Marius Vikhammer d2872095f9 soc: moved kconfig options out of the target component.
Moved the following kconfig options out of the target component:
 * CONFIG_ESP*_DEFAULT_CPU_FREQ* -> esp_system
 * ESP*_REV_MIN -> esp_hw_support
 * ESP*_TIME_SYSCALL -> newlib
 * ESP*_RTC_* -> esp_hw_support

Where applicable these target specific konfig names were merged into
a single common config, e.g;
CONFIG_ESP*_DEFAULT_CPU_FREQ -> CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ
2022-04-21 12:09:43 +08:00

609 lines
19 KiB
C

/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "sdkconfig.h"
#include <sys/param.h>
#include <string.h>
#include "esp_log.h"
#include "test_utils.h"
#include "esp_adc_cal.h"
#include "driver/adc_common.h"
#include "esp_cpu.h"
__attribute__((unused)) static const char *TAG = "ADC";
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32, ESP32S2, ESP32S3, ESP32C3, ESP32C2)
//TODO: IDF-3160
#define TEST_COUNT 4096
#define MAX_ARRAY_SIZE 4096
#define TEST_ATTEN ADC_ATTEN_MAX //Set to ADC_ATTEN_*db to test a single attenuation only
static int s_adc_count[MAX_ARRAY_SIZE]={};
static int s_adc_offset = -1;
static int insert_point(uint32_t value)
{
const bool fixed_size = true;
if (s_adc_offset < 0) {
if (fixed_size) {
TEST_ASSERT_GREATER_OR_EQUAL(4096, MAX_ARRAY_SIZE);
s_adc_offset = 0; //Fixed to 0 because the array can hold all the data in 12 bits
} else {
s_adc_offset = MAX((int)value - MAX_ARRAY_SIZE/2, 0);
}
}
if (!fixed_size && (value < s_adc_offset || value >= s_adc_offset + MAX_ARRAY_SIZE)) {
TEST_ASSERT_GREATER_OR_EQUAL(s_adc_offset, value);
TEST_ASSERT_LESS_THAN(s_adc_offset + MAX_ARRAY_SIZE, value);
}
s_adc_count[value - s_adc_offset] ++;
return value - s_adc_offset;
}
static void reset_array(void)
{
memset(s_adc_count, 0, sizeof(s_adc_count));
s_adc_offset = -1;
}
static uint32_t get_average(void)
{
uint32_t sum = 0;
int count = 0;
for (int i = 0; i < MAX_ARRAY_SIZE; i++) {
sum += s_adc_count[i] * (s_adc_offset+i);
count += s_adc_count[i];
}
return sum/count;
}
static void print_summary(bool figure)
{
const int MAX_WIDTH=20;
int max_count = 0;
int start = -1;
int end = -1;
uint32_t sum = 0;
int count = 0;
for (int i = 0; i < MAX_ARRAY_SIZE; i++) {
if (s_adc_count[i] > max_count) {
max_count = s_adc_count[i];
}
if (s_adc_count[i] > 0 && start < 0) {
start = i;
}
if (s_adc_count[i] > 0) {
end = i;
}
count += s_adc_count[i];
sum += s_adc_count[i] * (s_adc_offset+i);
}
if (figure) {
for (int i = start; i <= end; i++) {
printf("%4d ", i+s_adc_offset);
int count = s_adc_count[i] * MAX_WIDTH / max_count;
for (int j = 0; j < count; j++) {
putchar('|');
}
printf(" %d\n", s_adc_count[i]);
}
}
float average = (float)sum/count;
float variation_square = 0;
for (int i = start; i <= end; i ++) {
if (s_adc_count[i] == 0) {
continue;
}
float delta = i + s_adc_offset - average;
variation_square += (delta * delta) * s_adc_count[i];
}
printf("%d points.\n", count);
printf("average: %.1f\n", (float)sum/count);
printf("std: %.2f\n", sqrt(variation_square/count));
}
static void continuous_adc_init(uint16_t adc1_chan_mask, uint16_t adc2_chan_mask, adc_channel_t *channel, uint8_t channel_num, adc_atten_t atten)
{
adc_digi_init_config_t adc_dma_config = {
.max_store_buf_size = TEST_COUNT*2,
.conv_num_each_intr = 128,
.adc1_chan_mask = adc1_chan_mask,
.adc2_chan_mask = adc2_chan_mask,
};
TEST_ESP_OK(adc_digi_initialize(&adc_dma_config));
adc_digi_pattern_table_t adc_pattern[10] = {0};
adc_digi_config_t dig_cfg = {
.conv_limit_en = 0,
.conv_limit_num = 250,
.sample_freq_hz = 83333,
};
dig_cfg.adc_pattern_len = channel_num;
for (int i = 0; i < channel_num; i++) {
uint8_t unit = ((channel[i] >> 3) & 0x1);
uint8_t ch = channel[i] & 0x7;
adc_pattern[i].atten = atten;
adc_pattern[i].channel = ch;
adc_pattern[i].unit = unit;
}
dig_cfg.adc_pattern = adc_pattern;
TEST_ESP_OK(adc_digi_controller_config(&dig_cfg));
}
TEST_CASE("test_adc_dma", "[adc][ignore][manual]")
{
uint16_t adc1_chan_mask = BIT(2);
uint16_t adc2_chan_mask = 0;
adc_channel_t channel[1] = {ADC1_CHANNEL_2};
adc_atten_t target_atten = TEST_ATTEN;
const int output_data_size = sizeof(adc_digi_output_data_t);
int buffer_size = TEST_COUNT*output_data_size;
uint8_t* read_buf = malloc(buffer_size);
TEST_ASSERT_NOT_NULL(read_buf);
adc_atten_t atten;
bool print_figure;
if (target_atten == ADC_ATTEN_MAX) {
atten = ADC_ATTEN_DB_0;
target_atten = ADC_ATTEN_DB_11;
print_figure = false;
} else {
atten = target_atten;
print_figure = true;
}
while (1) {
ESP_LOGI("TEST_ADC", "Test with atten: %d", atten);
memset(read_buf, 0xce, buffer_size);
bool do_calibration = false;
esp_adc_cal_characteristics_t chan1_char = {};
esp_adc_cal_value_t cal_ret = esp_adc_cal_characterize(ADC_UNIT_1, atten, ADC_WIDTH_12Bit, 0, &chan1_char);
if (cal_ret == ESP_ADC_CAL_VAL_EFUSE_TP) {
do_calibration = true;
}
continuous_adc_init(adc1_chan_mask, adc2_chan_mask, channel, sizeof(channel) / sizeof(adc_channel_t), atten);
adc_digi_start();
int remain_count = TEST_COUNT;
while (remain_count) {
int already_got = TEST_COUNT - remain_count;
uint32_t ret_num;
TEST_ESP_OK(adc_digi_read_bytes(read_buf + already_got*output_data_size,
remain_count*output_data_size, &ret_num, ADC_MAX_DELAY));
TEST_ASSERT((ret_num % output_data_size) == 0);
remain_count -= ret_num / output_data_size;
}
adc_digi_output_data_t *p = (void*)read_buf;
reset_array();
for (int i = 0; i < TEST_COUNT; i++) {
insert_point(p[i].type2.data);
}
print_summary(print_figure);
if (do_calibration) {
uint32_t raw = get_average();
uint32_t voltage_mv = esp_adc_cal_raw_to_voltage(raw, &chan1_char);
printf("Voltage = %d mV\n", voltage_mv);
}
adc_digi_stop();
TEST_ESP_OK(adc_digi_deinitialize());
if (atten == target_atten) {
break;
}
atten++;
}
free(read_buf);
}
TEST_CASE("test_adc_single", "[adc][ignore][manual]")
{
adc_atten_t target_atten = TEST_ATTEN;
adc_atten_t atten;
bool print_figure;
if (target_atten == ADC_ATTEN_MAX) {
atten = ADC_ATTEN_DB_0;
target_atten = ADC_ATTEN_DB_11;
print_figure = false;
} else {
atten = target_atten;
print_figure = true;
}
adc1_config_width(ADC_WIDTH_BIT_12);
while (1) {
ESP_LOGI("TEST_ADC", "Test with atten: %d", atten);
adc1_config_channel_atten(ADC1_CHANNEL_2, atten);
bool do_calibration = false;
esp_adc_cal_characteristics_t chan1_char = {};
esp_adc_cal_value_t cal_ret = esp_adc_cal_characterize(ADC_UNIT_1, atten, ADC_WIDTH_12Bit, 0, &chan1_char);
if (cal_ret == ESP_ADC_CAL_VAL_EFUSE_TP) {
do_calibration = true;
}
const int test_count = TEST_COUNT;
adc1_channel_t channel = ADC1_CHANNEL_2;
while (1) {
reset_array();
for (int i = 0; i < test_count; i++) {
uint32_t raw = adc1_get_raw(channel);
insert_point(raw);
}
print_summary(print_figure);
break;
}
if (do_calibration) {
uint32_t raw = get_average();
uint32_t voltage_mv = esp_adc_cal_raw_to_voltage(raw, &chan1_char);
printf("Voltage = %d mV\n", voltage_mv);
}
if (atten == target_atten) {
break;
}
atten++;
}
}
#endif //#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32, ESP32S2, ESP32S3, ESP32C3, ESP32C2)
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32C2) //TODO IDF-3908
/********************************************************************************
* ADC Speed Related Tests
********************************************************************************/
#define RECORD_TIME_PREPARE() uint32_t __t1, __t2
#define RECORD_TIME_START() do {__t1 = esp_cpu_get_ccount();}while(0)
#define RECORD_TIME_END(p_time) do{__t2 = esp_cpu_get_ccount(); *p_time = (__t2-__t1);}while(0)
#define GET_US_BY_CCOUNT(t) ((double)t/CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ)
//ADC Channels
#if CONFIG_IDF_TARGET_ESP32
#define ADC1_CALI_TEST_CHAN0 ADC1_CHANNEL_6
#define ADC2_CALI_TEST_CHAN0 ADC2_CHANNEL_0
#else
#define ADC1_CALI_TEST_CHAN0 ADC1_CHANNEL_2
#define ADC2_CALI_TEST_CHAN0 ADC2_CHANNEL_0
#endif
//ADC Calibration
#if CONFIG_IDF_TARGET_ESP32
#define ADC_TEST_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_VREF
#elif CONFIG_IDF_TARGET_ESP32S2
#define ADC_TEST_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_TP
#elif CONFIG_IDF_TARGET_ESP32C3
#define ADC_TEST_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_TP
#elif CONFIG_IDF_TARGET_ESP32S3
#define ADC_TEST_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_TP_FIT
#endif
#define TIMES_PER_ATTEN 10
static esp_adc_cal_characteristics_t adc1_chars;
static esp_adc_cal_characteristics_t adc2_chars;
static void adc_single_cali_init(adc_unit_t adc_n, adc_channel_t chan, uint32_t atten)
{
esp_err_t ret;
esp_adc_cal_value_t ret_val = ESP_ADC_CAL_VAL_NOT_SUPPORTED;
ret = esp_adc_cal_check_efuse(ADC_TEST_CALI_SCHEME);
if (ret == ESP_ERR_NOT_SUPPORTED) {
ESP_LOGE(TAG, "Cali scheme not supported!");
TEST_ASSERT(ret != ESP_ERR_NOT_SUPPORTED);
} else if (ret != ESP_OK) {
ESP_LOGW(TAG, "No cali eFuse, but will run the test");
}
if (adc_n == ADC_UNIT_1) {
ret_val = esp_adc_cal_characterize(adc_n, atten, ADC_WIDTH_BIT_DEFAULT, 0, &adc1_chars);
TEST_ESP_OK(adc1_config_width(ADC_WIDTH_BIT_DEFAULT));
TEST_ESP_OK(adc1_config_channel_atten((adc1_channel_t)chan, atten));
} else if (adc_n == ADC_UNIT_2) {
TEST_ESP_OK(adc2_config_channel_atten((adc2_channel_t)chan, atten));
ret_val = esp_adc_cal_characterize(adc_n, atten, ADC_WIDTH_BIT_DEFAULT, 0, &adc2_chars);
}
if (ret_val == ESP_ADC_CAL_VAL_NOT_SUPPORTED) {
ESP_LOGW(TAG, "No cali eFuse, or invalid arg, but will run the test");
}
ESP_LOGI(TAG, "ADC%d, channel%d, atten%d", adc_n, chan, atten);
}
static IRAM_ATTR NOINLINE_ATTR uint32_t get_cali_time_in_ccount(uint32_t adc_raw, esp_adc_cal_characteristics_t *chars)
{
uint32_t time;
RECORD_TIME_PREPARE();
RECORD_TIME_START();
esp_adc_cal_raw_to_voltage(adc_raw, chars);
RECORD_TIME_END(&time);
return time;
}
TEST_CASE("test_adc_single_cali_time", "[adc][ignore][manual]")
{
ESP_LOGI(TAG, "CPU FREQ is %dMHz", CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ);
uint32_t adc1_time_record[4][TIMES_PER_ATTEN] = {};
uint32_t adc2_time_record[4][TIMES_PER_ATTEN] = {};
int adc1_raw = 0;
int adc2_raw = 0;
//atten0 ~ atten3
for (int i = 0; i < 4; i++) {
ESP_LOGI(TAG, "----------------atten%d----------------", i);
adc_single_cali_init(ADC_UNIT_1, ADC1_CALI_TEST_CHAN0, i);
adc_single_cali_init(ADC_UNIT_2, ADC2_CALI_TEST_CHAN0, i);
for (int j = 0; j < TIMES_PER_ATTEN; j++) {
adc1_raw = adc1_get_raw(ADC1_CALI_TEST_CHAN0);
TEST_ESP_OK(adc2_get_raw(ADC2_CALI_TEST_CHAN0, ADC_WIDTH_BIT_DEFAULT, &adc2_raw));
adc1_time_record[i][j] = get_cali_time_in_ccount(adc1_raw, &adc1_chars);
adc2_time_record[i][j] = get_cali_time_in_ccount(adc2_raw, &adc2_chars);
IDF_LOG_PERFORMANCE("ADC1 Cali time", "%d us", (int)GET_US_BY_CCOUNT(adc1_time_record[i][j]));
IDF_LOG_PERFORMANCE("ADC2 Cali time", "%d us", (int)GET_US_BY_CCOUNT(adc2_time_record[i][j]));
}
}
}
/********************************************************************************
* ADC Single with Light Sleep
********************************************************************************/
#include <inttypes.h>
#include "esp_sleep.h"
#include "esp_private/regi2c_ctrl.h"
#if REGI2C_ANA_CALI_PD_WORKAROUND
#include "regi2c_saradc.h"
#endif
//ADC Channels
#if CONFIG_IDF_TARGET_ESP32
#define ADC1_SLEEP_TEST_CHAN ADC1_CHANNEL_6
#define ADC2_SLEEP_TEST_CHAN ADC2_CHANNEL_0
static const char *TAG_CH[2][10] = {{"ADC1_CH6"}, {"ADC2_CH0"}};
#else
#define ADC1_SLEEP_TEST_CHAN ADC1_CHANNEL_2
#define ADC2_SLEEP_TEST_CHAN ADC2_CHANNEL_0
static const char *TAG_CH[2][10] = {{"ADC1_CH2"}, {"ADC2_CH0"}};
#endif
//ADC Attenuation
#define ADC_SLEEP_TEST_ATTEN ADC_ATTEN_DB_6
//ADC Calibration
#if CONFIG_IDF_TARGET_ESP32
#define ADC_SLEEP_TEST_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_VREF
#elif CONFIG_IDF_TARGET_ESP32S2
#define ADC_SLEEP_TEST_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_TP
#elif CONFIG_IDF_TARGET_ESP32C3
#define ADC_SLEEP_TEST_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_TP
#elif CONFIG_IDF_TARGET_ESP32S3
#define ADC_SLEEP_TEST_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_TP_FIT
#endif
static esp_adc_cal_characteristics_t adc1_chars;
static esp_adc_cal_characteristics_t adc2_chars;
static bool adc_calibration_init(void)
{
esp_err_t ret;
bool cali_enable = false;
ret = esp_adc_cal_check_efuse(ADC_SLEEP_TEST_CALI_SCHEME);
if (ret == ESP_ERR_NOT_SUPPORTED) {
ESP_LOGW(TAG, "Calibration scheme not supported, skip software calibration");
} else if (ret == ESP_ERR_INVALID_VERSION) {
ESP_LOGW(TAG, "eFuse not burnt, skip software calibration");
} else if (ret == ESP_OK) {
cali_enable = true;
esp_adc_cal_characterize(ADC_UNIT_1, ADC_SLEEP_TEST_ATTEN, ADC_WIDTH_BIT_DEFAULT, 0, &adc1_chars);
esp_adc_cal_characterize(ADC_UNIT_2, ADC_SLEEP_TEST_ATTEN, ADC_WIDTH_BIT_DEFAULT, 0, &adc2_chars);
} else {
ESP_LOGE(TAG, "Invalid arg");
}
return cali_enable;
}
#define TEST_REGI2C_ANA_CALI_BYTE_NUM 8
TEST_CASE("test ADC1 Single Read with Light Sleep", "[adc][manul][ignore]")
{
//ADC1 config
TEST_ESP_OK(adc1_config_width(ADC_WIDTH_BIT_DEFAULT));
TEST_ESP_OK(adc1_config_channel_atten(ADC1_SLEEP_TEST_CHAN, ADC_SLEEP_TEST_ATTEN));
//ADC config calibration
bool cali_en = adc_calibration_init();
int raw_expected = 0;
uint32_t cali_expected = 0;
uint8_t regi2c_cali_val_before[TEST_REGI2C_ANA_CALI_BYTE_NUM] = {};
int raw_after_sleep = 0;
uint32_t cali_after_sleep = 0;
uint8_t regi2c_cali_val_after[TEST_REGI2C_ANA_CALI_BYTE_NUM] = {};
//---------------------------------Before Sleep-----------------------------------//
ESP_LOGI("Before", "Light Sleep");
//Read
raw_expected = adc1_get_raw(ADC1_SLEEP_TEST_CHAN);
if (cali_en) {
cali_expected = esp_adc_cal_raw_to_voltage(raw_expected, &adc1_chars);
}
#if REGI2C_ANA_CALI_PD_WORKAROUND
//Print regi2c
for (int i = 0; i < TEST_REGI2C_ANA_CALI_BYTE_NUM; i++) {
regi2c_cali_val_before[i] = regi2c_ctrl_read_reg(I2C_SAR_ADC, I2C_SAR_ADC_HOSTID, i);
printf("regi2c cali val is 0x%x", regi2c_cali_val_before[i]);
}
printf("\n");
#endif
//Print result
ESP_LOGI(TAG_CH[0][0], "ADC1 raw data: %d", raw_expected);
if (cali_en) {
ESP_LOGI(TAG_CH[0][0], "ADC1 cali data: %d", cali_expected);
}
//---------------------------------After Sleep-----------------------------------//
ESP_LOGI("After", "Light Sleep");
esp_sleep_enable_timer_wakeup(30 * 1000);
esp_light_sleep_start();
ESP_LOGI(TAG, "Wakeup from light sleep.");
#if REGI2C_ANA_CALI_PD_WORKAROUND
//Print regi2c
for (int i = 0; i < TEST_REGI2C_ANA_CALI_BYTE_NUM; i++) {
regi2c_cali_val_after[i] = regi2c_ctrl_read_reg(I2C_SAR_ADC, I2C_SAR_ADC_HOSTID, i);
printf("regi2c cali val is 0x%x", regi2c_cali_val_after[i]);
}
printf("\n");
#endif
//Read
raw_after_sleep = adc1_get_raw(ADC1_SLEEP_TEST_CHAN);
if (cali_en) {
cali_after_sleep = esp_adc_cal_raw_to_voltage(raw_after_sleep, &adc1_chars);
}
//Print result
ESP_LOGI(TAG_CH[0][0], "after light sleep, ADC1 cali data: %d", raw_after_sleep);
if (cali_en) {
ESP_LOGI(TAG_CH[0][0], "after light sleep, ADC1 cali data: %d", cali_after_sleep);
}
//Compare
int32_t raw_diff = raw_expected - raw_after_sleep;
IDF_LOG_PERFORMANCE("ADC1 raw diff after sleep", "%d", raw_diff);
if (cali_en) {
int32_t cali_diff = cali_expected - cali_after_sleep;
IDF_LOG_PERFORMANCE("ADC1 cali diff after sleep", "%d mV", cali_diff);
}
for (int i = 0; i < TEST_REGI2C_ANA_CALI_BYTE_NUM; i++) {
TEST_ASSERT_EQUAL(regi2c_cali_val_before[i], regi2c_cali_val_after[i]);
}
}
TEST_CASE("test ADC2 Single Read with Light Sleep", "[adc][manul][ignore]")
{
//ADC2 config
ESP_ERROR_CHECK(adc2_config_channel_atten(ADC2_SLEEP_TEST_CHAN, ADC_SLEEP_TEST_ATTEN));
//ADC config calibration
bool cali_en = adc_calibration_init();
int raw_expected = 0;
uint32_t cali_expected = 0;
uint8_t regi2c_cali_val_before[TEST_REGI2C_ANA_CALI_BYTE_NUM] = {};
int raw_after_sleep = 0;
uint32_t cali_after_sleep = 0;
uint8_t regi2c_cali_val_after[TEST_REGI2C_ANA_CALI_BYTE_NUM] = {};
//---------------------------------Before Sleep-----------------------------------//
ESP_LOGI("Before", "Light Sleep");
//Read
TEST_ESP_OK(adc2_get_raw(ADC2_SLEEP_TEST_CHAN, ADC_WIDTH_BIT_DEFAULT, &raw_expected));
if (cali_en) {
cali_expected = esp_adc_cal_raw_to_voltage(raw_expected, &adc2_chars);
}
#if REGI2C_ANA_CALI_PD_WORKAROUND
//Print regi2c
for (int i = 0; i < TEST_REGI2C_ANA_CALI_BYTE_NUM; i++) {
regi2c_cali_val_before[i] = regi2c_ctrl_read_reg(I2C_SAR_ADC, I2C_SAR_ADC_HOSTID, i);
printf("regi2c cali val is 0x%x", regi2c_cali_val_before[i]);
}
printf("\n");
#endif
//Print result
ESP_LOGI(TAG_CH[1][0], "ADC2 raw data: %d", raw_expected);
if (cali_en) {
ESP_LOGI(TAG_CH[1][0], "ADC2 cali data: %d", cali_expected);
}
//---------------------------------After Sleep-----------------------------------//
ESP_LOGI("After", "Light Sleep");
esp_sleep_enable_timer_wakeup(30 * 1000);
esp_light_sleep_start();
ESP_LOGI(TAG, "Wakeup from light sleep.");
#if REGI2C_ANA_CALI_PD_WORKAROUND
//Print regi2c
for (int i = 0; i < TEST_REGI2C_ANA_CALI_BYTE_NUM; i++) {
regi2c_cali_val_after[i] = regi2c_ctrl_read_reg(I2C_SAR_ADC, I2C_SAR_ADC_HOSTID, i);
printf("regi2c cali val is 0x%x", regi2c_cali_val_after[i]);
}
printf("\n");
#endif
//Read
TEST_ESP_OK(adc2_get_raw(ADC2_SLEEP_TEST_CHAN, ADC_WIDTH_BIT_DEFAULT, &raw_after_sleep));
if (cali_en) {
cali_after_sleep += esp_adc_cal_raw_to_voltage(raw_after_sleep, &adc2_chars);
}
//Print result
ESP_LOGI(TAG_CH[1][0], "after light sleep, ADC2 cali data: %d", raw_after_sleep);
if (cali_en) {
ESP_LOGI(TAG_CH[1][0], "after light sleep, ADC2 cali data: %d", cali_after_sleep);
}
//Compare
int32_t raw_diff = raw_expected - raw_after_sleep;
IDF_LOG_PERFORMANCE("ADC2 raw diff after sleep", "%d", raw_diff);
if (cali_en) {
int32_t cali_diff = cali_expected - cali_after_sleep;
IDF_LOG_PERFORMANCE("ADC2 cali diff after sleep", "%d mV", cali_diff);
}
for (int i = 0; i < TEST_REGI2C_ANA_CALI_BYTE_NUM; i++) {
TEST_ASSERT_EQUAL(regi2c_cali_val_before[i], regi2c_cali_val_after[i]);
}
}
#endif //#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32C2) //TODO IDF-3908