Darian Leung 39cf3638ae change(freertos): Deprecate usage of vPortCleanUpTCB() by applications
Previously, if CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP was enabled, users
would provide a definition for a vPortCleanUpTCB() hook function that is called
right before a task's memory is freed in prvDeleteTCB(). However,
vPortCleanUpTCB() will be reclaimed by ESP-IDF for internal use in v6.0.

This commit introduces the following changes...

Introduced a new CONFIG_FREERTOS_TASK_PRE_DELETION_HOOK option:

- Provides the same pre-deletion hook functionality. But users now define
vTaskPreDeletionHook() instead.
- CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP still exists, but is marked as
deprecated. This is to maintain compatibility with existing applications
that already define vPortCleanUpTCB().
- Removed redundant --wl --wrap workaround with vPortCleanUpTCB()
- Added todo notes to remove support for user defined vPortCleanUpTCB()
completely in v6.0.
- Updated test cases to use new CONFIG_FREERTOS_TASK_PRE_DELETION_HOOK option

Freed up portCLEAN_UP_TCB() to call a new internal vPortTCBPreDeleteHook():

- vPortTCBPreDeleteHook() now replaces the previous "wrapped" implementation
of vPortCleanUpTCB().
- vPortTCBPreDeleteHook() is an internal task pre-delete hook for IDF FreeRTOS
ports to inject some pre-deletion operations.
- Internal pre-delete hook now invokes user provided vTaskPreDeletionHook()
if enabled.
- Relocated vPortTCBPreDeleteHook() to correct section in port.c
2023-08-23 17:50:08 +08:00

650 lines
28 KiB
C

/*
* SPDX-FileCopyrightText: 2017 Amazon.com, Inc. or its affiliates
* SPDX-FileCopyrightText: 2015-2019 Cadence Design Systems, Inc.
*
* SPDX-License-Identifier: MIT
*
* SPDX-FileContributor: 2016-2023 Espressif Systems (Shanghai) CO LTD
*/
/*
* FreeRTOS Kernel V10.4.3
* Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software. If you wish to use our Amazon
* FreeRTOS name, please do so in a fair use way that does not cause confusion.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
* 1 tab == 4 spaces!
*/
/*
* Copyright (c) 2015-2019 Cadence Design Systems, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "sdkconfig.h"
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <xtensa/config/core.h>
#include <xtensa/xtensa_context.h>
#include "soc/soc_caps.h"
#include "esp_attr.h"
#include "esp_private/crosscore_int.h"
#include "esp_private/esp_int_wdt.h"
#include "esp_system.h"
#include "esp_log.h"
#include "FreeRTOS.h" /* This pulls in portmacro.h */
#include "task.h" /* Required for TaskHandle_t, tskNO_AFFINITY, and vTaskStartScheduler */
#include "port_systick.h"
#include "esp_cpu.h"
#include "esp_memory_utils.h"
_Static_assert(portBYTE_ALIGNMENT == 16, "portBYTE_ALIGNMENT must be set to 16");
_Static_assert(tskNO_AFFINITY == CONFIG_FREERTOS_NO_AFFINITY, "incorrect tskNO_AFFINITY value");
/* ---------------------------------------------------- Variables ------------------------------------------------------
* - Various variables used to maintain the FreeRTOS port's state. Used from both port.c and various .S files
* - Constant offsets are used by assembly to jump to particular TCB members or a stack area (such as the CPSA). We use
* C constants instead of preprocessor macros due to assembly lacking "offsetof()".
* ------------------------------------------------------------------------------------------------------------------ */
#if XCHAL_CP_NUM > 0
/* Offsets used to navigate to a task's CPSA on the stack */
const DRAM_ATTR uint32_t offset_pxEndOfStack = offsetof(StaticTask_t, pxDummy8);
const DRAM_ATTR uint32_t offset_cpsa = XT_CP_SIZE; /* Offset to start of the CPSA area on the stack. See uxInitialiseStackCPSA(). */
#if configNUM_CORES > 1
/* Offset to TCB_t.xCoreID member. Used to pin unpinned tasks that use the FPU. */
const DRAM_ATTR uint32_t offset_xCoreID = offsetof(StaticTask_t, xDummyCoreID);
#endif /* configNUM_CORES > 1 */
#endif /* XCHAL_CP_NUM > 0 */
volatile unsigned port_xSchedulerRunning[portNUM_PROCESSORS] = {0}; // Indicates whether scheduler is running on a per-core basis
unsigned port_interruptNesting[portNUM_PROCESSORS] = {0}; // Interrupt nesting level. Increased/decreased in portasm.c, _frxt_int_enter/_frxt_int_exit
BaseType_t port_uxCriticalNesting[portNUM_PROCESSORS] = {0};
BaseType_t port_uxOldInterruptState[portNUM_PROCESSORS] = {0};
/*
*******************************************************************************
* Interrupt stack. The size of the interrupt stack is determined by the config
* parameter "configISR_STACK_SIZE" in FreeRTOSConfig.h
*******************************************************************************
*/
volatile StackType_t DRAM_ATTR __attribute__((aligned(16))) port_IntStack[portNUM_PROCESSORS][configISR_STACK_SIZE];
/* One flag for each individual CPU. */
volatile uint32_t port_switch_flag[portNUM_PROCESSORS];
/* ------------------------------------------------ FreeRTOS Portable --------------------------------------------------
* - Provides implementation for functions required by FreeRTOS
* - Declared in portable.h
* ------------------------------------------------------------------------------------------------------------------ */
// ----------------- Scheduler Start/End -------------------
/* Defined in xtensa_context.S */
extern void _xt_coproc_init(void);
BaseType_t xPortStartScheduler( void )
{
portDISABLE_INTERRUPTS();
// Interrupts are disabled at this point and stack contains PS with enabled interrupts when task context is restored
#if XCHAL_CP_NUM > 0
/* Initialize co-processor management for tasks. Leave CPENABLE alone. */
_xt_coproc_init();
#endif
/* Setup the hardware to generate the tick. */
vPortSetupTimer();
port_xSchedulerRunning[xPortGetCoreID()] = 1;
// Cannot be directly called from C; never returns
__asm__ volatile ("call0 _frxt_dispatch\n");
/* Should not get here. */
return pdTRUE;
}
void vPortEndScheduler( void )
{
/* It is unlikely that the Xtensa port will get stopped. If required simply
disable the tick interrupt here. */
abort();
}
// ------------------------ Stack --------------------------
// User exception dispatcher when exiting
void _xt_user_exit(void);
#if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
// Wrapper to allow task functions to return (increases stack overhead by 16 bytes)
static void vPortTaskWrapper(TaskFunction_t pxCode, void *pvParameters)
{
pxCode(pvParameters);
//FreeRTOS tasks should not return. Log the task name and abort.
char *pcTaskName = pcTaskGetName(NULL);
ESP_LOGE("FreeRTOS", "FreeRTOS Task \"%s\" should not return, Aborting now!", pcTaskName);
abort();
}
#endif
/**
* @brief Align stack pointer in a downward growing stack
*
* This macro is used to round a stack pointer downwards to the nearest n-byte boundary, where n is a power of 2.
* This macro is generally used when allocating aligned areas on a downward growing stack.
*/
#define STACKPTR_ALIGN_DOWN(n, ptr) ((ptr) & (~((n)-1)))
#if XCHAL_CP_NUM > 0
/**
* @brief Allocate and initialize coprocessor save area on the stack
*
* This function allocates the coprocessor save area on the stack (sized XT_CP_SIZE) which includes...
* - Individual save areas for each coprocessor (size XT_CPx_SA, inclusive of each area's alignment)
* - Coprocessor context switching flags (e.g., XT_CPENABLE, XT_CPSTORED, XT_CP_CS_ST, XT_CP_ASA).
*
* The coprocessor save area is aligned to a 16-byte boundary.
* The coprocessor context switching flags are then initialized
*
* @param[in] uxStackPointer Current stack pointer address
* @return Stack pointer that points to allocated and initialized the coprocessor save area
*/
FORCE_INLINE_ATTR UBaseType_t uxInitialiseStackCPSA(UBaseType_t uxStackPointer)
{
/*
HIGH ADDRESS
|-------------------| XT_CP_SIZE
| CPn SA | ^
| ... | |
| CP0 SA | |
| ----------------- | | ---- XCHAL_TOTAL_SA_ALIGN aligned
|-------------------| | 12 bytes
| XT_CP_ASA | | ^
| XT_CP_CS_ST | | |
| XT_CPSTORED | | |
| XT_CPENABLE | | |
|-------------------| ---------------------- 16 byte aligned
LOW ADDRESS
*/
// Allocate overall coprocessor save area, aligned down to 16 byte boundary
uxStackPointer = STACKPTR_ALIGN_DOWN(16, uxStackPointer - XT_CP_SIZE);
// Initialize the coprocessor context switching flags.
uint32_t *p = (uint32_t *)uxStackPointer;
p[0] = 0; // Clear XT_CPENABLE and XT_CPSTORED
p[1] = 0; // Clear XT_CP_CS_ST
// XT_CP_ASA points to the aligned start of the individual CP save areas (i.e., start of CP0 SA)
p[2] = (uint32_t)ALIGNUP(XCHAL_TOTAL_SA_ALIGN, (uint32_t)uxStackPointer + 12);
return uxStackPointer;
}
#endif /* XCHAL_CP_NUM > 0 */
/**
* @brief Allocate and initialize GCC TLS area
*
* This function allocates and initializes the area on the stack used to store GCC TLS (Thread Local Storage) variables.
* - The area's size is derived from the TLS section's linker variables, and rounded up to a multiple of 16 bytes
* - The allocated area is aligned to a 16-byte aligned address
* - The TLS variables in the area are then initialized
*
* Each task access the TLS variables using the THREADPTR register plus an offset to obtain the address of the variable.
* The value for the THREADPTR register is also calculated by this function, and that value should be use to initialize
* the THREADPTR register.
*
* @param[in] uxStackPointer Current stack pointer address
* @param[out] ret_threadptr_reg_init Calculated THREADPTR register initialization value
* @return Stack pointer that points to the TLS area
*/
FORCE_INLINE_ATTR UBaseType_t uxInitialiseStackTLS(UBaseType_t uxStackPointer, uint32_t *ret_threadptr_reg_init)
{
/*
TLS layout at link-time, where 0xNNN is the offset that the linker calculates to a particular TLS variable.
LOW ADDRESS
|---------------------------| Linker Symbols
| Section | --------------
| .flash.rodata |
0x0|---------------------------| <- _flash_rodata_start
^ | Other Data |
| |---------------------------| <- _thread_local_start
| | .tbss | ^
V | | |
0xNNN | int example; | | tls_area_size
| | |
| .tdata | V
|---------------------------| <- _thread_local_end
| Other data |
| ... |
|---------------------------|
HIGH ADDRESS
*/
// Calculate the TLS area's size (rounded up to multiple of 16 bytes).
extern int _thread_local_start, _thread_local_end, _flash_rodata_start, _flash_rodata_align;
const uint32_t tls_area_size = ALIGNUP(16, (uint32_t)&_thread_local_end - (uint32_t)&_thread_local_start);
// TODO: check that TLS area fits the stack
// Allocate space for the TLS area on the stack. The area must be allocated at a 16-byte aligned address
uxStackPointer = STACKPTR_ALIGN_DOWN(16, uxStackPointer - (UBaseType_t)tls_area_size);
// Initialize the TLS area with the initialization values of each TLS variable
memcpy((void *)uxStackPointer, &_thread_local_start, tls_area_size);
/*
Calculate the THREADPTR register's initialization value based on the link-time offset and the TLS area allocated on
the stack.
HIGH ADDRESS
|---------------------------|
| .tdata (*) |
^ | int example; |
| | |
| | .tbss (*) |
| |---------------------------| <- uxStackPointer (start of TLS area)
0xNNN | | | ^
| | | |
| ... | (_thread_local_start - _flash_rodata_start) + align_up(TCB_SIZE, tls_section_alignment)
| | | |
| | | V
V | | <- threadptr register's value
LOW ADDRESS
Note: Xtensa is slightly different compared to the RISC-V port as there is an implicit aligned TCB_SIZE added to
the offset. (search for 'tpoff' in elf32-xtensa.c in BFD):
- "offset = address - tls_section_vma + align_up(TCB_SIZE, tls_section_alignment)"
- TCB_SIZE is hardcoded to 8
*/
const uint32_t tls_section_align = (uint32_t)&_flash_rodata_align; // ALIGN value of .flash.rodata section
#define TCB_SIZE 8
const uint32_t base = ALIGNUP(tls_section_align, TCB_SIZE);
*ret_threadptr_reg_init = (uint32_t)uxStackPointer - ((uint32_t)&_thread_local_start - (uint32_t)&_flash_rodata_start) - base;
return uxStackPointer;
}
/**
* @brief Initialize the task's starting interrupt stack frame
*
* This function initializes the task's starting interrupt stack frame. The dispatcher will use this stack frame in a
* context restore routine. Therefore, the starting stack frame must be initialized as if the task was interrupted right
* before its first instruction is called.
*
* - The stack frame is allocated to a 16-byte aligned address
* - The THREADPTR register is saved in the extra storage area of the stack frame. This is also initialized
*
* @param[in] uxStackPointer Current stack pointer address
* @param[in] pxCode Task function
* @param[in] pvParameters Task function's parameter
* @param[in] threadptr_reg_init THREADPTR register initialization value
* @return Stack pointer that points to the stack frame
*/
FORCE_INLINE_ATTR UBaseType_t uxInitialiseStackFrame(UBaseType_t uxStackPointer, TaskFunction_t pxCode, void *pvParameters, uint32_t threadptr_reg_init)
{
/*
HIGH ADDRESS
|---------------------------| ^ XT_STK_FRMSZ
| | |
| Stack Frame Extra Storage | |
| | |
| ------------------------- | | ^ XT_STK_EXTRA
| | | |
| Intr/Exc Stack Frame | | |
| | V V
| ------------------------- | ---------------------- 16 byte aligned
LOW ADDRESS
*/
/*
Allocate space for the task's starting interrupt stack frame.
- The stack frame must be allocated to a 16-byte aligned address.
- We use XT_STK_FRMSZ (instead of sizeof(XtExcFrame)) as it...
- includes the size of the extra storage area
- includes the size for a base save area before the stack frame
- rounds up the total size to a multiple of 16
*/
UBaseType_t uxStackPointerPrevious = uxStackPointer;
uxStackPointer = STACKPTR_ALIGN_DOWN(16, uxStackPointer - XT_STK_FRMSZ);
// Clear the entire interrupt stack frame
memset((void *)uxStackPointer, 0, (size_t)(uxStackPointerPrevious - uxStackPointer));
XtExcFrame *frame = (XtExcFrame *)uxStackPointer;
/*
Initialize common registers
*/
frame->a0 = 0; // Set the return address to 0 terminate GDB backtrace
frame->a1 = uxStackPointer + XT_STK_FRMSZ; // Saved stack pointer should point to physical top of stack frame
frame->exit = (UBaseType_t) _xt_user_exit; // User exception exit dispatcher
/*
Initialize the task's entry point. This will differ depending on
- Whether the task's entry point is the wrapper function or pxCode
- Whether Windowed ABI is used (for windowed, we mimic the task entry point being call4'd )
*/
#if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
frame->pc = (UBaseType_t) vPortTaskWrapper; // Task entry point is the wrapper function
#ifdef __XTENSA_CALL0_ABI__
frame->a2 = (UBaseType_t) pxCode; // Wrapper function's argument 0 (which is the task function)
frame->a3 = (UBaseType_t) pvParameters; // Wrapper function's argument 1 (which is the task function's argument)
#else // __XTENSA_CALL0_ABI__
frame->a6 = (UBaseType_t) pxCode; // Wrapper function's argument 0 (which is the task function), passed as if we call4'd
frame->a7 = (UBaseType_t) pvParameters; // Wrapper function's argument 1 (which is the task function's argument), passed as if we call4'd
#endif // __XTENSA_CALL0_ABI__
#else
frame->pc = (UBaseType_t) pxCode; // Task entry point is the provided task function
#ifdef __XTENSA_CALL0_ABI__
frame->a2 = (UBaseType_t) pvParameters; // Task function's argument
#else // __XTENSA_CALL0_ABI__
frame->a6 = (UBaseType_t) pvParameters; // Task function's argument, passed as if we call4'd
#endif // __XTENSA_CALL0_ABI__
#endif
/*
Set initial PS to int level 0, EXCM disabled ('rfe' will enable), user mode.
For windowed ABI also set WOE and CALLINC (pretend task was 'call4'd)
*/
#ifdef __XTENSA_CALL0_ABI__
frame->ps = PS_UM | PS_EXCM;
#else // __XTENSA_CALL0_ABI__
frame->ps = PS_UM | PS_EXCM | PS_WOE | PS_CALLINC(1);
#endif // __XTENSA_CALL0_ABI__
#ifdef XT_USE_SWPRI
// Set the initial virtual priority mask value to all 1's.
frame->vpri = 0xFFFFFFFF;
#endif
// Initialize the threadptr register in the extra save area of the stack frame
uint32_t *threadptr_reg = (uint32_t *)(uxStackPointer + XT_STK_EXTRA);
*threadptr_reg = threadptr_reg_init;
return uxStackPointer;
}
#if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
StackType_t * pxEndOfStack,
TaskFunction_t pxCode,
void * pvParameters )
#else
StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
TaskFunction_t pxCode,
void * pvParameters )
#endif
{
#ifdef __clang_analyzer__
// Teach clang-tidy that pxTopOfStack cannot be a pointer to const
volatile StackType_t * pxTemp = pxTopOfStack;
pxTopOfStack = pxTemp;
#endif /*__clang_analyzer__ */
/*
HIGH ADDRESS
|---------------------------| <- pxTopOfStack on entry
| Coproc Save Area | (CPSA MUST BE FIRST)
| ------------------------- |
| TLS Variables |
| ------------------------- | <- Start of useable stack
| Starting stack frame |
| ------------------------- | <- pxTopOfStack on return (which is the tasks current SP)
| | |
| | |
| V |
----------------------------- <- Bottom of stack
LOW ADDRESS
- All stack areas are aligned to 16 byte boundary
- We use UBaseType_t for all of stack area initialization functions for more convenient pointer arithmetic
*/
UBaseType_t uxStackPointer = (UBaseType_t)pxTopOfStack;
// Make sure the incoming stack pointer is aligned on 16
configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0);
#if XCHAL_CP_NUM > 0
// Initialize the coprocessor save area. THIS MUST BE THE FIRST AREA due to access from _frxt_task_coproc_state()
uxStackPointer = uxInitialiseStackCPSA(uxStackPointer);
// Each allocated section on the stack must have a size aligned on 16
configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0);
#endif /* XCHAL_CP_NUM > 0 */
// Initialize the GCC TLS area
uint32_t threadptr_reg_init;
uxStackPointer = uxInitialiseStackTLS(uxStackPointer, &threadptr_reg_init);
configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0);
// Initialize the starting interrupt stack frame
uxStackPointer = uxInitialiseStackFrame(uxStackPointer, pxCode, pvParameters, threadptr_reg_init);
configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0);
// Return the task's current stack pointer address which should point to the starting interrupt stack frame
return (StackType_t *)uxStackPointer;
}
/* ---------------------------------------------- Port Implementations -------------------------------------------------
*
* ------------------------------------------------------------------------------------------------------------------ */
// --------------------- Interrupts ------------------------
BaseType_t xPortInIsrContext(void)
{
unsigned int irqStatus;
BaseType_t ret;
irqStatus = portSET_INTERRUPT_MASK_FROM_ISR();
ret = (port_interruptNesting[xPortGetCoreID()] != 0);
portCLEAR_INTERRUPT_MASK_FROM_ISR(irqStatus);
return ret;
}
void vPortAssertIfInISR(void)
{
configASSERT(xPortInIsrContext());
}
BaseType_t IRAM_ATTR xPortInterruptedFromISRContext(void)
{
return (port_interruptNesting[xPortGetCoreID()] != 0);
}
// ------------------ Critical Sections --------------------
BaseType_t __attribute__((optimize("-O3"))) xPortEnterCriticalTimeout(portMUX_TYPE *mux, BaseType_t timeout)
{
/* Interrupts may already be disabled (if this function is called in nested
* manner). However, there's no atomic operation that will allow us to check,
* thus we have to disable interrupts again anyways.
*
* However, if this is call is NOT nested (i.e., the first call to enter a
* critical section), we will save the previous interrupt level so that the
* saved level can be restored on the last call to exit the critical.
*/
BaseType_t xOldInterruptLevel = portSET_INTERRUPT_MASK_FROM_ISR();
if (!spinlock_acquire(mux, timeout)) {
//Timed out attempting to get spinlock. Restore previous interrupt level and return
portCLEAR_INTERRUPT_MASK_FROM_ISR(xOldInterruptLevel);
return pdFAIL;
}
//Spinlock acquired. Increment the critical nesting count.
BaseType_t coreID = xPortGetCoreID();
BaseType_t newNesting = port_uxCriticalNesting[coreID] + 1;
port_uxCriticalNesting[coreID] = newNesting;
//If this is the first entry to a critical section. Save the old interrupt level.
if ( newNesting == 1 ) {
port_uxOldInterruptState[coreID] = xOldInterruptLevel;
}
return pdPASS;
}
void __attribute__((optimize("-O3"))) vPortExitCritical(portMUX_TYPE *mux)
{
/* This function may be called in a nested manner. Therefore, we only need
* to reenable interrupts if this is the last call to exit the critical. We
* can use the nesting count to determine whether this is the last exit call.
*/
spinlock_release(mux);
BaseType_t coreID = xPortGetCoreID();
BaseType_t nesting = port_uxCriticalNesting[coreID];
if (nesting > 0) {
nesting--;
port_uxCriticalNesting[coreID] = nesting;
//This is the last exit call, restore the saved interrupt level
if ( nesting == 0 ) {
portCLEAR_INTERRUPT_MASK_FROM_ISR(port_uxOldInterruptState[coreID]);
}
}
}
BaseType_t xPortEnterCriticalTimeoutCompliance(portMUX_TYPE *mux, BaseType_t timeout)
{
BaseType_t ret;
if (!xPortInIsrContext()) {
ret = xPortEnterCriticalTimeout(mux, timeout);
} else {
esp_rom_printf("port*_CRITICAL called from ISR context. Aborting!\n");
abort();
ret = pdFAIL;
}
return ret;
}
void vPortExitCriticalCompliance(portMUX_TYPE *mux)
{
if (!xPortInIsrContext()) {
vPortExitCritical(mux);
} else {
esp_rom_printf("port*_CRITICAL called from ISR context. Aborting!\n");
abort();
}
}
// ---------------------- Yielding -------------------------
void vPortYieldOtherCore( BaseType_t coreid )
{
esp_crosscore_int_send_yield( coreid );
}
// ------------------- Hook Functions ----------------------
void __attribute__((weak)) vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName )
{
#define ERR_STR1 "***ERROR*** A stack overflow in task "
#define ERR_STR2 " has been detected."
const char *str[] = {ERR_STR1, pcTaskName, ERR_STR2};
char buf[sizeof(ERR_STR1) + CONFIG_FREERTOS_MAX_TASK_NAME_LEN + sizeof(ERR_STR2) + 1 /* null char */] = { 0 };
char *dest = buf;
for (size_t i = 0 ; i < sizeof(str) / sizeof(str[0]); i++) {
dest = strcat(dest, str[i]);
}
esp_system_abort(buf);
}
// ----------------------- System --------------------------
uint32_t xPortGetTickRateHz(void)
{
return (uint32_t)configTICK_RATE_HZ;
}
#define STACK_WATCH_AREA_SIZE 32
#define STACK_WATCH_POINT_NUMBER (SOC_CPU_WATCHPOINTS_NUM - 1)
void vPortSetStackWatchpoint( void *pxStackStart )
{
//Set watchpoint 1 to watch the last 32 bytes of the stack.
//Unfortunately, the Xtensa watchpoints can't set a watchpoint on a random [base - base+n] region because
//the size works by masking off the lowest address bits. For that reason, we futz a bit and watch the lowest 32
//bytes of the stack we can actually watch. In general, this can cause the watchpoint to be triggered at most
//28 bytes early. The value 32 is chosen because it's larger than the stack canary, which in FreeRTOS is 20 bytes.
//This way, we make sure we trigger before/when the stack canary is corrupted, not after.
int addr = (int)pxStackStart;
addr = (addr + 31) & (~31);
esp_cpu_set_watchpoint(STACK_WATCH_POINT_NUMBER, (char *)addr, 32, ESP_CPU_WATCHPOINT_STORE);
}
// --------------------- TCB Cleanup -----------------------
void vPortTCBPreDeleteHook( void *pxTCB )
{
#if ( CONFIG_FREERTOS_TASK_PRE_DELETION_HOOK )
/* Call the user defined task pre-deletion hook */
extern void vTaskPreDeletionHook( void * pxTCB );
vTaskPreDeletionHook( pxTCB );
#endif /* CONFIG_FREERTOS_TASK_PRE_DELETION_HOOK */
#if ( CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP )
/*
* If the user is using the legacy task pre-deletion hook, call it.
* Todo: Will be removed in IDF-8097
*/
#warning "CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP is deprecated. Use CONFIG_FREERTOS_TASK_PRE_DELETION_HOOK instead."
extern void vPortCleanUpTCB( void * pxTCB );
vPortCleanUpTCB( pxTCB );
#endif /* CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP */
}
// -------------------- Co-Processor -----------------------
#if XCHAL_CP_NUM > 0
void _xt_coproc_release(volatile void *coproc_sa_base, BaseType_t xTargetCoreID);
void vPortCleanUpCoprocArea(void *pvTCB)
{
UBaseType_t uxCoprocArea;
BaseType_t xTargetCoreID;
/* Get a pointer to the task's coprocessor save area */
uxCoprocArea = ( UBaseType_t ) ( ( ( StaticTask_t * ) pvTCB )->pxDummy8 ); /* Get TCB_t.pxEndOfStack */
uxCoprocArea = STACKPTR_ALIGN_DOWN(16, uxCoprocArea - XT_CP_SIZE);
/* Get xTargetCoreID from the TCB.xCoreID */
xTargetCoreID = ( ( StaticTask_t * ) pvTCB )->xDummyCoreID;
/* If task has live floating point registers somewhere, release them */
_xt_coproc_release( (void *)uxCoprocArea, xTargetCoreID );
}
#endif /* XCHAL_CP_NUM > 0 */