mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
d5d722c66f
Closes: https://github.com/espressif/esp-idf/issues/5329 Merges: https://github.com/espressif/esp-idf/pull/5331 Signed-off-by: Shubham Kulkarni <shubham.kulkarni@espressif.com>
914 lines
32 KiB
C
914 lines
32 KiB
C
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <freertos/FreeRTOS.h>
|
|
#include <freertos/task.h>
|
|
|
|
#include "esp_err.h"
|
|
#include "esp_partition.h"
|
|
#include "esp_spi_flash.h"
|
|
#include "esp_image_format.h"
|
|
#include "esp_secure_boot.h"
|
|
#include "esp_flash_encrypt.h"
|
|
#include "esp_spi_flash.h"
|
|
#include "sdkconfig.h"
|
|
|
|
#include "esp_ota_ops.h"
|
|
#include "sys/queue.h"
|
|
#include "esp_log.h"
|
|
#include "esp_flash_partitions.h"
|
|
#include "bootloader_common.h"
|
|
#include "sys/param.h"
|
|
#include "esp_system.h"
|
|
#include "esp_efuse.h"
|
|
|
|
#ifdef CONFIG_IDF_TARGET_ESP32
|
|
#include "esp32/rom/crc.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
#include "esp32s2/rom/crc.h"
|
|
#include "esp32s2/rom/secure_boot.h"
|
|
#endif
|
|
|
|
#define SUB_TYPE_ID(i) (i & 0x0F)
|
|
|
|
typedef struct ota_ops_entry_ {
|
|
uint32_t handle;
|
|
const esp_partition_t *part;
|
|
bool need_erase;
|
|
uint32_t wrote_size;
|
|
uint8_t partial_bytes;
|
|
uint8_t partial_data[16];
|
|
LIST_ENTRY(ota_ops_entry_) entries;
|
|
} ota_ops_entry_t;
|
|
|
|
static LIST_HEAD(ota_ops_entries_head, ota_ops_entry_) s_ota_ops_entries_head =
|
|
LIST_HEAD_INITIALIZER(s_ota_ops_entries_head);
|
|
|
|
static uint32_t s_ota_ops_last_handle = 0;
|
|
|
|
const static char *TAG = "esp_ota_ops";
|
|
|
|
/* Return true if this is an OTA app partition */
|
|
static bool is_ota_partition(const esp_partition_t *p)
|
|
{
|
|
return (p != NULL
|
|
&& p->type == ESP_PARTITION_TYPE_APP
|
|
&& p->subtype >= ESP_PARTITION_SUBTYPE_APP_OTA_0
|
|
&& p->subtype < ESP_PARTITION_SUBTYPE_APP_OTA_MAX);
|
|
}
|
|
|
|
// Read otadata partition and fill array from two otadata structures.
|
|
// Also return pointer to otadata info partition.
|
|
static const esp_partition_t *read_otadata(esp_ota_select_entry_t *two_otadata)
|
|
{
|
|
const esp_partition_t *otadata_partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_OTA, NULL);
|
|
|
|
if (otadata_partition == NULL) {
|
|
ESP_LOGE(TAG, "not found otadata");
|
|
return NULL;
|
|
}
|
|
|
|
spi_flash_mmap_handle_t ota_data_map;
|
|
const void *result = NULL;
|
|
esp_err_t err = esp_partition_mmap(otadata_partition, 0, otadata_partition->size, SPI_FLASH_MMAP_DATA, &result, &ota_data_map);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "mmap otadata filed. Err=0x%8x", err);
|
|
return NULL;
|
|
} else {
|
|
memcpy(&two_otadata[0], result, sizeof(esp_ota_select_entry_t));
|
|
memcpy(&two_otadata[1], result + SPI_FLASH_SEC_SIZE, sizeof(esp_ota_select_entry_t));
|
|
spi_flash_munmap(ota_data_map);
|
|
}
|
|
return otadata_partition;
|
|
}
|
|
|
|
static esp_err_t image_validate(const esp_partition_t *partition, esp_image_load_mode_t load_mode)
|
|
{
|
|
esp_image_metadata_t data;
|
|
const esp_partition_pos_t part_pos = {
|
|
.offset = partition->address,
|
|
.size = partition->size,
|
|
};
|
|
|
|
if (esp_image_verify(load_mode, &part_pos, &data) != ESP_OK) {
|
|
return ESP_ERR_OTA_VALIDATE_FAILED;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_ota_img_states_t set_new_state_otadata(void)
|
|
{
|
|
#ifdef CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
|
|
ESP_LOGD(TAG, "Monitoring the first boot of the app is enabled.");
|
|
return ESP_OTA_IMG_NEW;
|
|
#else
|
|
return ESP_OTA_IMG_UNDEFINED;
|
|
#endif
|
|
}
|
|
|
|
esp_err_t esp_ota_begin(const esp_partition_t *partition, size_t image_size, esp_ota_handle_t *out_handle)
|
|
{
|
|
ota_ops_entry_t *new_entry;
|
|
esp_err_t ret = ESP_OK;
|
|
|
|
if ((partition == NULL) || (out_handle == NULL)) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
partition = esp_partition_verify(partition);
|
|
if (partition == NULL) {
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
|
|
if (!is_ota_partition(partition)) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
const esp_partition_t* running_partition = esp_ota_get_running_partition();
|
|
if (partition == running_partition) {
|
|
return ESP_ERR_OTA_PARTITION_CONFLICT;
|
|
}
|
|
|
|
#ifdef CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
|
|
esp_ota_img_states_t ota_state_running_part;
|
|
if (esp_ota_get_state_partition(running_partition, &ota_state_running_part) == ESP_OK) {
|
|
if (ota_state_running_part == ESP_OTA_IMG_PENDING_VERIFY) {
|
|
ESP_LOGE(TAG, "Running app has not confirmed state (ESP_OTA_IMG_PENDING_VERIFY)");
|
|
return ESP_ERR_OTA_ROLLBACK_INVALID_STATE;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (image_size != OTA_WITH_SEQUENTIAL_WRITES) {
|
|
// If input image size is 0 or OTA_SIZE_UNKNOWN, erase entire partition
|
|
if ((image_size == 0) || (image_size == OTA_SIZE_UNKNOWN)) {
|
|
ret = esp_partition_erase_range(partition, 0, partition->size);
|
|
} else {
|
|
const int aligned_erase_size = (image_size + SPI_FLASH_SEC_SIZE - 1) & ~(SPI_FLASH_SEC_SIZE - 1);
|
|
ret = esp_partition_erase_range(partition, 0, aligned_erase_size);
|
|
}
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
new_entry = (ota_ops_entry_t *) calloc(sizeof(ota_ops_entry_t), 1);
|
|
if (new_entry == NULL) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
|
|
LIST_INSERT_HEAD(&s_ota_ops_entries_head, new_entry, entries);
|
|
|
|
new_entry->part = partition;
|
|
new_entry->handle = ++s_ota_ops_last_handle;
|
|
new_entry->need_erase = (image_size == OTA_WITH_SEQUENTIAL_WRITES);
|
|
*out_handle = new_entry->handle;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_ota_write(esp_ota_handle_t handle, const void *data, size_t size)
|
|
{
|
|
const uint8_t *data_bytes = (const uint8_t *)data;
|
|
esp_err_t ret;
|
|
ota_ops_entry_t *it;
|
|
|
|
if (data == NULL) {
|
|
ESP_LOGE(TAG, "write data is invalid");
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
// find ota handle in linked list
|
|
for (it = LIST_FIRST(&s_ota_ops_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
|
|
if (it->handle == handle) {
|
|
if (it->need_erase) {
|
|
// must erase the partition before writing to it
|
|
uint32_t first_sector = it->wrote_size / SPI_FLASH_SEC_SIZE;
|
|
uint32_t last_sector = (it->wrote_size + size) / SPI_FLASH_SEC_SIZE;
|
|
|
|
ret = ESP_OK;
|
|
if ((it->wrote_size % SPI_FLASH_SEC_SIZE) == 0) {
|
|
ret = esp_partition_erase_range(it->part, it->wrote_size, ((last_sector - first_sector) + 1) * SPI_FLASH_SEC_SIZE);
|
|
} else if (first_sector != last_sector) {
|
|
ret = esp_partition_erase_range(it->part, (first_sector + 1) * SPI_FLASH_SEC_SIZE, (last_sector - first_sector) * SPI_FLASH_SEC_SIZE);
|
|
}
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (it->wrote_size == 0 && it->partial_bytes == 0 && size > 0 && data_bytes[0] != ESP_IMAGE_HEADER_MAGIC) {
|
|
ESP_LOGE(TAG, "OTA image has invalid magic byte (expected 0xE9, saw 0x%02x)", data_bytes[0]);
|
|
return ESP_ERR_OTA_VALIDATE_FAILED;
|
|
}
|
|
|
|
if (esp_flash_encryption_enabled()) {
|
|
/* Can only write 16 byte blocks to flash, so need to cache anything else */
|
|
size_t copy_len;
|
|
|
|
/* check if we have partially written data from earlier */
|
|
if (it->partial_bytes != 0) {
|
|
copy_len = MIN(16 - it->partial_bytes, size);
|
|
memcpy(it->partial_data + it->partial_bytes, data_bytes, copy_len);
|
|
it->partial_bytes += copy_len;
|
|
if (it->partial_bytes != 16) {
|
|
return ESP_OK; /* nothing to write yet, just filling buffer */
|
|
}
|
|
/* write 16 byte to partition */
|
|
ret = esp_partition_write(it->part, it->wrote_size, it->partial_data, 16);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
}
|
|
it->partial_bytes = 0;
|
|
memset(it->partial_data, 0xFF, 16);
|
|
it->wrote_size += 16;
|
|
data_bytes += copy_len;
|
|
size -= copy_len;
|
|
}
|
|
|
|
/* check if we need to save trailing data that we're about to write */
|
|
it->partial_bytes = size % 16;
|
|
if (it->partial_bytes != 0) {
|
|
size -= it->partial_bytes;
|
|
memcpy(it->partial_data, data_bytes + size, it->partial_bytes);
|
|
}
|
|
}
|
|
|
|
ret = esp_partition_write(it->part, it->wrote_size, data_bytes, size);
|
|
if(ret == ESP_OK){
|
|
it->wrote_size += size;
|
|
}
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
//if go to here ,means don't find the handle
|
|
ESP_LOGE(TAG,"not found the handle");
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
esp_err_t esp_ota_write_with_offset(esp_ota_handle_t handle, const void *data, size_t size, uint32_t offset)
|
|
{
|
|
const uint8_t *data_bytes = (const uint8_t *)data;
|
|
esp_err_t ret;
|
|
ota_ops_entry_t *it;
|
|
|
|
if (data == NULL) {
|
|
ESP_LOGE(TAG, "write data is invalid");
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
// find ota handle in linked list
|
|
for (it = LIST_FIRST(&s_ota_ops_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
|
|
if (it->handle == handle) {
|
|
// must erase the partition before writing to it
|
|
assert(it->need_erase == 0 && "must erase the partition before writing to it");
|
|
|
|
/* esp_ota_write_with_offset is used to write data in non contiguous manner.
|
|
* Hence, unaligned data(less than 16 bytes) cannot be cached if flash encryption is enabled.
|
|
*/
|
|
if (esp_flash_encryption_enabled() && (size % 16)) {
|
|
ESP_LOGE(TAG, "Size should be 16byte aligned for flash encryption case");
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
ret = esp_partition_write(it->part, offset, data_bytes, size);
|
|
if (ret == ESP_OK) {
|
|
it->wrote_size += size;
|
|
}
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
// OTA handle is not found in linked list
|
|
ESP_LOGE(TAG,"OTA handle not found");
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
static ota_ops_entry_t *get_ota_ops_entry(esp_ota_handle_t handle)
|
|
{
|
|
ota_ops_entry_t *it = NULL;
|
|
for (it = LIST_FIRST(&s_ota_ops_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
|
|
if (it->handle == handle) {
|
|
break;
|
|
}
|
|
}
|
|
return it;
|
|
}
|
|
|
|
esp_err_t esp_ota_abort(esp_ota_handle_t handle)
|
|
{
|
|
ota_ops_entry_t *it = get_ota_ops_entry(handle);
|
|
|
|
if (it == NULL) {
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
LIST_REMOVE(it, entries);
|
|
free(it);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_ota_end(esp_ota_handle_t handle)
|
|
{
|
|
ota_ops_entry_t *it = get_ota_ops_entry(handle);
|
|
esp_err_t ret = ESP_OK;
|
|
|
|
if (it == NULL) {
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
|
|
/* 'it' holds the ota_ops_entry_t for 'handle' */
|
|
|
|
// esp_ota_end() is only valid if some data was written to this handle
|
|
if (it->wrote_size == 0) {
|
|
ret = ESP_ERR_INVALID_ARG;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (it->partial_bytes > 0) {
|
|
/* Write out last 16 bytes, if necessary */
|
|
ret = esp_partition_write(it->part, it->wrote_size, it->partial_data, 16);
|
|
if (ret != ESP_OK) {
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
goto cleanup;
|
|
}
|
|
it->wrote_size += 16;
|
|
it->partial_bytes = 0;
|
|
}
|
|
|
|
esp_image_metadata_t data;
|
|
const esp_partition_pos_t part_pos = {
|
|
.offset = it->part->address,
|
|
.size = it->part->size,
|
|
};
|
|
|
|
if (esp_image_verify(ESP_IMAGE_VERIFY, &part_pos, &data) != ESP_OK) {
|
|
ret = ESP_ERR_OTA_VALIDATE_FAILED;
|
|
goto cleanup;
|
|
}
|
|
|
|
cleanup:
|
|
LIST_REMOVE(it, entries);
|
|
free(it);
|
|
return ret;
|
|
}
|
|
|
|
static esp_err_t rewrite_ota_seq(esp_ota_select_entry_t *two_otadata, uint32_t seq, uint8_t sec_id, const esp_partition_t *ota_data_partition)
|
|
{
|
|
if (two_otadata == NULL || sec_id > 1) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
two_otadata[sec_id].ota_seq = seq;
|
|
two_otadata[sec_id].crc = bootloader_common_ota_select_crc(&two_otadata[sec_id]);
|
|
esp_err_t ret = esp_partition_erase_range(ota_data_partition, sec_id * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
|
|
if (ret != ESP_OK) {
|
|
return ret;
|
|
} else {
|
|
return esp_partition_write(ota_data_partition, SPI_FLASH_SEC_SIZE * sec_id, &two_otadata[sec_id], sizeof(esp_ota_select_entry_t));
|
|
}
|
|
}
|
|
|
|
static uint8_t get_ota_partition_count(void)
|
|
{
|
|
uint16_t ota_app_count = 0;
|
|
while (esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_OTA_MIN + ota_app_count, NULL) != NULL) {
|
|
assert(ota_app_count < 16 && "must erase the partition before writing to it");
|
|
ota_app_count++;
|
|
}
|
|
return ota_app_count;
|
|
}
|
|
|
|
static esp_err_t esp_rewrite_ota_data(esp_partition_subtype_t subtype)
|
|
{
|
|
esp_ota_select_entry_t otadata[2];
|
|
const esp_partition_t *otadata_partition = read_otadata(otadata);
|
|
if (otadata_partition == NULL) {
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
|
|
int ota_app_count = get_ota_partition_count();
|
|
if (SUB_TYPE_ID(subtype) >= ota_app_count) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
//esp32_idf use two sector for store information about which partition is running
|
|
//it defined the two sector as ota data partition,two structure esp_ota_select_entry_t is saved in the two sector
|
|
//named data in first sector as otadata[0], second sector data as otadata[1]
|
|
//e.g.
|
|
//if otadata[0].ota_seq == otadata[1].ota_seq == 0xFFFFFFFF,means ota info partition is in init status
|
|
//so it will boot factory application(if there is),if there's no factory application,it will boot ota[0] application
|
|
//if otadata[0].ota_seq != 0 and otadata[1].ota_seq != 0,it will choose a max seq ,and get value of max_seq%max_ota_app_number
|
|
//and boot a subtype (mask 0x0F) value is (max_seq - 1)%max_ota_app_number,so if want switch to run ota[x],can use next formulas.
|
|
//for example, if otadata[0].ota_seq = 4, otadata[1].ota_seq = 5, and there are 8 ota application,
|
|
//current running is (5-1)%8 = 4,running ota[4],so if we want to switch to run ota[7],
|
|
//we should add otadata[0].ota_seq (is 4) to 4 ,(8-1)%8=7,then it will boot ota[7]
|
|
//if A=(B - C)%D
|
|
//then B=(A + C)%D + D*n ,n= (0,1,2...)
|
|
//so current ota app sub type id is x , dest bin subtype is y,total ota app count is n
|
|
//seq will add (x + n*1 + 1 - seq)%n
|
|
|
|
int active_otadata = bootloader_common_get_active_otadata(otadata);
|
|
if (active_otadata != -1) {
|
|
uint32_t seq = otadata[active_otadata].ota_seq;
|
|
uint32_t i = 0;
|
|
while (seq > (SUB_TYPE_ID(subtype) + 1) % ota_app_count + i * ota_app_count) {
|
|
i++;
|
|
}
|
|
int next_otadata = (~active_otadata)&1; // if 0 -> will be next 1. and if 1 -> will be next 0.
|
|
otadata[next_otadata].ota_state = set_new_state_otadata();
|
|
return rewrite_ota_seq(otadata, (SUB_TYPE_ID(subtype) + 1) % ota_app_count + i * ota_app_count, next_otadata, otadata_partition);
|
|
} else {
|
|
/* Both OTA slots are invalid, probably because unformatted... */
|
|
int next_otadata = 0;
|
|
otadata[next_otadata].ota_state = set_new_state_otadata();
|
|
return rewrite_ota_seq(otadata, SUB_TYPE_ID(subtype) + 1, next_otadata, otadata_partition);
|
|
}
|
|
}
|
|
|
|
esp_err_t esp_ota_set_boot_partition(const esp_partition_t *partition)
|
|
{
|
|
if (partition == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
if (image_validate(partition, ESP_IMAGE_VERIFY) != ESP_OK) {
|
|
return ESP_ERR_OTA_VALIDATE_FAILED;
|
|
}
|
|
|
|
// if set boot partition to factory bin ,just format ota info partition
|
|
if (partition->type == ESP_PARTITION_TYPE_APP) {
|
|
if (partition->subtype == ESP_PARTITION_SUBTYPE_APP_FACTORY) {
|
|
const esp_partition_t *find_partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_OTA, NULL);
|
|
if (find_partition != NULL) {
|
|
return esp_partition_erase_range(find_partition, 0, find_partition->size);
|
|
} else {
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
} else {
|
|
#ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
|
|
esp_app_desc_t partition_app_desc;
|
|
esp_err_t err = esp_ota_get_partition_description(partition, &partition_app_desc);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
if (esp_efuse_check_secure_version(partition_app_desc.secure_version) == false) {
|
|
ESP_LOGE(TAG, "This a new partition can not be booted due to a secure version is lower than stored in efuse. Partition will be erased.");
|
|
esp_err_t err = esp_partition_erase_range(partition, 0, partition->size);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
return ESP_ERR_OTA_SMALL_SEC_VER;
|
|
}
|
|
#endif
|
|
return esp_rewrite_ota_data(partition->subtype);
|
|
}
|
|
} else {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
}
|
|
|
|
static const esp_partition_t *find_default_boot_partition(void)
|
|
{
|
|
// This logic matches the logic of bootloader get_selected_boot_partition() & load_boot_image().
|
|
|
|
// Default to factory if present
|
|
const esp_partition_t *result = esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_FACTORY, NULL);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
|
|
// Try first OTA slot if no factory partition
|
|
for (esp_partition_subtype_t s = ESP_PARTITION_SUBTYPE_APP_OTA_MIN; s != ESP_PARTITION_SUBTYPE_APP_OTA_MAX; s++) {
|
|
result = esp_partition_find_first(ESP_PARTITION_TYPE_APP, s, NULL);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// Test app slot if present
|
|
result = esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_TEST, NULL);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
|
|
ESP_LOGE(TAG, "invalid partition table, no app partitions");
|
|
return NULL;
|
|
}
|
|
|
|
const esp_partition_t *esp_ota_get_boot_partition(void)
|
|
{
|
|
esp_ota_select_entry_t otadata[2];
|
|
const esp_partition_t *otadata_partition = read_otadata(otadata);
|
|
if (otadata_partition == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
int ota_app_count = get_ota_partition_count();
|
|
ESP_LOGD(TAG, "found ota app max = %d", ota_app_count);
|
|
|
|
if ((bootloader_common_ota_select_invalid(&otadata[0]) &&
|
|
bootloader_common_ota_select_invalid(&otadata[1])) ||
|
|
ota_app_count == 0) {
|
|
ESP_LOGD(TAG, "finding factory app...");
|
|
return find_default_boot_partition();
|
|
} else {
|
|
int active_otadata = bootloader_common_get_active_otadata(otadata);
|
|
if (active_otadata != -1) {
|
|
int ota_slot = (otadata[active_otadata].ota_seq - 1) % ota_app_count; // Actual OTA partition selection
|
|
ESP_LOGD(TAG, "finding ota_%d app...", ESP_PARTITION_SUBTYPE_APP_OTA_MIN + ota_slot);
|
|
return esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_OTA_MIN + ota_slot, NULL);
|
|
} else {
|
|
ESP_LOGE(TAG, "ota data invalid, no current app. Assuming factory");
|
|
return find_default_boot_partition();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
const esp_partition_t* esp_ota_get_running_partition(void)
|
|
{
|
|
static const esp_partition_t *curr_partition = NULL;
|
|
|
|
/*
|
|
* Currently running partition is unlikely to change across reset cycle,
|
|
* so it can be cached here, and avoid lookup on every flash write operation.
|
|
*/
|
|
if (curr_partition != NULL) {
|
|
return curr_partition;
|
|
}
|
|
|
|
/* Find the flash address of this exact function. By definition that is part
|
|
of the currently running firmware. Then find the enclosing partition. */
|
|
size_t phys_offs = spi_flash_cache2phys(esp_ota_get_running_partition);
|
|
|
|
assert (phys_offs != SPI_FLASH_CACHE2PHYS_FAIL); /* indicates cache2phys lookup is buggy */
|
|
|
|
esp_partition_iterator_t it = esp_partition_find(ESP_PARTITION_TYPE_APP,
|
|
ESP_PARTITION_SUBTYPE_ANY,
|
|
NULL);
|
|
assert(it != NULL); /* has to be at least one app partition */
|
|
|
|
while (it != NULL) {
|
|
const esp_partition_t *p = esp_partition_get(it);
|
|
if (p->address <= phys_offs && p->address + p->size > phys_offs) {
|
|
esp_partition_iterator_release(it);
|
|
curr_partition = p;
|
|
return p;
|
|
}
|
|
it = esp_partition_next(it);
|
|
}
|
|
|
|
abort(); /* Partition table is invalid or corrupt */
|
|
}
|
|
|
|
|
|
const esp_partition_t* esp_ota_get_next_update_partition(const esp_partition_t *start_from)
|
|
{
|
|
const esp_partition_t *default_ota = NULL;
|
|
bool next_is_result = false;
|
|
if (start_from == NULL) {
|
|
start_from = esp_ota_get_running_partition();
|
|
} else {
|
|
start_from = esp_partition_verify(start_from);
|
|
}
|
|
assert (start_from != NULL);
|
|
/* at this point, 'start_from' points to actual partition table data in flash */
|
|
|
|
|
|
/* Two possibilities: either we want the OTA partition immediately after the current running OTA partition, or we
|
|
want the first OTA partition in the table (for the case when the last OTA partition is the running partition, or
|
|
if the current running partition is not OTA.)
|
|
|
|
This loop iterates subtypes instead of using esp_partition_find, so we
|
|
get all OTA partitions in a known order (low slot to high slot).
|
|
*/
|
|
|
|
for (esp_partition_subtype_t t = ESP_PARTITION_SUBTYPE_APP_OTA_0;
|
|
t != ESP_PARTITION_SUBTYPE_APP_OTA_MAX;
|
|
t++) {
|
|
const esp_partition_t *p = esp_partition_find_first(ESP_PARTITION_TYPE_APP, t, NULL);
|
|
if (p == NULL) {
|
|
continue;
|
|
}
|
|
|
|
if (default_ota == NULL) {
|
|
/* Default to first OTA partition we find,
|
|
will be used if nothing else matches */
|
|
default_ota = p;
|
|
}
|
|
|
|
if (p == start_from) {
|
|
/* Next OTA partition is the one to use */
|
|
next_is_result = true;
|
|
}
|
|
else if (next_is_result) {
|
|
return p;
|
|
}
|
|
}
|
|
|
|
return default_ota;
|
|
|
|
}
|
|
|
|
esp_err_t esp_ota_get_partition_description(const esp_partition_t *partition, esp_app_desc_t *app_desc)
|
|
{
|
|
if (partition == NULL || app_desc == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
if(partition->type != ESP_PARTITION_TYPE_APP) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
|
|
esp_err_t err = esp_partition_read(partition, sizeof(esp_image_header_t) + sizeof(esp_image_segment_header_t), app_desc, sizeof(esp_app_desc_t));
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
if (app_desc->magic_word != ESP_APP_DESC_MAGIC_WORD) {
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
#ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
|
|
static esp_err_t esp_ota_set_anti_rollback(void) {
|
|
const esp_app_desc_t *app_desc = esp_ota_get_app_description();
|
|
return esp_efuse_update_secure_version(app_desc->secure_version);
|
|
}
|
|
#endif
|
|
|
|
// Checks applications on the slots which can be booted in case of rollback.
|
|
// Returns true if the slots have at least one app (except the running app).
|
|
bool esp_ota_check_rollback_is_possible(void)
|
|
{
|
|
esp_ota_select_entry_t otadata[2];
|
|
if (read_otadata(otadata) == NULL) {
|
|
return false;
|
|
}
|
|
|
|
int ota_app_count = get_ota_partition_count();
|
|
if (ota_app_count == 0) {
|
|
return false;
|
|
}
|
|
|
|
bool valid_otadata[2];
|
|
valid_otadata[0] = bootloader_common_ota_select_valid(&otadata[0]);
|
|
valid_otadata[1] = bootloader_common_ota_select_valid(&otadata[1]);
|
|
|
|
int active_ota = bootloader_common_select_otadata(otadata, valid_otadata, true);
|
|
if (active_ota == -1) {
|
|
return false;
|
|
}
|
|
int last_active_ota = (~active_ota)&1;
|
|
|
|
const esp_partition_t *partition = NULL;
|
|
#ifndef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
|
|
if (valid_otadata[last_active_ota] == false) {
|
|
partition = esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_FACTORY, NULL);
|
|
if (partition != NULL) {
|
|
if(image_validate(partition, ESP_IMAGE_VERIFY_SILENT) == ESP_OK) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (valid_otadata[last_active_ota] == true) {
|
|
int slot = (otadata[last_active_ota].ota_seq - 1) % ota_app_count;
|
|
partition = esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_OTA_MIN + slot, NULL);
|
|
if (partition != NULL) {
|
|
if(image_validate(partition, ESP_IMAGE_VERIFY_SILENT) == ESP_OK) {
|
|
#ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
|
|
esp_app_desc_t app_desc;
|
|
if (esp_ota_get_partition_description(partition, &app_desc) == ESP_OK &&
|
|
esp_efuse_check_secure_version(app_desc.secure_version) == true) {
|
|
return true;
|
|
}
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// if valid == false - will done rollback with reboot. After reboot will boot previous OTA[x] or Factory partition.
|
|
// if valid == true - it confirm that current OTA[x] is workable. Reboot will not happen.
|
|
static esp_err_t esp_ota_current_ota_is_workable(bool valid)
|
|
{
|
|
esp_ota_select_entry_t otadata[2];
|
|
const esp_partition_t *otadata_partition = read_otadata(otadata);
|
|
if (otadata_partition == NULL) {
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
|
|
int active_otadata = bootloader_common_get_active_otadata(otadata);
|
|
if (active_otadata != -1 && get_ota_partition_count() != 0) {
|
|
if (valid == true && otadata[active_otadata].ota_state != ESP_OTA_IMG_VALID) {
|
|
otadata[active_otadata].ota_state = ESP_OTA_IMG_VALID;
|
|
ESP_LOGD(TAG, "OTA[current] partition is marked as VALID");
|
|
esp_err_t err = rewrite_ota_seq(otadata, otadata[active_otadata].ota_seq, active_otadata, otadata_partition);
|
|
#ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
|
|
if (err == ESP_OK) {
|
|
return esp_ota_set_anti_rollback();
|
|
}
|
|
#endif
|
|
return err;
|
|
} else if (valid == false) {
|
|
if (esp_ota_check_rollback_is_possible() == false) {
|
|
ESP_LOGE(TAG, "Rollback is not possible, do not have any suitable apps in slots");
|
|
return ESP_ERR_OTA_ROLLBACK_FAILED;
|
|
}
|
|
ESP_LOGD(TAG, "OTA[current] partition is marked as INVALID");
|
|
otadata[active_otadata].ota_state = ESP_OTA_IMG_INVALID;
|
|
esp_err_t err = rewrite_ota_seq(otadata, otadata[active_otadata].ota_seq, active_otadata, otadata_partition);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
ESP_LOGI(TAG, "Rollback to previously worked partition. Restart.");
|
|
esp_restart();
|
|
}
|
|
} else {
|
|
ESP_LOGE(TAG, "Running firmware is factory");
|
|
return ESP_FAIL;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_ota_mark_app_valid_cancel_rollback(void)
|
|
{
|
|
return esp_ota_current_ota_is_workable(true);
|
|
}
|
|
|
|
esp_err_t esp_ota_mark_app_invalid_rollback_and_reboot(void)
|
|
{
|
|
return esp_ota_current_ota_is_workable(false);
|
|
}
|
|
|
|
static bool check_invalid_otadata (const esp_ota_select_entry_t *s) {
|
|
return s->ota_seq != UINT32_MAX &&
|
|
s->crc == bootloader_common_ota_select_crc(s) &&
|
|
(s->ota_state == ESP_OTA_IMG_INVALID ||
|
|
s->ota_state == ESP_OTA_IMG_ABORTED);
|
|
}
|
|
|
|
static int get_last_invalid_otadata(const esp_ota_select_entry_t *two_otadata)
|
|
{
|
|
|
|
bool invalid_otadata[2];
|
|
invalid_otadata[0] = check_invalid_otadata(&two_otadata[0]);
|
|
invalid_otadata[1] = check_invalid_otadata(&two_otadata[1]);
|
|
int num_invalid_otadata = bootloader_common_select_otadata(two_otadata, invalid_otadata, false);
|
|
ESP_LOGD(TAG, "Invalid otadata[%d]", num_invalid_otadata);
|
|
return num_invalid_otadata;
|
|
}
|
|
|
|
const esp_partition_t* esp_ota_get_last_invalid_partition(void)
|
|
{
|
|
esp_ota_select_entry_t otadata[2];
|
|
if (read_otadata(otadata) == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
int invalid_otadata = get_last_invalid_otadata(otadata);
|
|
|
|
int ota_app_count = get_ota_partition_count();
|
|
if (invalid_otadata != -1 && ota_app_count != 0) {
|
|
int ota_slot = (otadata[invalid_otadata].ota_seq - 1) % ota_app_count;
|
|
ESP_LOGD(TAG, "Find invalid ota_%d app", ESP_PARTITION_SUBTYPE_APP_OTA_MIN + ota_slot);
|
|
|
|
const esp_partition_t* invalid_partition = esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_OTA_MIN + ota_slot, NULL);
|
|
if (invalid_partition != NULL) {
|
|
if (image_validate(invalid_partition, ESP_IMAGE_VERIFY_SILENT) != ESP_OK) {
|
|
ESP_LOGD(TAG, "Last invalid partition has corrupted app");
|
|
return NULL;
|
|
}
|
|
}
|
|
return invalid_partition;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
esp_err_t esp_ota_get_state_partition(const esp_partition_t *partition, esp_ota_img_states_t *ota_state)
|
|
{
|
|
if (partition == NULL || ota_state == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
if (!is_ota_partition(partition)) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
|
|
esp_ota_select_entry_t otadata[2];
|
|
int ota_app_count = get_ota_partition_count();
|
|
if (read_otadata(otadata) == NULL || ota_app_count == 0) {
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
|
|
int req_ota_slot = partition->subtype - ESP_PARTITION_SUBTYPE_APP_OTA_MIN;
|
|
bool not_found = true;
|
|
for (int i = 0; i < 2; ++i) {
|
|
int ota_slot = (otadata[i].ota_seq - 1) % ota_app_count;
|
|
if (ota_slot == req_ota_slot && otadata[i].crc == bootloader_common_ota_select_crc(&otadata[i])) {
|
|
*ota_state = otadata[i].ota_state;
|
|
not_found = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (not_found) {
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_ota_erase_last_boot_app_partition(void)
|
|
{
|
|
esp_ota_select_entry_t otadata[2];
|
|
const esp_partition_t* ota_data_partition = read_otadata(otadata);
|
|
if (ota_data_partition == NULL) {
|
|
return ESP_FAIL;
|
|
}
|
|
|
|
int active_otadata = bootloader_common_get_active_otadata(otadata);
|
|
int ota_app_count = get_ota_partition_count();
|
|
if (active_otadata == -1 || ota_app_count == 0) {
|
|
return ESP_FAIL;
|
|
}
|
|
|
|
int inactive_otadata = (~active_otadata)&1;
|
|
if (otadata[inactive_otadata].ota_seq == UINT32_MAX || otadata[inactive_otadata].crc != bootloader_common_ota_select_crc(&otadata[inactive_otadata])) {
|
|
return ESP_FAIL;
|
|
}
|
|
|
|
int ota_slot = (otadata[inactive_otadata].ota_seq - 1) % ota_app_count; // Actual OTA partition selection
|
|
ESP_LOGD(TAG, "finding last_boot_app_partition ota_%d app...", ESP_PARTITION_SUBTYPE_APP_OTA_MIN + ota_slot);
|
|
|
|
const esp_partition_t* last_boot_app_partition_from_otadata = esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_OTA_MIN + ota_slot, NULL);
|
|
if (last_boot_app_partition_from_otadata == NULL) {
|
|
return ESP_FAIL;
|
|
}
|
|
|
|
const esp_partition_t* running_partition = esp_ota_get_running_partition();
|
|
if (running_partition == NULL || last_boot_app_partition_from_otadata == running_partition) {
|
|
return ESP_FAIL;
|
|
}
|
|
|
|
esp_err_t err = esp_partition_erase_range(last_boot_app_partition_from_otadata, 0, last_boot_app_partition_from_otadata->size);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
int sec_id = inactive_otadata;
|
|
err = esp_partition_erase_range(ota_data_partition, sec_id * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32S2 && CONFIG_SECURE_BOOT_V2_ENABLED
|
|
esp_err_t esp_ota_revoke_secure_boot_public_key(esp_ota_secure_boot_public_key_index_t index) {
|
|
|
|
if (!esp_secure_boot_enabled()) {
|
|
ESP_LOGE(TAG, "Secure boot v2 has not been enabled.");
|
|
return ESP_FAIL;
|
|
}
|
|
|
|
if (index != SECURE_BOOT_PUBLIC_KEY_INDEX_0 &&
|
|
index != SECURE_BOOT_PUBLIC_KEY_INDEX_1 &&
|
|
index != SECURE_BOOT_PUBLIC_KEY_INDEX_2) {
|
|
ESP_LOGE(TAG, "Invalid Index found for public key revocation %d.", index);
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
ets_secure_boot_revoke_public_key_digest(index);
|
|
ESP_LOGI(TAG, "Revoked signature block %d.", index);
|
|
return ESP_OK;
|
|
}
|
|
#endif
|