esp-idf/components/hal/esp32c6/include/hal/parlio_ll.h
2023-03-01 00:43:14 +00:00

613 lines
16 KiB
C

/*
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// Note that most of the register operations in this layer are non-atomic operations.
#pragma once
#include <stdbool.h>
#include <stdint.h>
#include "hal/assert.h"
#include "hal/misc.h"
#include "soc/pcr_struct.h"
#include "soc/parl_io_struct.h"
#include "hal/parlio_types.h"
#define PARLIO_LL_RX_MAX_BYTES_PER_FRAME 0xFFFF
#define PARLIO_LL_RX_MAX_CLOCK_DIV 0x10000
#define PARLIO_LL_RX_MAX_TIMEOUT 0xFFFF
#define PARLIO_LL_TX_MAX_BYTES_PER_FRAME 0xFFFF
#define PARLIO_LL_TX_MAX_BITS_PER_FRAME (PARLIO_LL_TX_MAX_BYTES_PER_FRAME * 8)
#define PARLIO_LL_TX_MAX_CLOCK_DIV 0x10000
#define PARLIO_LL_EVENT_TX_FIFO_EMPTY (1 << 0)
#define PARLIO_LL_EVENT_RX_FIFO_FULL (1 << 1)
#define PARLIO_LL_EVENT_TX_EOF (1 << 2)
#define PARLIO_LL_EVENT_TX_MASK (PARLIO_LL_EVENT_TX_FIFO_EMPTY | PARLIO_LL_EVENT_TX_EOF)
#define PARLIO_LL_EVENT_RX_MASK (PARLIO_LL_EVENT_RX_FIFO_FULL)
#define PARLIO_LL_TX_DATA_LINE_AS_VALID_SIG 15 // TXD[15] can be used a valid signal
#ifdef __cplusplus
extern "C" {
#endif
typedef enum {
PARLIO_LL_CLK_SRC_XTAL = PARLIO_CLK_SRC_XTAL,
PARLIO_LL_CLK_SRC_PLL_F240M = PARLIO_CLK_SRC_PLL_F240M,
PARLIO_LL_CLK_SRC_PAD, // clock source from GPIO pad
} parlio_ll_clock_source_t;
typedef enum {
PARLIO_LL_RX_EOF_COND_RX_FULL, /*!< RX unit generates EOF event when it receives enough data */
PARLIO_LL_RX_EOF_COND_EN_INACTIVE, /*!< RX unit generates EOF event when the external enable signal becomes inactive */
} parlio_ll_rx_eof_cond_t;
///////////////////////////////////////RX Unit///////////////////////////////////////
/**
* @brief Set the clock source for the RX unit
*
* @param dev Parallel IO register base address
* @param src Clock source
*/
static inline void parlio_ll_rx_set_clock_source(parl_io_dev_t *dev, parlio_ll_clock_source_t src)
{
(void)dev;
uint32_t clk_sel = 0;
switch (src) {
case PARLIO_LL_CLK_SRC_XTAL:
clk_sel = 0;
break;
case PARLIO_LL_CLK_SRC_PLL_F240M:
clk_sel = 1;
break;
case PARLIO_LL_CLK_SRC_PAD:
clk_sel = 3;
break;
default: // unsupported clock source
HAL_ASSERT(false);
break;
}
PCR.parl_clk_rx_conf.parl_clk_rx_sel = clk_sel;
}
/**
* @brief Set the clock divider for the RX unit
*
* @param dev Parallel IO register base address
* @param div Clock divider
*/
static inline void parlio_ll_rx_set_clock_div(parl_io_dev_t *dev, uint32_t div)
{
(void)dev;
HAL_ASSERT(div > 0 && div <= PARLIO_LL_RX_MAX_CLOCK_DIV);
PCR.parl_clk_rx_conf.parl_clk_rx_div_num = div - 1;
}
/**
* @brief Reset the RX unit Core clock domain
*
* @param dev Parallel IO register base address
*/
__attribute__((always_inline))
static inline void parlio_ll_rx_reset_clock(parl_io_dev_t *dev)
{
(void)dev;
PCR.parl_clk_rx_conf.parl_rx_rst_en = 1;
PCR.parl_clk_rx_conf.parl_rx_rst_en = 0;
}
/**
* @brief Enable the RX unit Core clock domain
*
* @param dev Parallel IO register base address
* @param en True to enable, False to disable
*/
__attribute__((always_inline))
static inline void parlio_ll_rx_enable_clock(parl_io_dev_t *dev, bool en)
{
(void)dev;
PCR.parl_clk_rx_conf.parl_clk_rx_en = en;
}
/**
* @brief Set the condition to generate the RX EOF event
*
* @param dev Parallel IO register base address
* @param cond RX EOF condition
*/
static inline void parlio_ll_rx_set_eof_condition(parl_io_dev_t *dev, parlio_ll_rx_eof_cond_t cond)
{
dev->rx_cfg0.rx_eof_gen_sel = cond;
}
/**
* @brief Start RX unit to sample the input data
*
* @param dev Parallel IO register base address
* @param en True to start, False to stop
*/
static inline void parlio_ll_rx_start(parl_io_dev_t *dev, bool en)
{
dev->rx_cfg0.rx_start = en;
}
/**
* @brief Set the receive length
*
* @note The receive length can be used to generate DMA EOF signal, or to work as a frame end delimiter
*
* @param dev Parallel IO register base address
* @param bitlen Number of bits to receive in the next transaction, bitlen must be a multiple of 8
*/
static inline void parlio_ll_rx_set_recv_bit_len(parl_io_dev_t *dev, uint32_t bitlen)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->rx_cfg0, rx_data_bytelen, bitlen / 8);
}
/**
* @brief Set the sub mode of the level controlled receive mode
*
* @param dev Parallel IO register base address
* @param active_level Level of the external enable signal, true for active high, false for active low
*/
static inline void parlio_ll_rx_set_level_recv_mode(parl_io_dev_t *dev, bool active_level)
{
dev->rx_cfg0.rx_smp_mode_sel = 0;
dev->rx_cfg0.rx_level_submode_sel = !active_level; // 0: active low, 1: active high
}
/**
* @brief Set the sub mode of the pulse controlled receive mode
*
* @param dev Parallel IO register base address
* @param start_inc Whether the start pulse is counted
* @param end_inc Whether the end pulse is counted
* @param end_by_len Whether to use the frame length to determine the end of the frame
* @param pulse_inv Whether the pulse is inverted
*/
static inline void parlio_ll_rx_set_pulse_recv_mode(parl_io_dev_t *dev, bool start_inc, bool end_inc, bool end_by_len, bool pulse_inv)
{
uint32_t submode = 0;
uint32_t step = 1;
if (end_by_len) {
submode += 4;
} else {
step = 2;
if (!end_inc) {
submode += 1;
}
}
if (!start_inc) {
submode += step;
}
if (pulse_inv) {
submode += 6;
}
dev->rx_cfg0.rx_smp_mode_sel = 1;
dev->rx_cfg0.rx_pulse_submode_sel = submode;
}
/**
* @brief Set the receive mode to software controlled receive mode
*
* @param dev Parallel IO register base address
*/
static inline void parlio_ll_rx_set_soft_recv_mode(parl_io_dev_t *dev)
{
dev->rx_cfg0.rx_smp_mode_sel = 2;
}
/**
* @brief Whether to start the software controlled receive mode
*
* @param dev Parallel IO register base address
* @param en True to enable, False to disable
*/
static inline void parlio_ll_rx_start_soft_recv(parl_io_dev_t *dev, bool en)
{
dev->rx_cfg0.rx_sw_en = en;
}
/**
* @brief Set the sample clock edge
*
* @param dev Parallel IO register base address
* @param edge Sample clock edge
*/
static inline void parlio_ll_rx_set_sample_clock_edge(parl_io_dev_t *dev, parlio_sample_edge_t edge)
{
dev->rx_cfg0.rx_clk_edge_sel = edge;
}
/**
* @brief Set the order to pack bits into one byte
*
* @param dev Parallel IO register base address
* @param order Packing order
*/
static inline void parlio_ll_rx_set_bit_pack_order(parl_io_dev_t *dev, parlio_bit_pack_order_t order)
{
dev->rx_cfg0.rx_bit_pack_order = order;
}
/**
* @brief Set the bus width of the RX unit
*
* @param dev Parallel IO register base address
* @param width Bus width
*/
static inline void parlio_ll_rx_set_bus_width(parl_io_dev_t *dev, uint32_t width)
{
uint32_t width_sel = 0;
switch (width) {
case 16:
width_sel = 0;
break;
case 8:
width_sel = 1;
break;
case 4:
width_sel = 2;
break;
case 2:
width_sel = 3;
break;
case 1:
width_sel = 4;
break;
default:
HAL_ASSERT(false);
}
dev->rx_cfg0.rx_bus_wid_sel = width_sel;
}
/**
* @brief Reset RX Async FIFO
*
* @note During the reset of the asynchronous FIFO, it takes two clock cycles to synchronize within AHB clock domain (GDMA) and Core clock domain.
* The reset synchronization must be performed two clock cycles in advance.
* @note If the next frame transfer needs to be reset, you need to first switch to the internal free-running clock,
* and then switch to the actual clock after the reset is completed.
*
* @param dev Parallel IO register base address
*/
__attribute__((always_inline))
static inline void parlio_ll_rx_reset_fifo(parl_io_dev_t *dev)
{
dev->rx_cfg0.rx_fifo_srst = 1;
dev->rx_cfg0.rx_fifo_srst = 0;
}
/**
* @brief Set which data line as the enable signal
*
* @param dev Parallel IO register base address
* @param line_num Data line number (0-15)
*/
static inline void parlio_ll_rx_treat_data_line_as_en(parl_io_dev_t *dev, uint32_t line_num)
{
dev->rx_cfg1.rx_ext_en_sel = line_num;
}
/**
* @brief Enable RX timeout feature
*
* @param dev Parallel IO register base address
* @param en True to enable, False to disable
*/
static inline void parlio_ll_rx_enable_timeout(parl_io_dev_t *dev, bool en)
{
dev->rx_cfg1.rx_timeout_en = en;
}
/**
* @brief Set the threshold of RX timeout
*
* @param dev Parallel IO register base address
* @param thres Threshold of RX timeout
*/
static inline void parlio_ll_rx_set_timeout_thres(parl_io_dev_t *dev, uint32_t thres)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->rx_cfg1, rx_timeout_threshold, thres);
}
/**
* @brief Update the RX configuration, to make the new configuration take effect
*
* @param dev Parallel IO register base address
*/
static inline void parlio_ll_rx_update_config(parl_io_dev_t *dev)
{
dev->rx_cfg1.rx_reg_update = 1;
while (dev->rx_cfg1.rx_reg_update);
}
///////////////////////////////////TX Unit///////////////////////////////////////
/**
* @brief Set the clock source for the TX unit
*
* @param dev Parallel IO register base address
* @param src Clock source
*/
static inline void parlio_ll_tx_set_clock_source(parl_io_dev_t *dev, parlio_ll_clock_source_t src)
{
(void)dev;
uint32_t clk_sel = 0;
switch (src) {
case PARLIO_LL_CLK_SRC_XTAL:
clk_sel = 0;
break;
case PARLIO_LL_CLK_SRC_PLL_F240M:
clk_sel = 1;
break;
case PARLIO_LL_CLK_SRC_PAD:
clk_sel = 3;
break;
default: // unsupported clock source
HAL_ASSERT(false);
break;
}
PCR.parl_clk_tx_conf.parl_clk_tx_sel = clk_sel;
}
/**
* @brief Set the clock divider for the TX unit
*
* @param dev Parallel IO register base address
* @param div Clock divider
*/
static inline void parlio_ll_tx_set_clock_div(parl_io_dev_t *dev, uint32_t div)
{
(void)dev;
HAL_ASSERT(div > 0 && div <= PARLIO_LL_TX_MAX_CLOCK_DIV);
PCR.parl_clk_tx_conf.parl_clk_tx_div_num = div - 1;
}
/**
* @brief Reset the TX unit Core clock domain
*
* @param dev Parallel IO register base address
*/
__attribute__((always_inline))
static inline void parlio_ll_tx_reset_clock(parl_io_dev_t *dev)
{
(void)dev;
PCR.parl_clk_tx_conf.parl_tx_rst_en = 1;
PCR.parl_clk_tx_conf.parl_tx_rst_en = 0;
}
/**
* @brief Enable the TX unit Core clock domain
*
* @param dev Parallel IO register base address
* @param en True to enable, False to disable
*/
__attribute__((always_inline))
static inline void parlio_ll_tx_enable_clock(parl_io_dev_t *dev, bool en)
{
(void)dev;
PCR.parl_clk_tx_conf.parl_clk_tx_en = en;
}
/**
* @brief Set the data length to be transmitted
*
* @param dev Parallel IO register base address
* @param bitlen Data length in bits, must be a multiple of 8
*/
__attribute__((always_inline))
static inline void parlio_ll_tx_set_trans_bit_len(parl_io_dev_t *dev, uint32_t bitlen)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->tx_cfg0, tx_bytelen, bitlen / 8);
}
/**
* @brief Wether to enable the TX clock gating
*
* @note The TXD[7] will be taken as the gating enable signal
*
* @param dev Parallel IO register base address
* @param en True to enable, False to disable
*/
static inline void parlio_ll_tx_enable_clock_gating(parl_io_dev_t *dev, bool en)
{
dev->tx_cfg0.tx_gating_en = en;
}
/**
* @brief Start TX unit to transmit data
*
* @param dev Parallel IO register base address
* @param en True to start, False to stop
*/
__attribute__((always_inline))
static inline void parlio_ll_tx_start(parl_io_dev_t *dev, bool en)
{
dev->tx_cfg0.tx_start = en;
}
/**
* @brief Whether to treat the MSB of TXD as the valid signal
*
* @note If enabled, TXD[15] will work as valid signal, which stay high during data transmission.
*
* @param dev Parallel IO register base address
* @param en True to enable, False to disable
*/
static inline void parlio_ll_tx_treat_msb_as_valid(parl_io_dev_t *dev, bool en)
{
dev->tx_cfg0.tx_hw_valid_en = en;
}
/**
* @brief Set the sample clock edge
*
* @param dev Parallel IO register base address
* @param edge Sample clock edge
*/
static inline void parlio_ll_tx_set_sample_clock_edge(parl_io_dev_t *dev, parlio_sample_edge_t edge)
{
dev->tx_cfg0.tx_smp_edge_sel = edge;
}
/**
* @brief Set the order to unpack bits from a byte
*
* @param dev Parallel IO register base address
* @param order Packing order
*/
static inline void parlio_ll_tx_set_bit_pack_order(parl_io_dev_t *dev, parlio_bit_pack_order_t order)
{
dev->tx_cfg0.tx_bit_unpack_order = order;
}
/**
* @brief Set the bus width of the TX unit
*
* @param dev Parallel IO register base address
* @param width Bus width
*/
static inline void parlio_ll_tx_set_bus_width(parl_io_dev_t *dev, uint32_t width)
{
uint32_t width_sel = 0;
switch (width) {
case 16:
width_sel = 0;
break;
case 8:
width_sel = 1;
break;
case 4:
width_sel = 2;
break;
case 2:
width_sel = 3;
break;
case 1:
width_sel = 4;
break;
default:
HAL_ASSERT(false);
}
dev->tx_cfg0.tx_bus_wid_sel = width_sel;
}
/**
* @brief Reset TX Async FIFO
*
* @note During the reset of the asynchronous FIFO, it takes two clock cycles to synchronize within AHB clock domain (GDMA) and Core clock domain.
* The reset synchronization must be performed two clock cycles in advance.
* @note If the next frame transfer needs to be reset, you need to first switch to the internal free-running clock,
* and then switch to the actual clock after the reset is completed.
*
* @param dev Parallel IO register base address
*/
__attribute__((always_inline))
static inline void parlio_ll_tx_reset_fifo(parl_io_dev_t *dev)
{
dev->tx_cfg0.tx_fifo_srst = 1;
dev->tx_cfg0.tx_fifo_srst = 0;
}
/**
* @brief Set the value to output on the TXD when the TX unit is in IDLE state
*
* @param dev Parallel IO register base address
* @param value Value to output
*/
__attribute__((always_inline))
static inline void parlio_ll_tx_set_idle_data_value(parl_io_dev_t *dev, uint32_t value)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->tx_cfg1, tx_idle_value, value);
}
/**
* @brief Check whether the TX unit is ready
*
* @param dev Parallel IO register base address
* @return true: ready, false: busy
*/
__attribute__((always_inline))
static inline bool parlio_ll_tx_is_ready(parl_io_dev_t *dev)
{
return dev->st.tx_ready;
}
////////////////////////////////////Interrupt////////////////////////////////////////////////
/**
* @brief Enable Parallel IO interrupt for specific event mask
*
* @param dev Parallel IO register base address
* @param mask Event mask
* @param enable True to enable, False to disable
*/
static inline void parlio_ll_enable_interrupt(parl_io_dev_t *dev, uint32_t mask, bool enable)
{
if (enable) {
dev->int_ena.val |= mask;
} else {
dev->int_ena.val &= ~mask;
}
}
/**
* @brief Get interrupt status for TX unit
*
* @param dev Parallel IO register base address
* @return Interrupt status
*/
__attribute__((always_inline))
static inline uint32_t parlio_ll_tx_get_interrupt_status(parl_io_dev_t *dev)
{
return dev->int_st.val & PARLIO_LL_EVENT_TX_MASK;
}
/**
* @brief Get interrupt status for RX unit
*
* @param dev Parallel IO register base address
* @return Interrupt status
*/
__attribute__((always_inline))
static inline uint32_t parlio_ll_rx_get_interrupt_status(parl_io_dev_t *dev)
{
return dev->int_st.val & PARLIO_LL_EVENT_RX_MASK;
}
/**
* @brief Clear Parallel IO interrupt status by mask
*
* @param dev Parallel IO register base address
* @param mask Interrupt status mask
*/
__attribute__((always_inline))
static inline void parlio_ll_clear_interrupt_status(parl_io_dev_t *dev, uint32_t mask)
{
dev->int_clr.val = mask;
}
/**
* @brief Get interrupt status register address
*
* @param dev Parallel IO register base address
* @return Register address
*/
static inline volatile void *parlio_ll_get_interrupt_status_reg(parl_io_dev_t *dev)
{
return &dev->int_st;
}
#ifdef __cplusplus
}
#endif