esp-idf/tools/unit-test-app/components/unity/unity_platform.c

311 lines
8.0 KiB
C

#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <stdio.h>
#include "unity.h"
#include "rom/ets_sys.h"
#include "rom/uart.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_log.h"
#include "soc/cpu.h"
#include "esp_heap_caps.h"
#include "esp_heap_trace.h"
#include "test_utils.h"
#define unity_printf ets_printf
// Pointers to the head and tail of linked list of test description structs:
static struct test_desc_t* s_unity_tests_first = NULL;
static struct test_desc_t* s_unity_tests_last = NULL;
// Inverse of the filter
static bool s_invert = false;
static size_t before_free_8bit;
static size_t before_free_32bit;
/* Each unit test is allowed to "leak" this many bytes.
TODO: Make this value editable by the test.
Will always need to be some value here, as fragmentation can reduce free space even when no leak is occuring.
*/
const size_t WARN_LEAK_THRESHOLD = 256;
const size_t CRITICAL_LEAK_THRESHOLD = 4096;
/* setUp runs before every test */
void setUp(void)
{
// If heap tracing is enabled in kconfig, leak trace the test
#ifdef CONFIG_HEAP_TRACING
const size_t num_heap_records = 80;
static heap_trace_record_t *record_buffer;
if (!record_buffer) {
record_buffer = malloc(sizeof(heap_trace_record_t) * num_heap_records);
assert(record_buffer);
heap_trace_init_standalone(record_buffer, num_heap_records);
}
#endif
printf("%s", ""); /* sneakily lazy-allocate the reent structure for this test task */
get_test_data_partition(); /* allocate persistent partition table structures */
before_free_8bit = heap_caps_get_free_size(MALLOC_CAP_8BIT);
before_free_32bit = heap_caps_get_free_size(MALLOC_CAP_32BIT);
#ifdef CONFIG_HEAP_TRACING
heap_trace_start(HEAP_TRACE_LEAKS);
#endif
}
static void check_leak(size_t before_free, size_t after_free, const char *type)
{
if (before_free <= after_free) {
return;
}
size_t leaked = before_free - after_free;
if (leaked < WARN_LEAK_THRESHOLD) {
return;
}
printf("MALLOC_CAP_%s %s leak: Before %u bytes free, After %u bytes free (delta %u)\n",
type,
leaked < CRITICAL_LEAK_THRESHOLD ? "potential" : "critical",
before_free, after_free, leaked);
fflush(stdout);
TEST_ASSERT_MESSAGE(leaked < CRITICAL_LEAK_THRESHOLD, "The test leaked too much memory");
}
/* tearDown runs after every test */
void tearDown(void)
{
/* some FreeRTOS stuff is cleaned up by idle task */
vTaskDelay(5);
/* We want the teardown to have this file in the printout if TEST_ASSERT fails */
const char *real_testfile = Unity.TestFile;
Unity.TestFile = __FILE__;
/* check if unit test has caused heap corruption in any heap */
TEST_ASSERT_MESSAGE( heap_caps_check_integrity(MALLOC_CAP_INVALID, true), "The test has corrupted the heap");
/* check for leaks */
#ifdef CONFIG_HEAP_TRACING
heap_trace_stop();
heap_trace_dump();
#endif
size_t after_free_8bit = heap_caps_get_free_size(MALLOC_CAP_8BIT);
size_t after_free_32bit = heap_caps_get_free_size(MALLOC_CAP_32BIT);
check_leak(before_free_8bit, after_free_8bit, "8BIT");
check_leak(before_free_32bit, after_free_32bit, "32BIT");
Unity.TestFile = real_testfile; // go back to the real filename
}
void unity_putc(int c)
{
if (c == '\n')
{
uart_tx_one_char('\r');
uart_tx_one_char('\n');
}
else if (c == '\r')
{
}
else
{
uart_tx_one_char(c);
}
}
void unity_flush()
{
uart_tx_wait_idle(0); // assume that output goes to UART0
}
void unity_testcase_register(struct test_desc_t* desc)
{
if (!s_unity_tests_first)
{
s_unity_tests_first = desc;
s_unity_tests_last = desc;
}
else
{
struct test_desc_t* temp = s_unity_tests_first;
s_unity_tests_first = desc;
s_unity_tests_first->next = temp;
}
}
static void unity_run_single_test(const struct test_desc_t* test)
{
printf("Running %s...\n", test->name);
Unity.TestFile = test->file;
Unity.CurrentDetail1 = test->desc;
UnityDefaultTestRun(test->fn, test->name, test->line);
}
static void unity_run_single_test_by_index(int index)
{
const struct test_desc_t* test;
for (test = s_unity_tests_first; test != NULL && index != 0; test = test->next, --index)
{
}
if (test != NULL)
{
unity_run_single_test(test);
}
}
static void unity_run_single_test_by_index_parse(const char* filter, int index_max)
{
if (s_invert)
{
printf("Inverse is not supported for that kind of filter\n");
return;
}
int test_index = strtol(filter, NULL, 10);
if (test_index >= 1 && test_index <= index_max)
{
uint32_t start;
RSR(CCOUNT, start);
unity_run_single_test_by_index(test_index - 1);
uint32_t end;
RSR(CCOUNT, end);
uint32_t ms = (end - start) / (XT_CLOCK_FREQ / 1000);
printf("Test ran in %dms\n", ms);
}
}
static void unity_run_single_test_by_name(const char* filter)
{
if (s_invert)
{
printf("Inverse is not supported for that kind of filter\n");
return;
}
char tmp[256];
strncpy(tmp, filter + 1, sizeof(tmp) - 1);
tmp[strlen(filter) - 2] = 0;
for (const struct test_desc_t* test = s_unity_tests_first; test != NULL; test = test->next)
{
if (strcmp(test->name, tmp) == 0)
{
unity_run_single_test(test);
}
}
}
void unity_run_all_tests()
{
if (s_invert)
{
printf("Inverse is not supported for that kind of filter\n");
return;
}
for (const struct test_desc_t* test = s_unity_tests_first; test != NULL; test = test->next)
{
unity_run_single_test(test);
}
}
void unity_run_tests_with_filter(const char* filter)
{
if (s_invert)
{
++filter;
}
printf("Running tests %smatching '%s'...\n", s_invert ? "NOT " : "", filter);
for (const struct test_desc_t* test = s_unity_tests_first; test != NULL; test = test->next)
{
if ((strstr(test->desc, filter) != NULL) == !s_invert)
{
unity_run_single_test(test);
}
}
}
static void trim_trailing_space(char* str)
{
char* end = str + strlen(str) - 1;
while (end >= str && isspace((int) *end))
{
*end = 0;
--end;
}
}
static int print_test_menu(void)
{
int test_counter = 0;
unity_printf("\n\nHere's the test menu, pick your combo:\n");
for (const struct test_desc_t* test = s_unity_tests_first;
test != NULL;
test = test->next, ++test_counter)
{
unity_printf("(%d)\t\"%s\" %s\n", test_counter + 1, test->name, test->desc);
}
return test_counter;
}
void unity_run_menu()
{
int test_count = print_test_menu();
while (true)
{
char cmdline[256] = { 0 };
while(strlen(cmdline) == 0)
{
/* Flush anything already in the RX buffer */
while(uart_rx_one_char((uint8_t *) cmdline) == OK) {
}
/* Read input */
UartRxString((uint8_t*) cmdline, sizeof(cmdline) - 1);
trim_trailing_space(cmdline);
if(strlen(cmdline) == 0) {
/* if input was newline, print a new menu */
print_test_menu();
}
}
UNITY_BEGIN();
size_t idx = 0;
if (cmdline[idx] == '!')
{
s_invert = true;
++idx;
}
else
{
s_invert = false;
}
if (cmdline[idx] == '*')
{
unity_run_all_tests();
}
else if (cmdline[idx] =='[')
{
unity_run_tests_with_filter(cmdline + idx);
}
else if (cmdline[idx] =='"')
{
unity_run_single_test_by_name(cmdline + idx);
}
else if (isdigit((unsigned char)cmdline[idx]))
{
unity_run_single_test_by_index_parse(cmdline + idx, test_count);
}
UNITY_END();
printf("Enter next test, or 'enter' to see menu\n");
}
}