esp-idf/components/usb/private_include/hcd.h
Darian Leung 2906a25988 Separate USB HAL and common USB types
This commit separates out the common USB types used throughout most of the stack into its
own header file inside the USB component. The types used in the USB HAL are now exclusive
to the HAL.
2021-04-22 19:24:48 +08:00

526 lines
21 KiB
C

// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include <sys/queue.h>
#include "esp_err.h"
#include "usb.h"
// ------------------------------------------------- Macros & Types ----------------------------------------------------
// ----------------------- States --------------------------
/**
* @brief States of the HCD port
*
* @note The port can be thought of as an abstraction of the Root Hub that contains
* a single port.
* @note These states roughly match the port states outlined in 11.5.1 of the
* USB2.0 specification.
*/
typedef enum {
HCD_PORT_STATE_NOT_POWERED, /**< The port is not powered */
HCD_PORT_STATE_DISCONNECTED, /**< The port is powered but no device is conencted */
HCD_PORT_STATE_DISABLED, /**< A device has connected to the port but has not been reset. SOF/keep alive are not being sent */
HCD_PORT_STATE_RESETTING, /**< The port is issuing a reset condition */
HCD_PORT_STATE_SUSPENDED, /**< The port has been suspended. */
HCD_PORT_STATE_RESUMING, /**< The port is issuing a resume condition */
HCD_PORT_STATE_ENABLED, /**< The port has been enabled. SOF/keep alive are being sent */
HCD_PORT_STATE_RECOVERY, /**< Port needs to be recovered from a fatal error (port error, overcurrent, or sudden disconnection) */
} hcd_port_state_t;
/**
* @brief States of an HCD pipe
*
* Active:
* - Pipe is able to transmit data. Transfer request can be enqueued.
* - Event if pipe has no transfer requests enqueued, it can still be in the active state.
* Halted:
* - An error has occurred on the pipe. Transfer request will no longer be executed.
* - Halt should be cleared using the clear command
* Invalid:
* - The underlying device that the pipe connects is not longer valid, thus making the pipe invalid.
* - Pending transfer requests should be dequeued and the pipe should be freed.
*/
typedef enum {
HCD_PIPE_STATE_ACTIVE, /**< The pipe is active */
HCD_PIPE_STATE_HALTED, /**< The pipe is halted */
HCD_PIPE_STATE_INVALID, /**< The pipe no longer exists and should be freed */
} hcd_pipe_state_t;
// ----------------------- Events --------------------------
/**
* @brief HCD port events
*
* On receiving a port event, hcd_port_handle_event() should be called to handle that event
*/
typedef enum {
HCD_PORT_EVENT_NONE, /**< No event has ocurred. Or the previous event is no longer valid */
HCD_PORT_EVENT_CONNECTION, /**< A device has been connected to the port */
HCD_PORT_EVENT_DISCONNECTION, /**< A device disconnection has been detected */
HCD_PORT_EVENT_ERROR, /**< A port error has been detected. Port is now HCD_PORT_STATE_RECOVERY */
HCD_PORT_EVENT_OVERCURRENT, /**< Overcurrent detected on the port. Port is now HCD_PORT_STATE_RECOVERY */
HCD_PORT_EVENT_SUDDEN_DISCONN, /**< The port has suddenly disconencted (i.e., there was an enabled device connected
to the port when the disconnection occurred. Port is now HCD_PORT_STATE_RECOVERY. */
} hcd_port_event_t;
/**
* @brief HCD pipe events
*
* @note Pipe error events will put the pipe into the HCD_PIPE_STATE_HALTED state
* @note The HCD_PIPE_EVENT_INVALID will put the pipe in the HCD_PIPE_STATE_INVALID state
*/
typedef enum {
HCD_PIPE_EVENT_NONE, /**< The pipe has no events (used to indicate no events when polling) */
HCD_PIPE_EVENT_XFER_REQ_DONE, /**< The pipe has completed a transfer request and can be dequeued */
HCD_PIPE_EVENT_INVALID, /**< The pipe is invalid because */
HCD_PIPE_EVENT_ERROR_XFER, /**< Excessive (three consecutive) transaction errors (e.g., no ACK, bad CRC etc) */
HCD_PIPE_EVENT_ERROR_XFER_NOT_AVAIL, /**< Transfer request was not available */
HCD_PIPE_EVENT_ERROR_OVERFLOW, /**< Received more data than requested. Usually a Packet babble error
(i.e., an IN packet has exceeded the endpoint's MPS) */
HCD_PIPE_EVENT_ERROR_STALL, /**< Pipe received a STALL response received */
} hcd_pipe_event_t;
// ---------------------- Commands -------------------------
/**
* @brief HCD port commands
*/
typedef enum {
HCD_PORT_CMD_POWER_ON, /**< Power ON the port */
HCD_PORT_CMD_POWER_OFF, /**< Power OFF the port */
HCD_PORT_CMD_RESET, /**< Issue a reset on the port */
HCD_PORT_CMD_SUSPEND, /**< Suspend the port */
HCD_PORT_CMD_RESUME, /**< Resume the port */
HCD_PORT_CMD_DISABLE, /**< Disable the port (stops the SOFs or keep alive) */
} hcd_port_cmd_t;
/**
* @brief HCD pipe commands
*
* The pipe commands represent the list of pipe manipulations outlined in 10.5.2.2. of USB2.0 specification.
*/
typedef enum {
HCD_PIPE_CMD_ABORT, /**< Retire all scheduled transfer requests. Pipe's state remains unchanged */
HCD_PIPE_CMD_RESET, /**< Retire all scheduled transfer requests. Pipe's state moves to active */
HCD_PIPE_CMD_CLEAR, /**< Pipe's state moves from halted to active */
HCD_PIPE_CMD_HALT /**< Pipe's state moves to halted */
} hcd_pipe_cmd_t;
// -------------------- Object Types -----------------------
/**
* @brief Port handle type
*/
typedef void * hcd_port_handle_t;
/**
* @brief Pipe handle type
*/
typedef void * hcd_pipe_handle_t;
/**
* @brief HCD transfer request handle type
*/
typedef void * hcd_xfer_req_handle_t;
/**
* @brief Port event callback type
*
* This callback is run when a port event occurs
*/
typedef bool (*hcd_port_isr_callback_t)(hcd_port_handle_t port_hdl, hcd_port_event_t port_event, void *user_arg, bool in_isr);
/**
* @brief Pipe event callback
*
* This callback is run when a pipe event occurs
*/
typedef bool (*hcd_pipe_isr_callback_t)(hcd_pipe_handle_t pipe_hdl, hcd_pipe_event_t pipe_event, void *user_arg, bool in_isr);
/**
* @brief HCD configuration structure
*/
typedef struct {
int intr_flags; /**< Interrupt flags for HCD interrupt */
} hcd_config_t;
/**
* @brief Port configuration structure
*/
typedef struct {
hcd_port_isr_callback_t callback; /**< HCD port event callback */
void *callback_arg; /**< User argument for HCD port callback */
void *context;
} hcd_port_config_t;
/**
* @brief Pipe configuration structure
*
* @note The callback can be set to NULL if no callback is required (e.g., using HCD in a polling manner).
*/
typedef struct {
hcd_pipe_isr_callback_t callback; /**< HCD pipe event ISR callback */
void *callback_arg; /**< User argument for HCD pipe callback */
void *context; /**< Context variable used to associate the pipe with upper layer object */
usb_desc_ep_t *ep_desc; /**< Pointer to endpoint descriptor of the pipe */
uint8_t dev_addr; /**< Device address of the pipe */
usb_speed_t dev_speed; /**< Speed of the device */
} hcd_pipe_config_t;
// --------------------------------------------- Host Controller Driver ------------------------------------------------
/**
* @brief Installs the Host Controller Driver
*
* - Allocates memory and interrupt resources for the HCD and underlying ports
* - Setups up HCD to use internal PHY
*
* @note This function must be called before any other HCD function is called
*
* @param config HCD configuration
* @retval ESP_OK: HCD successfully installed
* @retval ESP_ERR_NO_MEM: Insufficient memory
* @retval ESP_ERR_INVALID_STATE: HCD is already installed
* @retval ESP_ERR_NOT_FOUND: HCD could not allocate interrupt
* @retval ESP_ERR_INVALID_ARG: Arguments are invalid
*/
esp_err_t hcd_install(const hcd_config_t *config);
/**
* @brief Uninstalls the HCD
*
* Before uninstalling the HCD, the following conditions should be met:
* - All ports must be uninitialized, all pipes freed
*
* @retval ESP_OK: HCD successfully uninstalled
* @retval ESP_ERR_INVALID_STATE: HCD is not in the right condition to be uninstalled
*/
esp_err_t hcd_uninstall(void);
// ---------------------------------------------------- HCD Port -------------------------------------------------------
/**
* @brief Initialize a particular port of the HCD
*
* After a port is initialized, it will be put into the HCD_PORT_STATE_NOT_POWERED state.
*
* @note The host controller only has one port, thus the only valid port_number is 1
*
* @param[in] port_number Port number
* @param[in] port_config Port configuration
* @param[out] port_hdl Port handle
* @retval ESP_OK: Port enabled
* @retval ESP_ERR_NO_MEM: Insufficient memory
* @retval ESP_ERR_INVALID_STATE: The port is already enabled
* @retval ESP_ERR_NOT_FOUND: Port number not found
* @retval ESP_ERR_INVALID_ARG: Arguments are invalid
*/
esp_err_t hcd_port_init(int port_number, hcd_port_config_t *port_config, hcd_port_handle_t *port_hdl);
/**
* @brief Deinitialize a particular port
*
* The port must be placed in the HCD_PORT_STATE_NOT_POWERED or HCD_PORT_STATE_RECOVERY state before it can be
* deinitialized.
*
* @param port_hdl Port handle
* @retval ESP_OK: Port disabled
* @retval ESP_ERR_INVALID_STATE: The port is not in a condition to be disabled (not unpowered)
*/
esp_err_t hcd_port_deinit(hcd_port_handle_t port_hdl);
/**
* @brief Execute a port command
*
* Call this function to manipulate a port (e.g., powering it ON, sending a reset etc). The following conditions
* must be met when calling this function:
* - The port is in the correct state for the command (e.g., port must be suspend in order to use the resume command)
* - The port does not have any pending events
*
* @note This function is internally protected by a mutex. If multiple threads call this function, this function will
* can block.
* @note For some of the commands that involve a blocking delay (e.g., reset and resume), if the port's state changes
* unexpectedly (e.g., a disconnect during a resume), this function will return ESP_ERR_INVALID_RESPONSE.
*
* @param port_hdl Port handle
* @param command Command for the HCD port
* @retval ESP_OK: Command executed successfully
* @retval ESP_ERR_INVALID_STATE: Conditions have not been met to call this function
* @retval ESP_ERR_INVALID_RESPONSE: The command is no longer valid due to a change in the port's state
*/
esp_err_t hcd_port_command(hcd_port_handle_t port_hdl, hcd_port_cmd_t command);
/**
* @brief Get the port's current state
*
* @param port_hdl Port handle
* @return hcd_port_state_t Current port state
*/
hcd_port_state_t hcd_port_get_state(hcd_port_handle_t port_hdl);
/**
* @brief Get the speed of the port
*
* The speed of the port is determined by the speed of the device connected to it.
*
* @note This function is only valid after a device directly to the port and has been reset
*
* @param[in port_hdl Port handle
* @param[out] speed Speed of the port
* @retval ESP_OK Device speed obtained
* @retval ESP_ERR_INVALID_STATE: No valid device connected to the port
* @retval ESP_ERR_INVALID_ARG: Invalid arguments
*/
esp_err_t hcd_port_get_speed(hcd_port_handle_t port_hdl, usb_speed_t *speed);
/**
* @brief Handle a ports event
*
* When an port event occurs (as indicated by a callback), this function should be called the handle this event. A
* port's event should always be handled before attempting to execute a port command. Note that is actually handled
* may be different than the event reflected in the callback.
*
* If the port has no events, this function will return HCD_PORT_EVENT_NONE.
*
* @note If callbacks are not used, this function can also be used in a polling manner to repeatedely check for and
* handle a port's events.
* @note This function is internally protected by a mutex. If multiple threads call this function, this function will
* can block.
*
* @param port_hdl Port handle
* @return hcd_port_event_t The port event that was handled
*/
hcd_port_event_t hcd_port_handle_event(hcd_port_handle_t port_hdl);
/**
* @brief Recover a port after a fatal error has occurred on it
*
* The port must be in the HCD_PORT_STATE_RECOVERY state to be called. Recovering the port will involve issuing a soft
* reset on the underlying USB controller. The port will be returned to the HCD_PORT_STATE_NOT_POWERED state.
*
* @param port_hdl Port handle
* @retval ESP_OK Port recovered successfully
* @retval ESP_ERR_INVALID_STATE Port is not in the HCD_PORT_STATE_RECOVERY state
*/
esp_err_t hcd_port_recover(hcd_port_handle_t port_hdl);
/**
* @brief Get the context variable of a port
*
* @param port_hdl Port handle
* @return void* Context variable
*/
void *hcd_port_get_ctx(hcd_port_handle_t port_hdl);
// --------------------------------------------------- HCD Pipes -------------------------------------------------------
/**
* @brief Allocate a pipe
*
* When allocating a pipe, the HCD will assess whether there are sufficient resources (i.e., bus time, and controller
* channels). If sufficient, the pipe will be allocated.
*
* @note Currently, Interrupt and Isochronous pipes are not supported yet
* @note The host port must be in the enabled state before a pipe can be allcoated
*
* @param[in] port_hdl Handle of the port this pipe will be routed through
* @param[in] pipe_config Pipe configuration
* @param[out] pipe_hdl Pipe handle
*
* @retval ESP_OK: Pipe successfully allocated
* @retval ESP_ERR_NO_MEM: Insufficient memory
* @retval ESP_ERR_INVALID_ARG: Arguments are invalid
* @retval ESP_ERR_INVALID_STATE: Host port is not in the correct state to allocate a pipe
* @retval ESP_ERR_NOT_SUPPORTED: The pipe cannot be supported
*/
esp_err_t hcd_pipe_alloc(hcd_port_handle_t port_hdl, const hcd_pipe_config_t *pipe_config, hcd_pipe_handle_t *pipe_hdl);
/**
* @brief Free a pipe
*
* Frees the resources used by an HCD pipe. The pipe's handle should be discarded after calling this function. The pipe
* must be in following condition before it can be freed:
* - All transfers have been dequeued
*
* @param pipe_hdl Pipe handle
*
* @retval ESP_OK: Pipe successfully freed
* @retval ESP_ERR_INVALID_STATE: Pipe is not in a condition to be freed
*/
esp_err_t hcd_pipe_free(hcd_pipe_handle_t pipe_hdl);
/**
* @brief Update a pipe's device address and maximum packet size
*
* This function is intended to be called on default pipes during enumeration in order to update the pipe's device
* address and maximum packet size. This function can only be called on a pipe that has met the following conditions:
* - Pipe is still valid (i.e., not in the HCD_PIPE_STATE_INVALID state)
* - Pipe is not currently processing a command
* - All transfer request have been dequeued from the pipe
*
* @param pipe_hdl Pipe handle
* @param dev_addr New device address
* @param mps New Maximum Packet Size
*
* @retval ESP_OK: Pipe successfully updated
* @retval ESP_ERR_INVALID_STATE: Pipe is no in a condition to be updated
*/
esp_err_t hcd_pipe_update(hcd_pipe_handle_t pipe_hdl, uint8_t dev_addr, int mps);
/**
* @brief Get the context variable of a pipe from its handle
*
* @param pipe_hdl Pipe handle
* @return void* Context variable
*/
void *hcd_pipe_get_ctx(hcd_pipe_handle_t pipe_hdl);
/**
* @brief Get the current sate of the pipe
*
* @param pipe_hdl Pipe handle
* @return hcd_pipe_state_t Current state of the pipe
*/
hcd_pipe_state_t hcd_pipe_get_state(hcd_pipe_handle_t pipe_hdl);
/**
* @brief Execute a command on a particular pipe
*
* Pipe commands allow a pipe to be manipulated (such as clearing a halt, retiring all transfer requests etc). The
* following conditions must for a pipe command to be issued:
* - Pipe is still valid (i.e., not in the HCD_PIPE_STATE_INVALID)
* - No other thread/task processing a command on the pipe concurrently (will return)
*
* @note Some pipe commands will block until the pipe's current inflight transfer is completed. If the pipe's state
* changes unexpectedley, this function will return ESP_ERR_INVALID_RESPONSE
*
* @param pipe_hdl Pipe handle
* @param command Pipe command
* @retval ESP_OK: Command executed successfully
* @retval ESP_ERR_INVALID_STATE: The pipe is not in the correct state/condition too execute the command
* @retval ESP_ERR_INVALID_RESPONSE: The pipe's state changed unexpectedley
*/
esp_err_t hcd_pipe_command(hcd_pipe_handle_t pipe_hdl, hcd_pipe_cmd_t command);
/**
* @brief Get the last event that occurred on a pipe
*
* This function allows a pipe to be polled for events (i.e., when callbacks are not used). Once an event has been
* obtained, this function reset the last event of the pipe to HCD_PIPE_EVENT_NONE.
*
* @param pipe_hdl Pipe handle
* @return hcd_pipe_event_t Last pipe event to occur
*/
hcd_pipe_event_t hcd_pipe_get_event(hcd_pipe_handle_t pipe_hdl);
// ----------------------------------------------- HCD Transfer Requests -----------------------------------------------
/**
* @brief Allocate a transfer request
*
* @note The allocate transfer request will not have its target set (i.e., no target pipe and associated IRP). Call
* hcd_xfer_req_set_target() before enqueueing the transfer request
*
* @return hcd_xfer_req_handle_t Transfer request handle or NULL if failed.
*/
hcd_xfer_req_handle_t hcd_xfer_req_alloc(void);
/**
* @brief Free a transfer request
*
* @note The transfer request must be dequeued before it can be freed
*
* @param req_hdl Transfer request handle
*/
void hcd_xfer_req_free(hcd_xfer_req_handle_t req_hdl);
/**
* @brief Set a transfer request's target
*
* Setting a transfer request's target will associate a transfer request with a pipe and a USB IRP (i.e., the data). A
* transfer request's target must be set before it can be enqueued.
*
* @note This should only be called when a transfer requests that are not currently enqueued
*
* @param req_hdl Transfer request handle
* @param pipe_hdl Target pipe's handle
* @param irp Target IRP handle
* @param context Context variable to associate transfer request with upper layer object
*/
void hcd_xfer_req_set_target(hcd_xfer_req_handle_t req_hdl, hcd_pipe_handle_t pipe_hdl, usb_irp_t *irp, void *context);
/**
* @brief Get the target of a transfer request
*
* @note This should only be called when a transfer requests that are not currently enqueued
*
* @param[in] req_hdl Transfer request handle
* @param[out] pipe_hdl Target pipe's handle
* @param[out] irp Target IRP's handle
* @param[out] context Context variable
*/
void hcd_xfer_req_get_target(hcd_xfer_req_handle_t req_hdl, hcd_pipe_handle_t *pipe_hdl, usb_irp_t **irp, void **context);
/**
* @brief Enqueue a transfer request
*
* The following conditions must be met for a transfer request to be enqueued:
* - The transfer request's target must be set
* - Transfer request must not already be enqueued
* - The target pipe must be in the HCD_PIPE_STATE_ACTIVE state
*
* @param req_hdl Transfer request handle
* @retval ESP_OK: Transfer request enqueued successfully
* @retval ESP_ERR_INVALID_STATE: Conditions not met to enqueue transfer request
*/
esp_err_t hcd_xfer_req_enqueue(hcd_xfer_req_handle_t req_hdl);
/**
* @brief Dequeue a completed transfer request from a pipe
*
* This function should be called on a pipe after it receives an pipe event. If a pipe has multiple transfer requests
* that can be dequeued, this function must be called repeatedely until all transfer requests are dequeued. If a pipe
* has no more transfer requests to dequeue, this function will return NULL.
*
* @param pipe_hdl Pipe handle
* @return hcd_xfer_req_handle_t Transfer request handle or NULL if no more transfer requests to dequeue.
*/
hcd_xfer_req_handle_t hcd_xfer_req_dequeue(hcd_pipe_handle_t pipe_hdl);
/**
* @brief Abort an ongoing transfer request
*
* This function will attempt to abort an enqueued transfer request. If the transfer request has not yet been executed,
* it will be marked as "cancelled" and can be dequeued. If a transfer request is already in progress or has completed,
* it will not be affected by this function.
*
* @param req_hdl Transfer request handle
* @retval ESP_OK: Transfer request successfully aborted, or did not need to be aborted
* @retval ESP_ERR_INVALID_STATE: Transfer request was never enqueued
*/
esp_err_t hcd_xfer_req_abort(hcd_xfer_req_handle_t req_hdl);
#ifdef __cplusplus
}
#endif