, "no mem for gptimer");
for (int i = 0; (i < SOC_TIMER_GROUPS) && (timer_id < 0); i++) {
group = gptimer_acquire_group_handle(i);
ESP_GOTO_ON_FALSE(group, ESP_ERR_NO_MEM, err, TAG, "no mem for group (%d)", group_id);
// loop to search free timer in the group
portENTER_CRITICAL(&group->spinlock);
for (int j = 0; j < SOC_TIMER_GROUP_TIMERS_PER_GROUP; j++) {
if (!group->timers[j]) {
group_id = i;
timer_id = j;
group->timers[j] = timer;
break;
}
}
portEXIT_CRITICAL(&group->spinlock);
if (timer_id < 0) {
gptimer_release_group_handle(group);
group = NULL;
}
}
ESP_GOTO_ON_FALSE(timer_id != -1, ESP_ERR_NOT_FOUND, err, TAG, "no free timer");
timer->timer_id = timer_id;
timer->group = group;
// initialize HAL layer
timer_hal_init(&timer->hal, group_id, timer_id);
// stop counter, alarm, auto-reload
timer_ll_enable_counter(timer->hal.dev, timer_id, false);
timer_ll_enable_auto_reload(timer->hal.dev, timer_id, false);
timer_ll_enable_alarm(timer->hal.dev, timer_id, false);
// select clock source, set clock resolution
ESP_GOTO_ON_ERROR(gptimer_select_periph_clock(timer, config->clk_src, config->resolution_hz), err, TAG, "set periph clock failed");
// initialize counter value to zero
timer_hal_set_counter_value(&timer->hal, 0);
// set counting direction
timer_ll_set_count_direction(timer->hal.dev, timer_id, config->direction);
// interrupt register is shared by all timers in the same group
portENTER_CRITICAL(&group->spinlock);
timer_ll_enable_intr(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer_id), false); // disable interrupt
timer_ll_clear_intr_status(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer_id)); // clear pending interrupt event
portEXIT_CRITICAL(&group->spinlock);
// initialize other members of timer
timer->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
timer->fsm = GPTIMER_FSM_STOP;
timer->direction = config->direction;
timer->flags.intr_shared = config->flags.intr_shared;
_lock_init(&timer->mutex);
ESP_LOGD(TAG, "new gptimer (%d,%d) at %p, resolution=%uHz", group_id, timer_id, timer, timer->resolution_hz);
*ret_timer = timer;
return ESP_OK;
err:
if (timer) {
if (timer->pm_lock) {
esp_pm_lock_delete(timer->pm_lock);
}
free(timer);
}
if (group) {
gptimer_release_group_handle(group);
}
return ret;
}
esp_err_t gptimer_del_timer(gptimer_handle_t timer)
{
gptimer_group_t *group = NULL;
bool valid_state = true;
ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
portENTER_CRITICAL(&timer->spinlock);
if (timer->fsm != GPTIMER_FSM_STOP) {
valid_state = false;
}
portEXIT_CRITICAL(&timer->spinlock);
ESP_RETURN_ON_FALSE(valid_state, ESP_ERR_INVALID_STATE, TAG, "can't delete timer as it's not in stop state");
group = timer->group;
int group_id = group->group_id;
int timer_id = timer->timer_id;
if (timer->intr) {
esp_intr_free(timer->intr);
ESP_LOGD(TAG, "uninstall interrupt service for timer (%d,%d)", group_id, timer_id);
}
if (timer->pm_lock) {
esp_pm_lock_delete(timer->pm_lock);
ESP_LOGD(TAG, "uninstall APB_FREQ_MAX lock for timer (%d,%d)", group_id, timer_id);
}
_lock_close(&timer->mutex);
free(timer);
ESP_LOGD(TAG, "del timer (%d,%d)", group_id, timer_id);
portENTER_CRITICAL(&group->spinlock);
group->timers[timer_id] = NULL;
portEXIT_CRITICAL(&group->spinlock);
// timer has a reference on group, release it now
gptimer_release_group_handle(group);
return ESP_OK;
}
GPTIMER_CTRL_FUNC_ATTR
esp_err_t gptimer_set_raw_count(gptimer_handle_t timer, unsigned long long value)
{
ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
portENTER_CRITICAL_SAFE(&timer->spinlock);
timer_hal_set_counter_value(&timer->hal, value);
portEXIT_CRITICAL_SAFE(&timer->spinlock);
return ESP_OK;
}
GPTIMER_CTRL_FUNC_ATTR
esp_err_t gptimer_get_raw_count(gptimer_handle_t timer, unsigned long long *value)
{
ESP_RETURN_ON_FALSE(timer && value, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
portENTER_CRITICAL_SAFE(&timer->spinlock);
*value = timer_ll_get_counter_value(timer->hal.dev, timer->timer_id);
portEXIT_CRITICAL_SAFE(&timer->spinlock);
return ESP_OK;
}
esp_err_t gptimer_register_event_callbacks(gptimer_handle_t timer, const gptimer_event_callbacks_t *cbs, void *user_data)
{
gptimer_group_t *group = NULL;
ESP_RETURN_ON_FALSE(timer && cbs, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
group = timer->group;
#if CONFIG_GPTIMER_ISR_IRAM_SAFE
if (cbs->on_alarm) {
ESP_RETURN_ON_FALSE(esp_ptr_in_iram(cbs->on_alarm), ESP_ERR_INVALID_ARG, TAG, "on_alarm callback not in IRAM");
}
if (user_data) {
ESP_RETURN_ON_FALSE(esp_ptr_in_dram(user_data) ||
esp_ptr_in_diram_dram(user_data) ||
esp_ptr_in_rtc_dram_fast(user_data), ESP_ERR_INVALID_ARG, TAG, "user context not in DRAM");
}
#endif
// lazy install interrupt service
ESP_RETURN_ON_ERROR(gptimer_install_interrupt(timer), TAG, "install interrupt service failed");
// enable/disable GPTimer interrupt events
portENTER_CRITICAL_SAFE(&group->spinlock);
timer_ll_enable_intr(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer->timer_id), cbs->on_alarm); // enable timer interrupt
portEXIT_CRITICAL_SAFE(&group->spinlock);
timer->on_alarm = cbs->on_alarm;
timer->user_ctx = user_data;
return ESP_OK;
}
GPTIMER_CTRL_FUNC_ATTR
esp_err_t gptimer_set_alarm_action(gptimer_handle_t timer, const gptimer_alarm_config_t *config)
{
ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
if (config) {
// When auto_reload is enabled, alarm_count should not be equal to reload_count
bool valid_auto_reload = !config->flags.auto_reload_on_alarm || config->alarm_count != config->reload_count;
ESP_RETURN_ON_FALSE(valid_auto_reload, ESP_ERR_INVALID_ARG, TAG, "reload count can't equal to alarm count");
timer->reload_count = config->reload_count;
timer->alarm_count = config->alarm_count;
timer->flags.auto_reload_on_alarm = config->flags.auto_reload_on_alarm;
timer->flags.alarm_en = true;
portENTER_CRITICAL_SAFE(&timer->spinlock);
timer_ll_set_reload_value(timer->hal.dev, timer->timer_id, config->reload_count);
timer_ll_set_alarm_value(timer->hal.dev, timer->timer_id, config->alarm_count);
portEXIT_CRITICAL_SAFE(&timer->spinlock);
} else {
timer->flags.auto_reload_on_alarm = false;
timer->flags.alarm_en = false;
}
portENTER_CRITICAL_SAFE(&timer->spinlock);
timer_ll_enable_auto_reload(timer->hal.dev, timer->timer_id, timer->flags.auto_reload_on_alarm);
timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, timer->flags.alarm_en);
portEXIT_CRITICAL_SAFE(&timer->spinlock);
return ESP_OK;
}
GPTIMER_CTRL_FUNC_ATTR
esp_err_t gptimer_start(gptimer_handle_t timer)
{
ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
// acquire power manager lock
if (timer->pm_lock) {
ESP_RETURN_ON_ERROR(esp_pm_lock_acquire(timer->pm_lock), TAG, "acquire APB_FREQ_MAX lock failed");
}
// interrupt interupt service
if (timer->intr) {
ESP_RETURN_ON_ERROR(esp_intr_enable(timer->intr), TAG, "enable interrupt service failed");
}
portENTER_CRITICAL_SAFE(&timer->spinlock);
timer_ll_enable_counter(timer->hal.dev, timer->timer_id, true);
timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, timer->flags.alarm_en);
timer->fsm = GPTIMER_FSM_START;
portEXIT_CRITICAL_SAFE(&timer->spinlock);
return ESP_OK;
}
GPTIMER_CTRL_FUNC_ATTR
esp_err_t gptimer_stop(gptimer_handle_t timer)
{
ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
// disable counter, alarm, autoreload
portENTER_CRITICAL_SAFE(&timer->spinlock);
timer_ll_enable_counter(timer->hal.dev, timer->timer_id, false);
timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, false);
timer->fsm = GPTIMER_FSM_STOP;
portEXIT_CRITICAL_SAFE(&timer->spinlock);
// disable interrupt service
if (timer->intr) {
ESP_RETURN_ON_ERROR(esp_intr_disable(timer->intr), TAG, "disable interrupt service failed");
}
// release power manager lock
if (timer->pm_lock) {
ESP_RETURN_ON_ERROR(esp_pm_lock_release(timer->pm_lock), TAG, "release APB_FREQ_MAX lock failed");
}
return ESP_OK;
}
static gptimer_group_t *gptimer_acquire_group_handle(int group_id)
{
// esp_log_level_set(TAG, ESP_LOG_DEBUG);
bool new_group = false;
gptimer_group_t *group = NULL;
// prevent install timer group concurrently
_lock_acquire(&s_platform.mutex);
if (!s_platform.groups[group_id]) {
group = heap_caps_calloc(1, sizeof(gptimer_group_t), GPTIMER_MEM_ALLOC_CAPS);
if (group) {
new_group = true;
s_platform.groups[group_id] = group;
// initialize timer group members
group->group_id = group_id;
group->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
// enable APB access timer registers
periph_module_enable(timer_group_periph_signals.groups[group_id].module);
}
} else {
group = s_platform.groups[group_id];
}
// someone acquired the group handle means we have a new object that refer to this group
s_platform.group_ref_counts[group_id]++;
_lock_release(&s_platform.mutex);
if (new_group) {
ESP_LOGD(TAG, "new group (%d) @%p", group_id, group);
}
return group;
}
static void gptimer_release_group_handle(gptimer_group_t *group)
{
int group_id = group->group_id;
bool do_deinitialize = false;
_lock_acquire(&s_platform.mutex);
s_platform.group_ref_counts[group_id]--;
if (s_platform.group_ref_counts[group_id] == 0) {
assert(s_platform.groups[group_id]);
do_deinitialize = true;
s_platform.groups[group_id] = NULL;
// Theoretically we need to disable the peripheral clock for the timer group
// However, next time when we enable the peripheral again, the registers will be reset to default value, including the watchdog registers inside the group
// Then the watchdog will go into reset state, e.g. the flash boot watchdog is enabled again and reset the system very soon
// periph_module_disable(timer_group_periph_signals.groups[group_id].module);
}
_lock_release(&s_platform.mutex);
if (do_deinitialize) {
free(group);
ESP_LOGD(TAG, "del group (%d)", group_id);
}
}
static esp_err_t gptimer_select_periph_clock(gptimer_t *timer, gptimer_clock_source_t src_clk, uint32_t resolution_hz)
{
unsigned int counter_src_hz = 0;
esp_err_t ret = ESP_OK;
int timer_id = timer->timer_id;
switch (src_clk) {
case GPTIMER_CLK_SRC_APB:
counter_src_hz = esp_clk_apb_freq();
#if CONFIG_PM_ENABLE
sprintf(timer->pm_lock_name, "gptimer_%d_%d", timer->group->group_id, timer_id); // e.g. gptimer_0_0
ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, timer->pm_lock_name, &timer->pm_lock);
ESP_RETURN_ON_ERROR(ret, TAG, "create APB_FREQ_MAX lock failed");
ESP_LOGD(TAG, "install APB_FREQ_MAX lock for timer (%d,%d)", timer->group->group_id, timer_id);
#endif
break;
#if SOC_TIMER_GROUP_SUPPORT_XTAL
case GPTIMER_CLK_SRC_XTAL:
counter_src_hz = esp_clk_xtal_freq();
break;
#endif
default:
ESP_RETURN_ON_FALSE(false, ESP_ERR_NOT_SUPPORTED, TAG, "clock source %d is not support", src_clk);
break;
}
timer_ll_set_clock_source(timer->hal.dev, timer_id, src_clk);
unsigned int prescale = counter_src_hz / resolution_hz; // potential resolution loss here
timer_ll_set_clock_prescale(timer->hal.dev, timer_id, prescale);
timer->resolution_hz = counter_src_hz / prescale; // this is the real resolution
if (timer->resolution_hz != resolution_hz) {
ESP_LOGW(TAG, "resolution lost, expect %ul, real %ul", resolution_hz, timer->resolution_hz);
}
return ret;
}
static esp_err_t gptimer_install_interrupt(gptimer_t *timer)
{
esp_err_t ret = ESP_OK;
gptimer_group_t *group = timer->group;
int group_id = group->group_id;
int timer_id = timer->timer_id;
bool new_isr = false;
if (!timer->intr) {
_lock_acquire(&timer->mutex);
if (!timer->intr) {
// if user wants to control the interrupt allocation more precisely, we can expose more flags in `gptimer_config_t`
int extra_isr_flags = timer->flags.intr_shared ? ESP_INTR_FLAG_SHARED : 0;
ret = esp_intr_alloc_intrstatus(timer_group_periph_signals.groups[group_id].timer_irq_id[timer_id], extra_isr_flags | GPTIMER_INTR_ALLOC_FLAGS,
(uint32_t)timer_ll_get_intr_status_reg(timer->hal.dev), TIMER_LL_EVENT_ALARM(timer_id),
gptimer_default_isr, timer, &timer->intr);
new_isr = (ret == ESP_OK);
}
_lock_release(&timer->mutex);
}
if (new_isr) {
ESP_LOGD(TAG, "install interrupt service for timer (%d,%d)", group_id, timer_id);
}
return ret;
}
// Put the default ISR handler in the IRAM for better performance
IRAM_ATTR static void gptimer_default_isr(void *args)
{
bool need_yield = false;
gptimer_t *timer = (gptimer_t *)args;
gptimer_group_t *group = timer->group;
gptimer_alarm_cb_t on_alarm_cb = timer->on_alarm;
uint32_t intr_status = timer_ll_get_intr_status(timer->hal.dev);
if (intr_status & TIMER_LL_EVENT_ALARM(timer->timer_id)) {
// Note: when alarm event happends, the alarm will be disabled automatically by hardware
gptimer_alarm_event_data_t edata = {
.count_value = timer_ll_get_counter_value(timer->hal.dev, timer->timer_id),
.alarm_value = timer->alarm_count,
};
portENTER_CRITICAL_ISR(&group->spinlock);
timer_ll_clear_intr_status(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer->timer_id));
// for auto-reload, we need to re-enable the alarm manually
if (timer->flags.auto_reload_on_alarm) {
timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, true);
}
portEXIT_CRITICAL_ISR(&group->spinlock);
if (on_alarm_cb) {
if (on_alarm_cb(timer, &edata, timer->user_ctx)) {
need_yield = true;
}
}
}
if (need_yield) {
portYIELD_FROM_ISR();
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///// The Following APIs are for internal use only (e.g. unit test) /////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
esp_err_t gptimer_get_intr_handle(gptimer_handle_t timer, intr_handle_t *ret_intr_handle)
{
ESP_RETURN_ON_FALSE(timer && ret_intr_handle, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
*ret_intr_handle = timer->intr;
return ESP_OK;
}
esp_err_t gptimer_get_pm_lock(gptimer_handle_t timer, esp_pm_lock_handle_t *ret_pm_lock)
{
ESP_RETURN_ON_FALSE(timer && ret_pm_lock, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
*ret_pm_lock = timer->pm_lock;
return ESP_OK;
}
/**
* @brief This function will be called during start up, to check that gptimer driver is not running along with the legacy timer group driver
*/
__attribute__((constructor))
static void check_gptimer_driver_conflict(void)
{
extern int timer_group_driver_init_count;
timer_group_driver_init_count++;
if (timer_group_driver_init_count > 1) {
ESP_EARLY_LOGE(TAG, "CONFLICT! The gptimer driver can't work along with the legacy timer group driver");
abort();
}
}