mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
364 lines
12 KiB
C
364 lines
12 KiB
C
/*
|
|
Abstraction layer for spi-ram. For now, it's no more than a stub for the spiram_psram functions, but if
|
|
we add more types of external RAM memory, this can be made into a more intelligent dispatcher.
|
|
*/
|
|
|
|
/*
|
|
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <sys/param.h>
|
|
#include "sdkconfig.h"
|
|
#include "esp_attr.h"
|
|
#include "esp_err.h"
|
|
#include "esp32s3/spiram.h"
|
|
#include "spiram_psram.h"
|
|
#include "esp_log.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/xtensa_api.h"
|
|
#include "soc/soc.h"
|
|
#include "esp_heap_caps_init.h"
|
|
#include "soc/soc_memory_layout.h"
|
|
#include "soc/dport_reg.h"
|
|
#include "esp32s3/rom/cache.h"
|
|
#include "soc/cache_memory.h"
|
|
#include "soc/extmem_reg.h"
|
|
|
|
#define PSRAM_MODE PSRAM_VADDR_MODE_NORMAL
|
|
|
|
//This is for size align
|
|
#define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
|
|
|
|
#if CONFIG_SPIRAM
|
|
|
|
static const char *TAG = "spiram";
|
|
|
|
#if CONFIG_SPIRAM_SPEED_40M
|
|
#define PSRAM_SPEED PSRAM_CACHE_S40M
|
|
#else //#if CONFIG_SPIRAM_SPEED_80M
|
|
#define PSRAM_SPEED PSRAM_CACHE_S80M
|
|
#endif
|
|
|
|
static bool s_spiram_inited = false;
|
|
extern int _rodata_reserved_end;
|
|
|
|
|
|
/*
|
|
Simple RAM test. Writes a word every 32 bytes. Takes about a second to complete for 4MiB. Returns
|
|
true when RAM seems OK, false when test fails. WARNING: Do not run this before the 2nd cpu has been
|
|
initialized (in a two-core system) or after the heap allocator has taken ownership of the memory.
|
|
*/
|
|
bool esp_spiram_test(void)
|
|
{
|
|
size_t spiram_size = esp_spiram_get_size();
|
|
volatile int *spiram = (volatile int *)(SOC_EXTRAM_DATA_HIGH - spiram_size);
|
|
size_t p;
|
|
size_t s = spiram_size;
|
|
int errct = 0;
|
|
int initial_err = -1;
|
|
|
|
if (SOC_EXTRAM_DATA_SIZE < spiram_size) {
|
|
ESP_EARLY_LOGW(TAG, "Only test spiram from %08x to %08x\n", SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_HIGH);
|
|
spiram = (volatile int *)SOC_EXTRAM_DATA_LOW;
|
|
s = SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW;
|
|
}
|
|
for (p = 0; p < (s / sizeof(int)); p += 8) {
|
|
spiram[p] = p ^ 0xAAAAAAAA;
|
|
}
|
|
for (p = 0; p < (s / sizeof(int)); p += 8) {
|
|
if (spiram[p] != (p ^ 0xAAAAAAAA)) {
|
|
errct++;
|
|
if (errct == 1) {
|
|
initial_err = p * 4;
|
|
}
|
|
if (errct < 4) {
|
|
ESP_EARLY_LOGE(TAG, "SPI SRAM error@%08x:%08x/%08x \n", &spiram[p], spiram[p], p ^ 0xAAAAAAAA);
|
|
}
|
|
}
|
|
}
|
|
if (errct) {
|
|
ESP_EARLY_LOGE(TAG, "SPI SRAM memory test fail. %d/%d writes failed, first @ %X\n", errct, s / 32, initial_err + SOC_EXTRAM_DATA_LOW);
|
|
return false;
|
|
} else {
|
|
ESP_EARLY_LOGI(TAG, "SPI SRAM memory test OK");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void IRAM_ATTR esp_spiram_init_cache(void)
|
|
{
|
|
|
|
uint32_t rodata_end_aligned = ALIGN_UP_BY((uint32_t)&_rodata_reserved_end, 0x10000);
|
|
ESP_EARLY_LOGD(TAG, "rodata_end_aligned addr: 0x%x (page size: 0x%x)", rodata_end_aligned, 0x10000);
|
|
|
|
size_t spiram_size = esp_spiram_get_size();
|
|
if ((SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW) < spiram_size) {
|
|
spiram_size = SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW;
|
|
}
|
|
uint32_t vaddr_start = SOC_EXTRAM_DATA_HIGH - spiram_size;
|
|
ESP_EARLY_LOGD(TAG, "psram vaddr_start addr: 0x%x", vaddr_start);
|
|
|
|
if (vaddr_start < rodata_end_aligned) {
|
|
ESP_EARLY_LOGE(TAG, "bin size too big, no enough page to map psram");
|
|
abort();
|
|
}
|
|
|
|
Cache_Suspend_DCache();
|
|
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SOC_EXTRAM_DATA_HIGH - spiram_size, 0, 64, spiram_size >> 16, 0);
|
|
|
|
REG_CLR_BIT(EXTMEM_DCACHE_CTRL1_REG, EXTMEM_DCACHE_SHUT_CORE0_BUS);
|
|
#if !CONFIG_FREERTOS_UNICORE
|
|
REG_CLR_BIT(EXTMEM_DCACHE_CTRL1_REG, EXTMEM_DCACHE_SHUT_CORE1_BUS);
|
|
#endif
|
|
Cache_Resume_DCache(0);
|
|
}
|
|
|
|
static uint32_t pages_for_flash = 0;
|
|
static uint32_t instruction_in_spiram = 0;
|
|
static uint32_t rodata_in_spiram = 0;
|
|
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
|
static int instr_flash2spiram_offs = 0;
|
|
static uint32_t instr_start_page = 0;
|
|
static uint32_t instr_end_page = 0;
|
|
#endif
|
|
|
|
#if CONFIG_SPIRAM_RODATA
|
|
static int rodata_flash2spiram_offs = 0;
|
|
static uint32_t rodata_start_page = 0;
|
|
static uint32_t rodata_end_page = 0;
|
|
#endif
|
|
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
|
|
static uint32_t page0_mapped = 0;
|
|
static uint32_t page0_page = INVALID_PHY_PAGE;
|
|
#endif
|
|
|
|
uint32_t esp_spiram_instruction_access_enabled(void)
|
|
{
|
|
return instruction_in_spiram;
|
|
}
|
|
|
|
uint32_t esp_spiram_rodata_access_enabled(void)
|
|
{
|
|
return rodata_in_spiram;
|
|
}
|
|
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
|
esp_err_t esp_spiram_enable_instruction_access(void)
|
|
{
|
|
size_t spiram_size = esp_spiram_get_size();
|
|
uint32_t pages_in_flash = 0;
|
|
pages_in_flash += Cache_Count_Flash_Pages(CACHE_IBUS, &page0_mapped);
|
|
if ((pages_in_flash + pages_for_flash) > (spiram_size >> 16)) {
|
|
ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the instructions, has %d pages, need %d pages.", (spiram_size >> 16), (pages_in_flash + pages_for_flash));
|
|
return ESP_FAIL;
|
|
}
|
|
ESP_EARLY_LOGI(TAG, "Instructions copied and mapped to SPIRAM");
|
|
uint32_t mmu_value = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_IROM_MMU_START);
|
|
instr_flash2spiram_offs = mmu_value - pages_for_flash;
|
|
ESP_EARLY_LOGV(TAG, "Instructions from flash page%d copy to SPIRAM page%d, Offset: %d", mmu_value, pages_for_flash, instr_flash2spiram_offs);
|
|
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(CACHE_IBUS, IRAM0_CACHE_ADDRESS_LOW, pages_for_flash, &page0_page);
|
|
instruction_in_spiram = 1;
|
|
return ESP_OK;
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_SPIRAM_RODATA
|
|
esp_err_t esp_spiram_enable_rodata_access(void)
|
|
{
|
|
size_t spiram_size = esp_spiram_get_size();
|
|
uint32_t pages_in_flash = 0;
|
|
pages_in_flash += Cache_Count_Flash_Pages(CACHE_DBUS, &page0_mapped);
|
|
|
|
if ((pages_in_flash + pages_for_flash) > (spiram_size >> 16)) {
|
|
ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the read only data.");
|
|
return ESP_FAIL;
|
|
}
|
|
ESP_EARLY_LOGI(TAG, "Read only data copied and mapped to SPIRAM");
|
|
uint32_t mmu_value = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_DROM_MMU_START);
|
|
rodata_flash2spiram_offs = mmu_value - pages_for_flash;
|
|
ESP_EARLY_LOGV(TAG, "Rodata from flash page%d copy to SPIRAM page%d, Offset: %d", mmu_value, pages_for_flash, rodata_flash2spiram_offs);
|
|
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(CACHE_DBUS, DRAM0_CACHE_ADDRESS_LOW, pages_for_flash, &page0_page);
|
|
rodata_in_spiram = 1;
|
|
return ESP_OK;
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
|
void instruction_flash_page_info_init(void)
|
|
{
|
|
uint32_t instr_page_cnt = ((uint32_t)&_instruction_reserved_end - SOC_IROM_LOW + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE;
|
|
|
|
instr_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_IROM_MMU_START);
|
|
instr_start_page &= MMU_ADDRESS_MASK;
|
|
instr_end_page = instr_start_page + instr_page_cnt - 1;
|
|
}
|
|
|
|
uint32_t IRAM_ATTR instruction_flash_start_page_get(void)
|
|
{
|
|
return instr_start_page;
|
|
}
|
|
|
|
uint32_t IRAM_ATTR instruction_flash_end_page_get(void)
|
|
{
|
|
return instr_end_page;
|
|
}
|
|
|
|
int IRAM_ATTR instruction_flash2spiram_offset(void)
|
|
{
|
|
return instr_flash2spiram_offs;
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_SPIRAM_RODATA
|
|
void rodata_flash_page_info_init(void)
|
|
{
|
|
uint32_t rodata_page_cnt = ((uint32_t)&_rodata_reserved_end - ((uint32_t)&_rodata_reserved_start & ~ (MMU_PAGE_SIZE - 1)) + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE;
|
|
|
|
rodata_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_DROM_MMU_START);
|
|
rodata_start_page &= MMU_ADDRESS_MASK;
|
|
rodata_end_page = rodata_start_page + rodata_page_cnt - 1;
|
|
}
|
|
|
|
uint32_t IRAM_ATTR rodata_flash_start_page_get(void)
|
|
{
|
|
return rodata_start_page;
|
|
}
|
|
|
|
uint32_t IRAM_ATTR rodata_flash_end_page_get(void)
|
|
{
|
|
return rodata_end_page;
|
|
}
|
|
|
|
int IRAM_ATTR rodata_flash2spiram_offset(void)
|
|
{
|
|
return rodata_flash2spiram_offs;
|
|
}
|
|
#endif
|
|
|
|
esp_err_t esp_spiram_init(void)
|
|
{
|
|
esp_err_t r;
|
|
r = psram_enable(PSRAM_SPEED, PSRAM_MODE);
|
|
if (r != ESP_OK) {
|
|
#if CONFIG_SPIRAM_IGNORE_NOTFOUND
|
|
ESP_EARLY_LOGE(TAG, "SPI RAM enabled but initialization failed. Bailing out.");
|
|
#endif
|
|
return r;
|
|
}
|
|
s_spiram_inited = true;
|
|
#if (CONFIG_SPIRAM_SIZE != -1)
|
|
if (esp_spiram_get_size() != CONFIG_SPIRAM_SIZE) {
|
|
ESP_EARLY_LOGE(TAG, "Expected %dKiB chip but found %dKiB chip. Bailing out..", CONFIG_SPIRAM_SIZE / 1024, esp_spiram_get_size() / 1024);
|
|
return ESP_ERR_INVALID_SIZE;
|
|
}
|
|
#endif
|
|
|
|
ESP_EARLY_LOGI(TAG, "Found %dMBit SPI RAM device",
|
|
(esp_spiram_get_size() * 8) / (1024 * 1024));
|
|
ESP_EARLY_LOGI(TAG, "SPI RAM mode: %s", PSRAM_SPEED == PSRAM_CACHE_S40M ? "sram 40m" : "sram 80m");
|
|
ESP_EARLY_LOGI(TAG, "PSRAM initialized, cache is in %s mode.", \
|
|
(PSRAM_MODE == PSRAM_VADDR_MODE_EVENODD) ? "even/odd (2-core)" : \
|
|
(PSRAM_MODE == PSRAM_VADDR_MODE_LOWHIGH) ? "low/high (2-core)" : \
|
|
(PSRAM_MODE == PSRAM_VADDR_MODE_NORMAL) ? "normal (1-core)" : "ERROR");
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
esp_err_t esp_spiram_add_to_heapalloc(void)
|
|
{
|
|
size_t spiram_size = esp_spiram_get_size();
|
|
uint32_t size_for_flash = (pages_for_flash << 16);
|
|
ESP_EARLY_LOGI(TAG, "Adding pool of %dK of external SPI memory to heap allocator", (spiram_size - (pages_for_flash << 16)) / 1024);
|
|
//Add entire external RAM region to heap allocator. Heap allocator knows the capabilities of this type of memory, so there's
|
|
//no need to explicitly specify them.
|
|
|
|
return heap_caps_add_region((intptr_t)SOC_EXTRAM_DATA_HIGH - spiram_size + size_for_flash, (intptr_t)SOC_EXTRAM_DATA_HIGH - 1);
|
|
}
|
|
|
|
esp_err_t esp_spiram_reserve_dma_pool(size_t size) {
|
|
if (size == 0) {
|
|
return ESP_OK;
|
|
}
|
|
|
|
ESP_EARLY_LOGI(TAG, "Reserving pool of %dK of internal memory for DMA/internal allocations", size/1024);
|
|
/* Pool may be allocated in multiple non-contiguous chunks, depending on available RAM */
|
|
while (size > 0) {
|
|
size_t next_size = heap_caps_get_largest_free_block(MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
|
|
next_size = MIN(next_size, size);
|
|
|
|
ESP_EARLY_LOGD(TAG, "Allocating block of size %d bytes", next_size);
|
|
uint8_t *dma_heap = heap_caps_malloc(next_size, MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
|
|
if (!dma_heap || next_size == 0) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
|
|
uint32_t caps[] = { 0, MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT|MALLOC_CAP_32BIT };
|
|
esp_err_t e = heap_caps_add_region_with_caps(caps, (intptr_t) dma_heap, (intptr_t) dma_heap+next_size-1);
|
|
if (e != ESP_OK) {
|
|
return e;
|
|
}
|
|
size -= next_size;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
size_t esp_spiram_get_size(void)
|
|
{
|
|
if (!s_spiram_inited) {
|
|
ESP_EARLY_LOGE(TAG, "SPI RAM not initialized");
|
|
abort();
|
|
}
|
|
|
|
psram_size_t size = psram_get_size();
|
|
if (size == PSRAM_SIZE_16MBITS) {
|
|
return 2 * 1024 * 1024;
|
|
}
|
|
if (size == PSRAM_SIZE_32MBITS) {
|
|
return 4 * 1024 * 1024;
|
|
}
|
|
if (size == PSRAM_SIZE_64MBITS) {
|
|
return 8 * 1024 * 1024;
|
|
}
|
|
if (size == PSRAM_SIZE_128MBITS) {
|
|
return 16 * 1024 * 1024;
|
|
}
|
|
if (size == PSRAM_SIZE_256MBITS) {
|
|
return 32 * 1024 * 1024;
|
|
}
|
|
return CONFIG_SPIRAM_SIZE;
|
|
}
|
|
|
|
/*
|
|
Before flushing the cache, if psram is enabled as a memory-mapped thing, we need to write back the data in the cache to the psram first,
|
|
otherwise it will get lost. For now, we just read 64/128K of random PSRAM memory to do this.
|
|
*/
|
|
void IRAM_ATTR esp_spiram_writeback_cache(void)
|
|
{
|
|
extern void Cache_WriteBack_All(void);
|
|
Cache_WriteBack_All();
|
|
}
|
|
|
|
/**
|
|
* @brief If SPI RAM(PSRAM) has been initialized
|
|
*
|
|
* @return true SPI RAM has been initialized successfully
|
|
* @return false SPI RAM hasn't been initialized or initialized failed
|
|
*/
|
|
bool esp_spiram_is_initialized(void)
|
|
{
|
|
return s_spiram_inited;
|
|
}
|
|
|
|
uint8_t esp_spiram_get_cs_io(void)
|
|
{
|
|
return psram_get_cs_io();
|
|
}
|
|
|
|
#endif
|