esp-idf/components/esp32s3/spiram.c
wanlei 846b51fe15 param: fixed heap pool reservation for DMA/internal usage fail issue
As heap block may be allocated into multiple non-continuous chunks, to
reserve enough memory for dma/internal usage, we do the malloc in the
step of max available block.
2022-07-28 10:15:53 +08:00

338 lines
11 KiB
C

/*
Abstraction layer for spi-ram. For now, it's no more than a stub for the spiram_psram functions, but if
we add more types of external RAM memory, this can be made into a more intelligent dispatcher.
*/
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <string.h>
#include <sys/param.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "esp_err.h"
#include "esp32s3/spiram.h"
#include "spiram_psram.h"
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "freertos/xtensa_api.h"
#include "soc/soc.h"
#include "esp_heap_caps_init.h"
#include "soc/soc_memory_layout.h"
#include "soc/dport_reg.h"
#include "esp32s3/rom/cache.h"
#include "soc/cache_memory.h"
#include "soc/extmem_reg.h"
#define PSRAM_MODE PSRAM_VADDR_MODE_NORMAL
#if CONFIG_SPIRAM
static const char *TAG = "spiram";
#if CONFIG_SPIRAM_SPEED_40M
#define PSRAM_SPEED PSRAM_CACHE_S40M
#elif CONFIG_SPIRAM_SPEED_80M
#define PSRAM_SPEED PSRAM_CACHE_S80M
#else
#define PSRAM_SPEED PSRAM_CACHE_S20M
#endif
static bool spiram_inited = false;
/*
Simple RAM test. Writes a word every 32 bytes. Takes about a second to complete for 4MiB. Returns
true when RAM seems OK, false when test fails. WARNING: Do not run this before the 2nd cpu has been
initialized (in a two-core system) or after the heap allocator has taken ownership of the memory.
*/
bool esp_spiram_test(void)
{
size_t spiram_size = esp_spiram_get_size();
volatile int *spiram = (volatile int *)(SOC_EXTRAM_DATA_HIGH - spiram_size);
size_t p;
size_t s = spiram_size;
int errct = 0;
int initial_err = -1;
if (SOC_EXTRAM_DATA_SIZE < spiram_size) {
ESP_EARLY_LOGW(TAG, "Only test spiram from %08x to %08x\n", SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_HIGH);
spiram = (volatile int *)SOC_EXTRAM_DATA_LOW;
s = SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW;
}
for (p = 0; p < (s / sizeof(int)); p += 8) {
spiram[p] = p ^ 0xAAAAAAAA;
}
for (p = 0; p < (s / sizeof(int)); p += 8) {
if (spiram[p] != (p ^ 0xAAAAAAAA)) {
errct++;
if (errct == 1) {
initial_err = p * 4;
}
if (errct < 4) {
ESP_EARLY_LOGE(TAG, "SPI SRAM error@%08x:%08x/%08x \n", &spiram[p], spiram[p], p ^ 0xAAAAAAAA);
}
}
}
if (errct) {
ESP_EARLY_LOGE(TAG, "SPI SRAM memory test fail. %d/%d writes failed, first @ %X\n", errct, s / 32, initial_err + SOC_EXTRAM_DATA_LOW);
return false;
} else {
ESP_EARLY_LOGI(TAG, "SPI SRAM memory test OK");
return true;
}
}
void IRAM_ATTR esp_spiram_init_cache(void)
{
size_t spiram_size = esp_spiram_get_size();
Cache_Suspend_DCache();
if ((SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW) >= spiram_size) {
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SOC_EXTRAM_DATA_HIGH - spiram_size, 0, 64, spiram_size >> 16, 0);
} else {
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SOC_EXTRAM_DATA_HIGH - spiram_size, 0, 64, (SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW) >> 16, 0);
}
REG_CLR_BIT(EXTMEM_DCACHE_CTRL1_REG, EXTMEM_DCACHE_SHUT_CORE0_BUS);
#if !CONFIG_FREERTOS_UNICORE
REG_CLR_BIT(EXTMEM_DCACHE_CTRL1_REG, EXTMEM_DCACHE_SHUT_CORE1_BUS);
#endif
Cache_Resume_DCache(0);
}
static uint32_t pages_for_flash = 0;
static uint32_t instruction_in_spiram = 0;
static uint32_t rodata_in_spiram = 0;
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
static int instr_flash2spiram_offs = 0;
static uint32_t instr_start_page = 0;
static uint32_t instr_end_page = 0;
#endif
#if CONFIG_SPIRAM_RODATA
static int rodata_flash2spiram_offs = 0;
static uint32_t rodata_start_page = 0;
static uint32_t rodata_end_page = 0;
#endif
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
static uint32_t page0_mapped = 0;
static uint32_t page0_page = INVALID_PHY_PAGE;
#endif
uint32_t esp_spiram_instruction_access_enabled(void)
{
return instruction_in_spiram;
}
uint32_t esp_spiram_rodata_access_enabled(void)
{
return rodata_in_spiram;
}
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
esp_err_t esp_spiram_enable_instruction_access(void)
{
size_t spiram_size = esp_spiram_get_size();
uint32_t pages_in_flash = 0;
pages_in_flash += Cache_Count_Flash_Pages(CACHE_IBUS, &page0_mapped);
if ((pages_in_flash + pages_for_flash) > (spiram_size >> 16)) {
ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the instructions, has %d pages, need %d pages.", (spiram_size >> 16), (pages_in_flash + pages_for_flash));
return ESP_FAIL;
}
ESP_EARLY_LOGI(TAG, "Instructions copied and mapped to SPIRAM");
uint32_t mmu_value = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_IROM_MMU_START);
instr_flash2spiram_offs = mmu_value - pages_for_flash;
ESP_EARLY_LOGV(TAG, "Instructions from flash page%d copy to SPIRAM page%d, Offset: %d", mmu_value, pages_for_flash, instr_flash2spiram_offs);
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(CACHE_IBUS, IRAM0_CACHE_ADDRESS_LOW, pages_for_flash, &page0_page);
instruction_in_spiram = 1;
return ESP_OK;
}
#endif
#if CONFIG_SPIRAM_RODATA
esp_err_t esp_spiram_enable_rodata_access(void)
{
size_t spiram_size = esp_spiram_get_size();
uint32_t pages_in_flash = 0;
pages_in_flash += Cache_Count_Flash_Pages(CACHE_DBUS, &page0_mapped);
if ((pages_in_flash + pages_for_flash) > (spiram_size >> 16)) {
ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the read only data.");
return ESP_FAIL;
}
ESP_EARLY_LOGI(TAG, "Read only data copied and mapped to SPIRAM");
uint32_t mmu_value = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_DROM_MMU_START);
rodata_flash2spiram_offs = mmu_value - pages_for_flash;
ESP_EARLY_LOGV(TAG, "Rodata from flash page%d copy to SPIRAM page%d, Offset: %d", mmu_value, pages_for_flash, rodata_flash2spiram_offs);
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(CACHE_DBUS, DRAM0_CACHE_ADDRESS_LOW, pages_for_flash, &page0_page);
rodata_in_spiram = 1;
return ESP_OK;
}
#endif
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
void instruction_flash_page_info_init(void)
{
uint32_t instr_page_cnt = ((uint32_t)&_instruction_reserved_end - SOC_IROM_LOW + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE;
instr_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_IROM_MMU_START);
instr_start_page &= MMU_ADDRESS_MASK;
instr_end_page = instr_start_page + instr_page_cnt - 1;
}
uint32_t IRAM_ATTR instruction_flash_start_page_get(void)
{
return instr_start_page;
}
uint32_t IRAM_ATTR instruction_flash_end_page_get(void)
{
return instr_end_page;
}
int IRAM_ATTR instruction_flash2spiram_offset(void)
{
return instr_flash2spiram_offs;
}
#endif
#if CONFIG_SPIRAM_RODATA
void rodata_flash_page_info_init(void)
{
uint32_t rodata_page_cnt = ((uint32_t)&_rodata_reserved_end - ((uint32_t)&_rodata_reserved_start & ~ (MMU_PAGE_SIZE - 1)) + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE;
rodata_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_DROM_MMU_START);
rodata_start_page &= MMU_ADDRESS_MASK;
rodata_end_page = rodata_start_page + rodata_page_cnt - 1;
}
uint32_t IRAM_ATTR rodata_flash_start_page_get(void)
{
return rodata_start_page;
}
uint32_t IRAM_ATTR rodata_flash_end_page_get(void)
{
return rodata_end_page;
}
int IRAM_ATTR rodata_flash2spiram_offset(void)
{
return rodata_flash2spiram_offs;
}
#endif
esp_err_t esp_spiram_init(void)
{
esp_err_t r;
r = psram_enable(PSRAM_SPEED, PSRAM_MODE);
if (r != ESP_OK) {
#if CONFIG_SPIRAM_IGNORE_NOTFOUND
ESP_EARLY_LOGE(TAG, "SPI RAM enabled but initialization failed. Bailing out.");
#endif
return r;
}
spiram_inited = true;
#if (CONFIG_SPIRAM_SIZE != -1)
if (esp_spiram_get_size() != CONFIG_SPIRAM_SIZE) {
ESP_EARLY_LOGE(TAG, "Expected %dKiB chip but found %dKiB chip. Bailing out..", CONFIG_SPIRAM_SIZE / 1024, esp_spiram_get_size() / 1024);
return ESP_ERR_INVALID_SIZE;
}
#endif
ESP_EARLY_LOGI(TAG, "Found %dMBit SPI RAM device",
(esp_spiram_get_size() * 8) / (1024 * 1024));
ESP_EARLY_LOGI(TAG, "SPI RAM mode: %s", PSRAM_SPEED == PSRAM_CACHE_S40M ? "sram 40m" : \
PSRAM_SPEED == PSRAM_CACHE_S80M ? "sram 80m" : "sram 20m");
ESP_EARLY_LOGI(TAG, "PSRAM initialized, cache is in %s mode.", \
(PSRAM_MODE == PSRAM_VADDR_MODE_EVENODD) ? "even/odd (2-core)" : \
(PSRAM_MODE == PSRAM_VADDR_MODE_LOWHIGH) ? "low/high (2-core)" : \
(PSRAM_MODE == PSRAM_VADDR_MODE_NORMAL) ? "normal (1-core)" : "ERROR");
return ESP_OK;
}
esp_err_t esp_spiram_add_to_heapalloc(void)
{
size_t spiram_size = esp_spiram_get_size();
uint32_t size_for_flash = (pages_for_flash << 16);
ESP_EARLY_LOGI(TAG, "Adding pool of %dK of external SPI memory to heap allocator", (spiram_size - (pages_for_flash << 16)) / 1024);
//Add entire external RAM region to heap allocator. Heap allocator knows the capabilities of this type of memory, so there's
//no need to explicitly specify them.
return heap_caps_add_region((intptr_t)SOC_EXTRAM_DATA_HIGH - spiram_size + size_for_flash, (intptr_t)SOC_EXTRAM_DATA_HIGH - 1);
}
esp_err_t esp_spiram_reserve_dma_pool(size_t size) {
if (size == 0) {
return ESP_OK;
}
ESP_EARLY_LOGI(TAG, "Reserving pool of %dK of internal memory for DMA/internal allocations", size/1024);
/* Pool may be allocated in multiple non-contiguous chunks, depending on available RAM */
while (size > 0) {
size_t next_size = heap_caps_get_largest_free_block(MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
next_size = MIN(next_size, size);
ESP_EARLY_LOGD(TAG, "Allocating block of size %d bytes", next_size);
uint8_t *dma_heap = heap_caps_malloc(next_size, MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
if (!dma_heap || next_size == 0) {
return ESP_ERR_NO_MEM;
}
uint32_t caps[] = { 0, MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT|MALLOC_CAP_32BIT };
esp_err_t e = heap_caps_add_region_with_caps(caps, (intptr_t) dma_heap, (intptr_t) dma_heap+next_size-1);
if (e != ESP_OK) {
return e;
}
size -= next_size;
}
return ESP_OK;
}
size_t esp_spiram_get_size(void)
{
if (!spiram_inited) {
ESP_EARLY_LOGE(TAG, "SPI RAM not initialized");
abort();
}
psram_size_t size = psram_get_size();
if (size == PSRAM_SIZE_16MBITS) {
return 2 * 1024 * 1024;
}
if (size == PSRAM_SIZE_32MBITS) {
return 4 * 1024 * 1024;
}
if (size == PSRAM_SIZE_64MBITS) {
return 8 * 1024 * 1024;
}
return CONFIG_SPIRAM_SIZE;
}
/*
Before flushing the cache, if psram is enabled as a memory-mapped thing, we need to write back the data in the cache to the psram first,
otherwise it will get lost. For now, we just read 64/128K of random PSRAM memory to do this.
*/
void IRAM_ATTR esp_spiram_writeback_cache(void)
{
extern void Cache_WriteBack_All(void);
Cache_WriteBack_All();
}
#endif