mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
171 lines
7.0 KiB
C
171 lines
7.0 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* This file contains `spi_flash_mmap_xx` APIs, mainly for doing memory mapping
|
|
* to an SPI-connected external Flash, as well as some helper functions to
|
|
* convert between virtual and physical address
|
|
**/
|
|
|
|
#pragma once
|
|
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include "esp_err.h"
|
|
#include "sdkconfig.h"
|
|
#include "esp_spi_flash_counters.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#define ESP_ERR_FLASH_OP_FAIL (ESP_ERR_FLASH_BASE + 1)
|
|
#define ESP_ERR_FLASH_OP_TIMEOUT (ESP_ERR_FLASH_BASE + 2)
|
|
|
|
#define SPI_FLASH_SEC_SIZE 4096 /**< SPI Flash sector size */
|
|
|
|
#define SPI_FLASH_MMU_PAGE_SIZE CONFIG_MMU_PAGE_SIZE /**< Flash cache MMU mapping page size */
|
|
|
|
/**
|
|
* @brief Enumeration which specifies memory space requested in an mmap call
|
|
*/
|
|
typedef enum {
|
|
SPI_FLASH_MMAP_DATA, /**< map to data memory (Vaddr0), allows byte-aligned access, 4 MB total */
|
|
SPI_FLASH_MMAP_INST, /**< map to instruction memory (Vaddr1-3), allows only 4-byte-aligned access, 11 MB total */
|
|
} spi_flash_mmap_memory_t;
|
|
|
|
/**
|
|
* @brief Opaque handle for memory region obtained from spi_flash_mmap.
|
|
*/
|
|
typedef uint32_t spi_flash_mmap_handle_t;
|
|
|
|
/**
|
|
* @brief Map region of flash memory into data or instruction address space
|
|
*
|
|
* This function allocates sufficient number of 64kB MMU pages and configures
|
|
* them to map the requested region of flash memory into the address space.
|
|
* It may reuse MMU pages which already provide the required mapping.
|
|
*
|
|
* As with any allocator, if mmap/munmap are heavily used then the address space
|
|
* may become fragmented. To troubleshoot issues with page allocation, use
|
|
* spi_flash_mmap_dump() function.
|
|
*
|
|
* @param src_addr Physical address in flash where requested region starts.
|
|
* This address *must* be aligned to 64kB boundary
|
|
* (SPI_FLASH_MMU_PAGE_SIZE)
|
|
* @param size Size of region to be mapped. This size will be rounded
|
|
* up to a 64kB boundary
|
|
* @param memory Address space where the region should be mapped (data or instruction)
|
|
* @param[out] out_ptr Output, pointer to the mapped memory region
|
|
* @param[out] out_handle Output, handle which should be used for spi_flash_munmap call
|
|
*
|
|
* @return ESP_OK on success, ESP_ERR_NO_MEM if pages can not be allocated
|
|
*/
|
|
esp_err_t spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory,
|
|
const void** out_ptr, spi_flash_mmap_handle_t* out_handle);
|
|
|
|
/**
|
|
* @brief Map sequences of pages of flash memory into data or instruction address space
|
|
*
|
|
* This function allocates sufficient number of 64kB MMU pages and configures
|
|
* them to map the indicated pages of flash memory contiguously into address space.
|
|
* In this respect, it works in a similar way as spi_flash_mmap() but it allows mapping
|
|
* a (maybe non-contiguous) set of pages into a contiguous region of memory.
|
|
*
|
|
* @param pages An array of numbers indicating the 64kB pages in flash to be mapped
|
|
* contiguously into memory. These indicate the indexes of the 64kB pages,
|
|
* not the byte-size addresses as used in other functions.
|
|
* Array must be located in internal memory.
|
|
* @param page_count Number of entries in the pages array
|
|
* @param memory Address space where the region should be mapped (instruction or data)
|
|
* @param[out] out_ptr Output, pointer to the mapped memory region
|
|
* @param[out] out_handle Output, handle which should be used for spi_flash_munmap call
|
|
*
|
|
* @return
|
|
* - ESP_OK on success
|
|
* - ESP_ERR_NO_MEM if pages can not be allocated
|
|
* - ESP_ERR_INVALID_ARG if pagecount is zero or pages array is not in
|
|
* internal memory
|
|
*/
|
|
esp_err_t spi_flash_mmap_pages(const int *pages, size_t page_count, spi_flash_mmap_memory_t memory,
|
|
const void** out_ptr, spi_flash_mmap_handle_t* out_handle);
|
|
|
|
|
|
/**
|
|
* @brief Release region previously obtained using spi_flash_mmap
|
|
*
|
|
* @note Calling this function will not necessarily unmap memory region.
|
|
* Region will only be unmapped when there are no other handles which
|
|
* reference this region. In case of partially overlapping regions
|
|
* it is possible that memory will be unmapped partially.
|
|
*
|
|
* @param handle Handle obtained from spi_flash_mmap
|
|
*/
|
|
void spi_flash_munmap(spi_flash_mmap_handle_t handle);
|
|
|
|
/**
|
|
* @brief Display information about mapped regions
|
|
*
|
|
* This function lists handles obtained using spi_flash_mmap, along with range
|
|
* of pages allocated to each handle. It also lists all non-zero entries of
|
|
* MMU table and corresponding reference counts.
|
|
*/
|
|
void spi_flash_mmap_dump(void);
|
|
|
|
/**
|
|
* @brief get free pages number which can be mmap
|
|
*
|
|
* This function will return number of free pages available in mmu table. This could be useful
|
|
* before calling actual spi_flash_mmap (maps flash range to DCache or ICache memory) to check
|
|
* if there is sufficient space available for mapping.
|
|
*
|
|
* @param memory memory type of MMU table free page
|
|
*
|
|
* @return number of free pages which can be mmaped
|
|
*/
|
|
uint32_t spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory);
|
|
|
|
|
|
#define SPI_FLASH_CACHE2PHYS_FAIL UINT32_MAX /*<! Result from spi_flash_cache2phys() if flash cache address is invalid */
|
|
|
|
/**
|
|
* @brief Given a memory address where flash is mapped, return the corresponding physical flash offset.
|
|
*
|
|
* Cache address does not have have been assigned via spi_flash_mmap(), any address in memory mapped flash space can be looked up.
|
|
*
|
|
* @param cached Pointer to flashed cached memory.
|
|
*
|
|
* @return
|
|
* - SPI_FLASH_CACHE2PHYS_FAIL If cache address is outside flash cache region, or the address is not mapped.
|
|
* - Otherwise, returns physical offset in flash
|
|
*/
|
|
size_t spi_flash_cache2phys(const void *cached);
|
|
|
|
/** @brief Given a physical offset in flash, return the address where it is mapped in the memory space.
|
|
*
|
|
* Physical address does not have to have been assigned via spi_flash_mmap(), any address in flash can be looked up.
|
|
*
|
|
* @note Only the first matching cache address is returned. If MMU flash cache table is configured so multiple entries
|
|
* point to the same physical address, there may be more than one cache address corresponding to that physical
|
|
* address. It is also possible for a single physical address to be mapped to both the IROM and DROM regions.
|
|
*
|
|
* @note This function doesn't impose any alignment constraints, but if memory argument is SPI_FLASH_MMAP_INST and
|
|
* phys_offs is not 4-byte aligned, then reading from the returned pointer will result in a crash.
|
|
*
|
|
* @param phys_offs Physical offset in flash memory to look up.
|
|
* @param memory Address space type to look up a flash cache address mapping for (instruction or data)
|
|
*
|
|
* @return
|
|
* - NULL if the physical address is invalid or not mapped to flash cache of the specified memory type.
|
|
* - Cached memory address (in IROM or DROM space) corresponding to phys_offs.
|
|
*/
|
|
const void *spi_flash_phys2cache(size_t phys_offs, spi_flash_mmap_memory_t memory);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|