esp-idf/components/esp_system/port/panic_handler.c

266 lines
8.1 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include "esp_ipc_isr.h"
#include "esp_private/system_internal.h"
#include "esp_private/cache_utils.h"
#include "soc/soc_memory_layout.h"
#include "esp_cpu.h"
#include "soc/soc_caps.h"
#include "soc/rtc.h"
#include "hal/soc_hal.h"
#include "esp_private/cache_err_int.h"
#include "sdkconfig.h"
#include "esp_rom_sys.h"
#if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
#ifdef CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/memprot.h"
#else
#include "esp_memprot.h"
#endif
#endif
#include "esp_private/panic_internal.h"
#include "esp_private/panic_reason.h"
#include "hal/wdt_types.h"
#include "hal/wdt_hal.h"
#if CONFIG_ESP_SYSTEM_HW_STACK_GUARD
#include "esp_private/hw_stack_guard.h"
#endif
extern int _invalid_pc_placeholder;
extern void esp_panic_handler_reconfigure_wdts(uint32_t timeout_ms);
extern void esp_panic_handler(panic_info_t *);
static wdt_hal_context_t wdt0_context = {.inst = WDT_MWDT0, .mwdt_dev = &TIMERG0};
void *g_exc_frames[SOC_CPU_CORES_NUM] = {NULL};
/*
Panic handlers; these get called when an unhandled exception occurs or the assembly-level
task switching / interrupt code runs into an unrecoverable error. The default task stack
overflow handler and abort handler are also in here.
*/
/*
Note: The linker script will put everything in this file in IRAM/DRAM, so it also works with flash cache disabled.
*/
static void print_state_for_core(const void *f, int core)
{
/* On Xtensa (with Window ABI), register dump is not required for backtracing.
* Don't print it on abort to reduce clutter.
* On other architectures, register values need to be known for backtracing.
*/
#if (CONFIG_IDF_TARGET_ARCH_XTENSA && defined(XCHAL_HAVE_WINDOWED)) || \
(CONFIG_IDF_TARGET_ARCH_RISCV && CONFIG_ESP_SYSTEM_USE_EH_FRAME)
if (!g_panic_abort) {
#else
if (true) {
#endif
panic_print_registers(f, core);
panic_print_str("\r\n");
}
panic_print_backtrace(f, core);
}
static void print_state(const void *f)
{
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
int err_core = f == g_exc_frames[0] ? 0 : 1;
#else
int err_core = 0;
#endif
print_state_for_core(f, err_core);
panic_print_str("\r\n");
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
// If there are other frame info, print them as well
for (int i = 0; i < SOC_CPU_CORES_NUM; i++) {
// `f` is the frame for the offending core, see note above.
if (err_core != i && g_exc_frames[i] != NULL) {
print_state_for_core(g_exc_frames[i], i);
panic_print_str("\r\n");
}
}
#endif
}
static void frame_to_panic_info(void *frame, panic_info_t *info, bool pseudo_excause)
{
info->core = esp_cpu_get_core_id();
info->exception = PANIC_EXCEPTION_FAULT;
info->details = NULL;
info->reason = "Unknown";
info->pseudo_excause = panic_soc_check_pseudo_cause(frame, info) | pseudo_excause;
if (info->pseudo_excause) {
panic_soc_fill_info(frame, info);
} else {
panic_arch_fill_info(frame, info);
}
info->state = print_state;
info->frame = frame;
}
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
FORCE_INLINE_ATTR __attribute__((__noreturn__))
void busy_wait(void)
{
while (1) {;} // infinite loop
}
#endif // !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
static void panic_handler(void *frame, bool pseudo_excause)
{
panic_info_t info = { 0 };
/*
* Setup environment and perform necessary architecture/chip specific
* steps here prior to the system panic handler.
* */
int core_id = esp_cpu_get_core_id();
// If multiple cores arrive at panic handler, save frames for all of them
g_exc_frames[core_id] = frame;
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
// These are cases where both CPUs both go into panic handler. The following code ensures
// only one core proceeds to the system panic handler.
if (pseudo_excause) {
// For WDT expiry, pause the non-offending core - offending core handles panic
if (panic_get_cause(frame) == PANIC_RSN_INTWDT_CPU0 && core_id == 1) {
busy_wait();
} else if (panic_get_cause(frame) == PANIC_RSN_INTWDT_CPU1 && core_id == 0) {
busy_wait();
} else if (panic_get_cause(frame) == PANIC_RSN_CACHEERR) {
// The invalid cache access interrupt calls to the panic handler.
// When the cache interrupt happens, we can not determine the CPU where the
// invalid cache access has occurred.
if (esp_cache_err_get_cpuid() == -1) {
// We can not determine the CPU where the invalid cache access has occurred.
// Print backtraces for both CPUs.
if (core_id != 0) {
busy_wait();
}
} else if (core_id != esp_cache_err_get_cpuid()) {
g_exc_frames[core_id] = NULL; // Only print the backtrace for the offending core
busy_wait();
}
}
#if CONFIG_ESP_SYSTEM_HW_STACK_GUARD
else if (panic_get_cause(frame) == ETS_ASSIST_DEBUG_INUM &&
esp_hw_stack_guard_get_fired_cpu() != core_id &&
esp_hw_stack_guard_get_fired_cpu() != ESP_HW_STACK_GUARD_NOT_FIRED) {
g_exc_frames[core_id] = NULL; // Only print the backtrace for the offending core
busy_wait();
}
#endif // CONFIG_ESP_SYSTEM_HW_STACK_GUARD
}
// Need to reconfigure WDTs before we stall any other CPU
esp_panic_handler_reconfigure_wdts(1000);
esp_rom_delay_us(1);
// Stall all other cores
for (uint32_t i = 0; i < SOC_CPU_CORES_NUM; i++) {
if (i != core_id) {
esp_cpu_stall(i);
}
}
#endif // !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
esp_ipc_isr_stall_abort();
if (esp_cpu_dbgr_is_attached()) {
#if __XTENSA__
if (!(esp_ptr_executable(esp_cpu_pc_to_addr(panic_get_address(frame))) && (panic_get_address(frame) & 0xC0000000U))) {
/* Xtensa ABI sets the 2 MSBs of the PC according to the windowed call size
* In case the PC is invalid, GDB will fail to translate addresses to function names
* Hence replacing the PC to a placeholder address in case of invalid PC
*/
panic_set_address(frame, (uint32_t)&_invalid_pc_placeholder);
}
#endif
if (panic_get_cause(frame) == PANIC_RSN_INTWDT_CPU0
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
|| panic_get_cause(frame) == PANIC_RSN_INTWDT_CPU1
#endif
) {
wdt_hal_write_protect_disable(&wdt0_context);
wdt_hal_handle_intr(&wdt0_context);
wdt_hal_write_protect_enable(&wdt0_context);
}
}
// Convert architecture exception frame into abstracted panic info
frame_to_panic_info(frame, &info, pseudo_excause);
// Call the system panic handler
esp_panic_handler(&info);
}
/**
* This function must always be in IRAM as it is required to
* re-enable the flash cache.
*/
#if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
static void IRAM_ATTR panic_enable_cache(void)
{
int core_id = esp_cpu_get_core_id();
if (!spi_flash_cache_enabled()) {
esp_ipc_isr_stall_abort();
spi_flash_enable_cache(core_id);
}
}
#endif
void IRAM_ATTR panicHandler(void *frame)
{
#if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
panic_enable_cache();
#endif
// This panic handler gets called for when the double exception vector,
// kernel exception vector gets used; as well as handling interrupt-based
// faults cache error, wdt expiry. EXCAUSE register gets written with
// one of PANIC_RSN_* values.
panic_handler(frame, true);
}
void IRAM_ATTR xt_unhandled_exception(void *frame)
{
#if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
panic_enable_cache();
#endif
panic_handler(frame, false);
}
void __attribute__((noreturn)) panic_restart(void)
{
#ifdef CONFIG_IDF_TARGET_ESP32
// On the ESP32, cache error status can only be cleared by system reset
if (esp_cache_err_get_cpuid() != -1) {
esp_restart_noos_dig();
}
#endif
esp_restart_noos();
}