esp-idf/components/driver/adc_common.c

647 lines
20 KiB
C

/*
* SPDX-FileCopyrightText: 2019-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <esp_types.h>
#include <stdlib.h>
#include <ctype.h>
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/timers.h"
#include "esp_log.h"
#include "esp_pm.h"
#include "soc/rtc.h"
#include "driver/rtc_io.h"
#include "sys/lock.h"
#include "driver/gpio.h"
#include "driver/adc.h"
#include "adc1_private.h"
#include "hal/adc_types.h"
#include "hal/adc_hal.h"
#include "hal/adc_hal_conf.h"
#include "esp_private/sar_periph_ctrl.h"
#include "esp_private/esp_sleep_internal.h"
#if SOC_DAC_SUPPORTED
#include "driver/dac.h"
#include "hal/dac_hal.h"
#endif
#if CONFIG_IDF_TARGET_ESP32S3
#include "esp_efuse_rtc_calib.h"
#endif
#define ADC_CHECK_RET(fun_ret) ({ \
if (fun_ret != ESP_OK) { \
ESP_LOGE(ADC_TAG,"%s:%d\n",__FUNCTION__,__LINE__); \
return ESP_FAIL; \
} \
})
static const char *ADC_TAG = "ADC";
#define ADC_CHECK(a, str, ret_val) ({ \
if (!(a)) { \
ESP_LOGE(ADC_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
return (ret_val); \
} \
})
#define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
#define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG)
//////////////////////// Locks ///////////////////////////////////////////
extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
#define RTC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock)
#define RTC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock)
#define DIGI_ENTER_CRITICAL()
#define DIGI_EXIT_CRITICAL()
#define ADC_POWER_ENTER() RTC_ENTER_CRITICAL()
#define ADC_POWER_EXIT() RTC_EXIT_CRITICAL()
#define DIGI_CONTROLLER_ENTER() DIGI_ENTER_CRITICAL()
#define DIGI_CONTROLLER_EXIT() DIGI_EXIT_CRITICAL()
#define SARADC1_ENTER() RTC_ENTER_CRITICAL()
#define SARADC1_EXIT() RTC_EXIT_CRITICAL()
#define SARADC2_ENTER() RTC_ENTER_CRITICAL()
#define SARADC2_EXIT() RTC_EXIT_CRITICAL()
//n stands for ADC unit: 1 for ADC1 and 2 for ADC2. Currently both unit touches the same registers
#define VREF_ENTER(n) RTC_ENTER_CRITICAL()
#define VREF_EXIT(n) RTC_EXIT_CRITICAL()
#define FSM_ENTER() RTC_ENTER_CRITICAL()
#define FSM_EXIT() RTC_EXIT_CRITICAL()
//TODO: IDF-3610
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
//prevent ADC1 being used by I2S dma and other tasks at the same time.
static _lock_t adc1_dma_lock;
#define SARADC1_ACQUIRE() _lock_acquire( &adc1_dma_lock )
#define SARADC1_RELEASE() _lock_release( &adc1_dma_lock )
#endif
/*
In ADC2, there're two locks used for different cases:
1. lock shared with app and Wi-Fi:
ESP32:
When Wi-Fi using the ADC2, we assume it will never stop, so app checks the lock and returns immediately if failed.
ESP32S2:
The controller's control over the ADC is determined by the arbiter. There is no need to control by lock.
2. lock shared between tasks:
when several tasks sharing the ADC2, we want to guarantee
all the requests will be handled.
Since conversions are short (about 31us), app returns the lock very soon,
we use a spinlock to stand there waiting to do conversions one by one.
adc2_spinlock should be acquired first, then adc2_wifi_lock or rtc_spinlock.
*/
#ifdef CONFIG_IDF_TARGET_ESP32
//prevent ADC2 being used by wifi and other tasks at the same time.
static _lock_t adc2_wifi_lock;
/** For ESP32S2 the ADC2 The right to use ADC2 is controlled by the arbiter, and there is no need to set a lock. */
#define SARADC2_ACQUIRE() _lock_acquire( &adc2_wifi_lock )
#define SARADC2_RELEASE() _lock_release( &adc2_wifi_lock )
#define SARADC2_TRY_ACQUIRE() _lock_try_acquire( &adc2_wifi_lock )
#define SARADC2_LOCK_CHECK() ((uint32_t *)adc2_wifi_lock != NULL)
#elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#define SARADC2_ACQUIRE()
#define SARADC2_RELEASE()
#define SARADC2_TRY_ACQUIRE() (0) //WIFI controller and rtc controller have independent parameter configuration.
#define SARADC2_LOCK_CHECK() (true)
#endif // CONFIG_IDF_TARGET_*
#if CONFIG_IDF_TARGET_ESP32S2
#ifdef CONFIG_PM_ENABLE
static esp_pm_lock_handle_t s_adc2_arbiter_lock;
#endif //CONFIG_PM_ENABLE
#endif // !CONFIG_IDF_TARGET_ESP32
/*---------------------------------------------------------------
ADC Common
---------------------------------------------------------------*/
// ADC Power
void adc_power_acquire(void)
{
sar_periph_ctrl_adc_oneshot_power_acquire();
sar_periph_ctrl_adc_continuous_power_acquire();
}
void adc_power_on(void)
{
sar_periph_ctrl_adc_oneshot_power_acquire();
sar_periph_ctrl_adc_continuous_power_acquire();
}
void adc_power_release(void)
{
sar_periph_ctrl_adc_continuous_power_release();
sar_periph_ctrl_adc_oneshot_power_release();
}
void adc_power_off(void)
{
sar_periph_ctrl_adc_continuous_power_release();
sar_periph_ctrl_adc_oneshot_power_release();
}
esp_err_t adc1_pad_get_io_num(adc1_channel_t channel, gpio_num_t *gpio_num)
{
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
int io = ADC_GET_IO_NUM(ADC_NUM_1, channel);
if (io < 0) {
return ESP_ERR_INVALID_ARG;
} else {
*gpio_num = (gpio_num_t)io;
}
return ESP_OK;
}
esp_err_t adc2_pad_get_io_num(adc2_channel_t channel, gpio_num_t *gpio_num)
{
ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
int io = ADC_GET_IO_NUM(ADC_NUM_2, channel);
if (io < 0) {
return ESP_ERR_INVALID_ARG;
} else {
*gpio_num = (gpio_num_t)io;
}
return ESP_OK;
}
//------------------------------------------------------------RTC Single Read----------------------------------------------//
#if SOC_ADC_RTC_CTRL_SUPPORTED
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
uint32_t get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t chan)
{
adc_atten_t atten = adc_ll_get_atten(adc_n, chan);
extern uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten);
return adc_get_calibration_offset(adc_n, chan, atten);
}
#endif //SOC_ADC_CALIBRATION_V1_SUPPORTED
esp_err_t adc_set_clk_div(uint8_t clk_div)
{
DIGI_CONTROLLER_ENTER();
adc_ll_digi_set_clk_div(clk_div);
DIGI_CONTROLLER_EXIT();
return ESP_OK;
}
static void adc_rtc_chan_init(adc_unit_t adc_unit)
{
if (adc_unit & ADC_UNIT_1) {
/* Workaround: Disable the synchronization operation function of ADC1 and DAC.
If enabled(default), ADC RTC controller sampling will cause the DAC channel output voltage. */
#if SOC_DAC_SUPPORTED
dac_hal_rtc_sync_by_adc(false);
#endif
adc_hal_rtc_output_invert(ADC_NUM_1, SOC_ADC1_DATA_INVERT_DEFAULT);
adc_ll_set_sar_clk_div(ADC_NUM_1, SOC_ADC_SAR_CLK_DIV_DEFAULT(ADC_NUM_1));
#ifdef CONFIG_IDF_TARGET_ESP32
adc_ll_hall_disable(); //Disable other peripherals.
adc_ll_amp_disable(); //Currently the LNA is not open, close it by default.
#endif
}
if (adc_unit & ADC_UNIT_2) {
adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
adc_hal_rtc_output_invert(ADC_NUM_2, SOC_ADC2_DATA_INVERT_DEFAULT);
adc_ll_set_sar_clk_div(ADC_NUM_2, SOC_ADC_SAR_CLK_DIV_DEFAULT(ADC_NUM_2));
}
}
/**
* This function is NOT an API.
* Now some to-be-deprecated APIs are using this function, so don't make it static for now.
* Will make this static on v5.0
*/
esp_err_t adc_common_gpio_init(adc_unit_t adc_unit, adc_channel_t channel)
{
gpio_num_t gpio_num = 0;
//If called with `ADC_UNIT_BOTH (ADC_UNIT_1 | ADC_UNIT_2)`, both if blocks will be run
if (adc_unit & ADC_UNIT_1) {
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
gpio_num = ADC_GET_IO_NUM(ADC_NUM_1, channel);
ADC_CHECK_RET(rtc_gpio_init(gpio_num));
ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num));
ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num));
}
if (adc_unit & ADC_UNIT_2) {
ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
gpio_num = ADC_GET_IO_NUM(ADC_NUM_2, channel);
ADC_CHECK_RET(rtc_gpio_init(gpio_num));
ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num));
ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num));
}
return ESP_OK;
}
esp_err_t adc_set_data_inv(adc_unit_t adc_unit, bool inv_en)
{
if (adc_unit & ADC_UNIT_1) {
SARADC1_ENTER();
adc_hal_rtc_output_invert(ADC_NUM_1, inv_en);
SARADC1_EXIT();
}
if (adc_unit & ADC_UNIT_2) {
SARADC2_ENTER();
adc_hal_rtc_output_invert(ADC_NUM_2, inv_en);
SARADC2_EXIT();
}
return ESP_OK;
}
esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t width_bit)
{
#if CONFIG_IDF_TARGET_ESP32
ADC_CHECK(width_bit < ADC_WIDTH_MAX, "WIDTH ERR: ESP32 support 9 ~ 12 bit width", ESP_ERR_INVALID_ARG);
#else
ADC_CHECK(width_bit == ADC_WIDTH_MAX - 1, "WIDTH ERR: see `adc_bits_width_t` for supported bit width", ESP_ERR_INVALID_ARG);
#endif
if (adc_unit & ADC_UNIT_1) {
SARADC1_ENTER();
adc_hal_rtc_set_output_format(ADC_NUM_1, width_bit);
SARADC1_EXIT();
}
if (adc_unit & ADC_UNIT_2) {
SARADC2_ENTER();
adc_hal_rtc_set_output_format(ADC_NUM_2, width_bit);
SARADC2_EXIT();
}
return ESP_OK;
}
/**
* @brief Reset RTC controller FSM.
*
* @return
* - ESP_OK Success
*/
#if !CONFIG_IDF_TARGET_ESP32
esp_err_t adc_rtc_reset(void)
{
FSM_ENTER();
adc_ll_rtc_reset();
FSM_EXIT();
return ESP_OK;
}
#endif
/*-------------------------------------------------------------------------------------
* ADC1
*------------------------------------------------------------------------------------*/
esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
{
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
ADC_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG);
adc_common_gpio_init(ADC_UNIT_1, channel);
SARADC1_ENTER();
adc_rtc_chan_init(ADC_UNIT_1);
adc_hal_set_atten(ADC_NUM_1, channel, atten);
SARADC1_EXIT();
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
adc_hal_calibration_init(ADC_NUM_1);
#endif
return ESP_OK;
}
esp_err_t adc1_config_width(adc_bits_width_t width_bit)
{
#if CONFIG_IDF_TARGET_ESP32
ADC_CHECK(width_bit < ADC_WIDTH_MAX, "WIDTH ERR: ESP32 support 9 ~ 12 bit width", ESP_ERR_INVALID_ARG);
#else
ADC_CHECK(width_bit == ADC_WIDTH_MAX - 1, "WIDTH ERR: see `adc_bits_width_t` for supported bit width", ESP_ERR_INVALID_ARG);
#endif
SARADC1_ENTER();
adc_hal_rtc_set_output_format(ADC_NUM_1, width_bit);
SARADC1_EXIT();
return ESP_OK;
}
esp_err_t adc1_dma_mode_acquire(void)
{
/* Use locks to avoid digtal and RTC controller conflicts.
for adc1, block until acquire the lock. */
SARADC1_ACQUIRE();
ESP_LOGD( ADC_TAG, "dma mode takes adc1 lock." );
sar_periph_ctrl_adc_continuous_power_acquire();
SARADC1_ENTER();
/* switch SARADC into DIG channel */
adc_ll_set_controller(ADC_NUM_1, ADC_LL_CTRL_DIG);
SARADC1_EXIT();
return ESP_OK;
}
esp_err_t adc1_rtc_mode_acquire(void)
{
/* Use locks to avoid digtal and RTC controller conflicts.
for adc1, block until acquire the lock. */
SARADC1_ACQUIRE();
sar_periph_ctrl_adc_oneshot_power_acquire();
SARADC1_ENTER();
/* switch SARADC into RTC channel. */
adc_ll_set_controller(ADC_NUM_1, ADC_LL_CTRL_RTC);
SARADC1_EXIT();
return ESP_OK;
}
esp_err_t adc1_lock_release(void)
{
ADC_CHECK((uint32_t *)adc1_dma_lock != NULL, "adc1 lock release called before acquire", ESP_ERR_INVALID_STATE );
/* Use locks to avoid digtal and RTC controller conflicts. for adc1, block until acquire the lock. */
sar_periph_ctrl_adc_oneshot_power_release();
SARADC1_RELEASE();
return ESP_OK;
}
int adc1_get_raw(adc1_channel_t channel)
{
int adc_value;
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
adc1_rtc_mode_acquire();
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
// Get calibration value before going into critical section
uint32_t cal_val = get_calibration_offset(ADC_NUM_1, channel);
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
#endif //SOC_ADC_CALIBRATION_V1_SUPPORTED
SARADC1_ENTER();
#ifdef CONFIG_IDF_TARGET_ESP32
adc_ll_hall_disable(); //Disable other peripherals.
adc_ll_amp_disable(); //Currently the LNA is not open, close it by default.
#endif
adc_ll_set_controller(ADC_NUM_1, ADC_LL_CTRL_RTC); //Set controller
adc_hal_convert(ADC_NUM_1, channel, &adc_value); //Start conversion, For ADC1, the data always valid.
#if !CONFIG_IDF_TARGET_ESP32
adc_ll_rtc_reset(); //Reset FSM of rtc controller
#endif
SARADC1_EXIT();
adc1_lock_release();
return adc_value;
}
int adc1_get_voltage(adc1_channel_t channel) //Deprecated. Use adc1_get_raw() instead
{
return adc1_get_raw(channel);
}
#if SOC_ULP_SUPPORTED
void adc1_ulp_enable(void)
{
sar_periph_ctrl_adc_oneshot_power_acquire();
SARADC1_ENTER();
adc_ll_set_controller(ADC_NUM_1, ADC_LL_CTRL_ULP);
/* since most users do not need LNA and HALL with uLP, we disable them here
open them in the uLP if needed. */
#ifdef CONFIG_IDF_TARGET_ESP32
/* disable other peripherals. */
adc_ll_hall_disable();
adc_ll_amp_disable();
#endif
SARADC1_EXIT();
esp_sleep_enable_adc_tsens_monitor(true);
}
#endif
/*---------------------------------------------------------------
ADC2
---------------------------------------------------------------*/
/** For ESP32S2 the ADC2 The right to use ADC2 is controlled by the arbiter, and there is no need to set a lock.*/
esp_err_t adc2_wifi_acquire(void)
{
/* Wi-Fi module will use adc2. Use locks to avoid conflicts. */
SARADC2_ACQUIRE();
ESP_LOGD( ADC_TAG, "Wi-Fi takes adc2 lock." );
return ESP_OK;
}
esp_err_t adc2_wifi_release(void)
{
ADC_CHECK(SARADC2_LOCK_CHECK(), "wifi release called before acquire", ESP_ERR_INVALID_STATE );
SARADC2_RELEASE();
ESP_LOGD( ADC_TAG, "Wi-Fi returns adc2 lock." );
return ESP_OK;
}
esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
{
ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
ADC_CHECK(atten <= ADC_ATTEN_11db, "ADC2 Atten Err", ESP_ERR_INVALID_ARG);
adc_common_gpio_init(ADC_UNIT_2, channel);
if ( SARADC2_TRY_ACQUIRE() == -1 ) {
//try the lock, return if failed (wifi using).
return ESP_ERR_TIMEOUT;
}
//avoid collision with other tasks
SARADC2_ENTER();
adc_rtc_chan_init(ADC_UNIT_2);
adc_hal_set_atten(ADC_NUM_2, channel, atten);
SARADC2_EXIT();
SARADC2_RELEASE();
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
adc_hal_calibration_init(ADC_NUM_2);
#endif
return ESP_OK;
}
static inline void adc2_init(void)
{
#if CONFIG_IDF_TARGET_ESP32S2
#ifdef CONFIG_PM_ENABLE
/* Lock APB clock. */
if (s_adc2_arbiter_lock == NULL) {
esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc2", &s_adc2_arbiter_lock);
}
#endif //CONFIG_PM_ENABLE
#endif //CONFIG_IDF_TARGET_ESP32S2
}
static inline void adc2_dac_disable( adc2_channel_t channel)
{
#if SOC_DAC_SUPPORTED
#ifdef CONFIG_IDF_TARGET_ESP32
if ( channel == ADC2_CHANNEL_8 ) { // the same as DAC channel 1
dac_output_disable(DAC_CHANNEL_1);
} else if ( channel == ADC2_CHANNEL_9 ) {
dac_output_disable(DAC_CHANNEL_2);
}
#else
if ( channel == ADC2_CHANNEL_6 ) { // the same as DAC channel 1
dac_output_disable(DAC_CHANNEL_1);
} else if ( channel == ADC2_CHANNEL_7 ) {
dac_output_disable(DAC_CHANNEL_2);
}
#endif
#endif // SOC_DAC_SUPPORTED
}
/**
* @note For ESP32S2:
* The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
* Or, the RTC controller will fail when get raw data.
* This issue does not occur on digital controllers (DMA mode), and the hardware guarantees that there will be no errors.
*/
esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out)
{
esp_err_t ret = ESP_OK;
int adc_value = 0;
ADC_CHECK(raw_out != NULL, "ADC out value err", ESP_ERR_INVALID_ARG);
ADC_CHECK(channel < ADC2_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG);
#if CONFIG_IDF_TARGET_ESP32
ADC_CHECK(width_bit < ADC_WIDTH_MAX, "WIDTH ERR: ESP32 support 9 ~ 12 bit width", ESP_ERR_INVALID_ARG);
#else
ADC_CHECK(width_bit == ADC_WIDTH_MAX - 1, "WIDTH ERR: see `adc_bits_width_t` for supported bit width", ESP_ERR_INVALID_ARG);
#endif
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
// Get calibration value before going into critical section
uint32_t cal_val = get_calibration_offset(ADC_NUM_2, channel);
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
#endif //SOC_ADC_CALIBRATION_V1_SUPPORTED
if ( SARADC2_TRY_ACQUIRE() == -1 ) {
//try the lock, return if failed (wifi using).
return ESP_ERR_TIMEOUT;
}
sar_periph_ctrl_adc_oneshot_power_acquire(); //in critical section with whole rtc module
//avoid collision with other tasks
adc2_init(); // in critical section with whole rtc module. because the PWDET use the same registers, place it here.
SARADC2_ENTER();
#if SOC_ADC_ARBITER_SUPPORTED
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
adc_hal_arbiter_config(&config);
#endif
#ifdef CONFIG_ADC_DISABLE_DAC
adc2_dac_disable(channel); //disable other peripherals
#endif
adc_hal_rtc_set_output_format(ADC_NUM_2, width_bit);
#if CONFIG_IDF_TARGET_ESP32
adc_ll_set_controller(ADC_NUM_2, ADC_LL_CTRL_RTC);// set controller
#else
adc_ll_set_controller(ADC_NUM_2, ADC_LL_CTRL_ARB);// set controller
#endif
#if CONFIG_IDF_TARGET_ESP32S2
#ifdef CONFIG_PM_ENABLE
if (s_adc2_arbiter_lock) {
esp_pm_lock_acquire(s_adc2_arbiter_lock);
}
#endif //CONFIG_PM_ENABLE
#endif //CONFIG_IDF_TARGET_ESP32
ret = adc_hal_convert(ADC_NUM_2, channel, &adc_value);
if (ret != ESP_OK) {
adc_value = -1;
}
#if CONFIG_IDF_TARGET_ESP32S2
#ifdef CONFIG_PM_ENABLE
/* Release APB clock. */
if (s_adc2_arbiter_lock) {
esp_pm_lock_release(s_adc2_arbiter_lock);
}
#endif //CONFIG_PM_ENABLE
#endif //CONFIG_IDF_TARGET_ESP32
SARADC2_EXIT();
sar_periph_ctrl_adc_oneshot_power_release();
SARADC2_RELEASE();
*raw_out = adc_value;
return ret;
}
esp_err_t adc2_vref_to_gpio(gpio_num_t gpio)
{
return adc_vref_to_gpio(ADC_UNIT_2, gpio);
}
esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
{
#ifdef CONFIG_IDF_TARGET_ESP32
if (adc_unit & ADC_UNIT_1) {
return ESP_ERR_INVALID_ARG;
}
#endif
adc2_channel_t ch = ADC2_CHANNEL_MAX;
/* Check if the GPIO supported. */
for (int i = 0; i < ADC2_CHANNEL_MAX; i++) {
if (gpio == ADC_GET_IO_NUM(ADC_NUM_2, i)) {
ch = i;
break;
}
}
if (ch == ADC2_CHANNEL_MAX) {
return ESP_ERR_INVALID_ARG;
}
sar_periph_ctrl_adc_oneshot_power_acquire();
if (adc_unit & ADC_UNIT_1) {
VREF_ENTER(1);
adc_hal_vref_output(ADC_NUM_1, ch, true);
VREF_EXIT(1);
} else if (adc_unit & ADC_UNIT_2) {
VREF_ENTER(2);
adc_hal_vref_output(ADC_NUM_2, ch, true);
VREF_EXIT(2);
}
//Configure RTC gpio, Only ADC2's channels IO are supported to output reference voltage.
adc_common_gpio_init(ADC_UNIT_2, ch);
return ESP_OK;
}
#endif //SOC_ADC_RTC_CTRL_SUPPORTED