mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
56694fb4b6
Previously, this compiler flag was not being applied regardless of CONFIG_SPIRAM_CACHE_WORKAROUND setting. Explanation: add_compile_options() only applies to source files added after the function is run, or in subdirectories added after the function is run. In this case, no new source files were being added after this function was run.
1269 lines
50 KiB
Plaintext
1269 lines
50 KiB
Plaintext
menu "ESP32-specific"
|
|
|
|
choice ESP32_DEFAULT_CPU_FREQ_MHZ
|
|
prompt "CPU frequency"
|
|
default ESP32_DEFAULT_CPU_FREQ_160
|
|
help
|
|
CPU frequency to be set on application startup.
|
|
|
|
config ESP32_DEFAULT_CPU_FREQ_80
|
|
bool "80 MHz"
|
|
config ESP32_DEFAULT_CPU_FREQ_160
|
|
bool "160 MHz"
|
|
config ESP32_DEFAULT_CPU_FREQ_240
|
|
bool "240 MHz"
|
|
endchoice
|
|
|
|
config ESP32_DEFAULT_CPU_FREQ_MHZ
|
|
int
|
|
default 80 if ESP32_DEFAULT_CPU_FREQ_80
|
|
default 160 if ESP32_DEFAULT_CPU_FREQ_160
|
|
default 240 if ESP32_DEFAULT_CPU_FREQ_240
|
|
|
|
config SPIRAM_SUPPORT
|
|
bool "Support for external, SPI-connected RAM"
|
|
default "n"
|
|
help
|
|
This enables support for an external SPI RAM chip, connected in parallel with the
|
|
main SPI flash chip.
|
|
|
|
menu "SPI RAM config"
|
|
depends on SPIRAM_SUPPORT
|
|
|
|
config SPIRAM_BOOT_INIT
|
|
bool "Initialize SPI RAM when booting the ESP32"
|
|
default "y"
|
|
help
|
|
If this is enabled, the SPI RAM will be enabled during initial boot. Unless you
|
|
have specific requirements, you'll want to leave this enabled so memory allocated
|
|
during boot-up can also be placed in SPI RAM.
|
|
|
|
config SPIRAM_IGNORE_NOTFOUND
|
|
bool "Ignore PSRAM when not found"
|
|
default "n"
|
|
depends on SPIRAM_BOOT_INIT && !SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
|
|
help
|
|
Normally, if psram initialization is enabled during compile time but not found at runtime, it
|
|
is seen as an error making the ESP32 panic. If this is enabled, the ESP32 will keep on
|
|
running but will not add the (non-existing) RAM to any allocator.
|
|
|
|
choice SPIRAM_USE
|
|
prompt "SPI RAM access method"
|
|
default SPIRAM_USE_MALLOC
|
|
help
|
|
The SPI RAM can be accessed in multiple methods: by just having it available as an unmanaged
|
|
memory region in the ESP32 memory map, by integrating it in the ESP32s heap as 'special' memory
|
|
needing heap_caps_malloc to allocate, or by fully integrating it making malloc() also able to
|
|
return SPI RAM pointers.
|
|
|
|
config SPIRAM_USE_MEMMAP
|
|
bool "Integrate RAM into ESP32 memory map"
|
|
config SPIRAM_USE_CAPS_ALLOC
|
|
bool "Make RAM allocatable using heap_caps_malloc(..., MALLOC_CAP_SPIRAM)"
|
|
config SPIRAM_USE_MALLOC
|
|
bool "Make RAM allocatable using malloc() as well"
|
|
select SUPPORT_STATIC_ALLOCATION
|
|
endchoice
|
|
|
|
choice SPIRAM_TYPE
|
|
prompt "Type of SPI RAM chip in use"
|
|
default SPIRAM_TYPE_AUTO
|
|
|
|
config SPIRAM_TYPE_AUTO
|
|
bool "Auto-detect"
|
|
|
|
config SPIRAM_TYPE_ESPPSRAM32
|
|
bool "ESP-PSRAM32 or IS25WP032"
|
|
|
|
config SPIRAM_TYPE_ESPPSRAM64
|
|
bool "ESP-PSRAM64 or LY68L6400"
|
|
|
|
endchoice
|
|
|
|
config SPIRAM_SIZE
|
|
int
|
|
default -1 if SPIRAM_TYPE_AUTO
|
|
default 4194304 if SPIRAM_TYPE_ESPPSRAM32
|
|
default 8388608 if SPIRAM_TYPE_ESPPSRAM64
|
|
default 0
|
|
|
|
choice SPIRAM_SPEED
|
|
prompt "Set RAM clock speed"
|
|
default SPIRAM_CACHE_SPEED_40M
|
|
help
|
|
Select the speed for the SPI RAM chip.
|
|
If SPI RAM is enabled, we only support three combinations of SPI speed mode we supported now:
|
|
|
|
1. Flash SPI running at 40Mhz and RAM SPI running at 40Mhz
|
|
2. Flash SPI running at 80Mhz and RAM SPI running at 40Mhz
|
|
3. Flash SPI running at 80Mhz and RAM SPI running at 80Mhz
|
|
|
|
Note: If the third mode(80Mhz+80Mhz) is enabled, the VSPI port will be occupied by the system.
|
|
Application code should never touch VSPI hardware in this case. The option to select
|
|
80MHz will only be visible if the flash SPI speed is also 80MHz. (ESPTOOLPY_FLASHFREQ_80M is true)
|
|
|
|
config SPIRAM_SPEED_40M
|
|
bool "40MHz clock speed"
|
|
config SPIRAM_SPEED_80M
|
|
depends on ESPTOOLPY_FLASHFREQ_80M
|
|
bool "80MHz clock speed"
|
|
endchoice
|
|
|
|
config SPIRAM_MEMTEST
|
|
bool "Run memory test on SPI RAM initialization"
|
|
default "y"
|
|
depends on SPIRAM_BOOT_INIT
|
|
help
|
|
Runs a rudimentary memory test on initialization. Aborts when memory test fails. Disable this for
|
|
slightly faster startop.
|
|
|
|
config SPIRAM_CACHE_WORKAROUND
|
|
bool "Enable workaround for bug in SPI RAM cache for Rev1 ESP32s"
|
|
depends on SPIRAM_USE_MEMMAP || SPIRAM_USE_CAPS_ALLOC || SPIRAM_USE_MALLOC
|
|
default "y"
|
|
help
|
|
Revision 1 of the ESP32 has a bug that can cause a write to PSRAM not to take place in some situations
|
|
when the cache line needs to be fetched from external RAM and an interrupt occurs. This enables a
|
|
fix in the compiler (-mfix-esp32-psram-cache-issue) that makes sure the specific code that is vulnerable
|
|
to this will not be emitted.
|
|
|
|
This will also not use any bits of newlib that are located in ROM, opting for a version that is compiled
|
|
with the workaround and located in flash instead.
|
|
|
|
config SPIRAM_BANKSWITCH_ENABLE
|
|
bool "Enable bank switching for >4MiB external RAM"
|
|
default y
|
|
depends on SPIRAM_USE_MEMMAP || SPIRAM_USE_CAPS_ALLOC || SPIRAM_USE_MALLOC
|
|
help
|
|
The ESP32 only supports 4MiB of external RAM in its address space. The hardware does support larger
|
|
memories, but these have to be bank-switched in and out of this address space. Enabling this allows you
|
|
to reserve some MMU pages for this, which allows the use of the esp_himem api to manage these banks.
|
|
|
|
#Note that this is limited to 62 banks, as esp_spiram_writeback_cache needs some kind of mapping of some banks
|
|
#below that mark to work. We cannot at this moment guarantee this to exist when himem is enabled.
|
|
config SPIRAM_BANKSWITCH_RESERVE
|
|
int "Amount of 32K pages to reserve for bank switching"
|
|
depends on SPIRAM_BANKSWITCH_ENABLE
|
|
default 8
|
|
range 1 62
|
|
help
|
|
Select the amount of banks reserved for bank switching. Note that the amount of RAM allocatable with
|
|
malloc/esp_heap_alloc_caps will decrease by 32K for each page reserved here.
|
|
|
|
Note that this reservation is only actually done if your program actually uses the himem API. Without
|
|
any himem calls, the reservation is not done and the original amount of memory will be available
|
|
to malloc/esp_heap_alloc_caps.
|
|
|
|
config SPIRAM_MALLOC_ALWAYSINTERNAL
|
|
int "Maximum malloc() size, in bytes, to always put in internal memory"
|
|
depends on SPIRAM_USE_MALLOC
|
|
default 16384
|
|
range 0 131072
|
|
help
|
|
If malloc() is capable of also allocating SPI-connected ram, its allocation strategy will prefer to allocate chunks less
|
|
than this size in internal memory, while allocations larger than this will be done from external RAM.
|
|
If allocation from the preferred region fails, an attempt is made to allocate from the non-preferred
|
|
region instead, so malloc() will not suddenly fail when either internal or external memory is full.
|
|
|
|
config WIFI_LWIP_ALLOCATION_FROM_SPIRAM_FIRST
|
|
bool "Try to allocate memories of WiFi and LWIP in SPIRAM firstly. If failed, allocate internal memory"
|
|
depends on SPIRAM_USE_CAPS_ALLOC || SPIRAM_USE_MALLOC
|
|
default "n"
|
|
help
|
|
Try to allocate memories of WiFi and LWIP in SPIRAM firstly. If failed, try to allocate internal memory then.
|
|
|
|
config SPIRAM_MALLOC_RESERVE_INTERNAL
|
|
int "Reserve this amount of bytes for data that specifically needs to be in DMA or internal memory"
|
|
depends on SPIRAM_USE_MALLOC
|
|
default 32768
|
|
range 0 262144
|
|
help
|
|
Because the external/internal RAM allocation strategy is not always perfect, it sometimes may happen
|
|
that the internal memory is entirely filled up. This causes allocations that are specifically done in
|
|
internal memory, for example the stack for new tasks or memory to service DMA or have memory that's
|
|
also available when SPI cache is down, to fail. This option reserves a pool specifically for requests
|
|
like that; the memory in this pool is not given out when a normal malloc() is called.
|
|
|
|
Set this to 0 to disable this feature.
|
|
|
|
Note that because FreeRTOS stacks are forced to internal memory, they will also use this memory pool;
|
|
be sure to keep this in mind when adjusting this value.
|
|
|
|
Note also that the DMA reserved pool may not be one single contiguous memory region, depending on the
|
|
configured size and the static memory usage of the app.
|
|
|
|
|
|
config SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY
|
|
bool "Allow external memory as an argument to xTaskCreateStatic"
|
|
default n
|
|
depends on SPIRAM_USE_MALLOC
|
|
help
|
|
Because some bits of the ESP32 code environment cannot be recompiled with the cache workaround, normally
|
|
tasks cannot be safely run with their stack residing in external memory; for this reason xTaskCreate and
|
|
friends always allocate stack in internal memory and xTaskCreateStatic will check if the memory passed
|
|
to it is in internal memory. If you have a task that needs a large amount of stack and does not call on
|
|
ROM code in any way (no direct calls, but also no Bluetooth/WiFi), you can try to disable this and use
|
|
xTaskCreateStatic to create the tasks stack in external memory.
|
|
|
|
config SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
|
|
bool "Allow .bss segment placed in external memory"
|
|
default n
|
|
depends on SPIRAM_SUPPORT
|
|
help
|
|
If enabled the option,and add EXT_RAM_ATTR defined your variable,then your variable will be placed
|
|
in PSRAM instead of internal memory, and placed most of variables of lwip,net802.11,pp,bluedroid library
|
|
to external memory defaultly.
|
|
|
|
choice SPIRAM_OCCUPY_SPI_HOST
|
|
prompt "SPI host to use for 32MBit PSRAM"
|
|
default SPIRAM_OCCUPY_VSPI_HOST
|
|
depends on SPIRAM_SPEED_80M
|
|
help
|
|
When both flash and PSRAM is working under 80MHz, and the PSRAM is of type 32MBit, one of the HSPI/VSPI
|
|
host will be used to output the clock. Select which one to use here.
|
|
|
|
config SPIRAM_OCCUPY_HSPI_HOST
|
|
bool "HSPI host (SPI2)"
|
|
config SPIRAM_OCCUPY_VSPI_HOST
|
|
bool "VSPI host (SPI3)"
|
|
endchoice
|
|
|
|
config PICO_PSRAM_CS_IO
|
|
int "PSRAM CS IO for ESP32-PICO chip"
|
|
depends on SPIRAM_SUPPORT
|
|
range 0 33
|
|
default 10
|
|
help
|
|
When ESP32-PICO chip connect a external psram, the clock IO and data IO is fixed, but the CS IO can be
|
|
any unused GPIO, user can config it based on hardware design.
|
|
|
|
endmenu
|
|
|
|
config MEMMAP_TRACEMEM
|
|
bool
|
|
default "n"
|
|
|
|
config MEMMAP_TRACEMEM_TWOBANKS
|
|
bool
|
|
default "n"
|
|
|
|
config ESP32_TRAX
|
|
bool "Use TRAX tracing feature"
|
|
default "n"
|
|
select MEMMAP_TRACEMEM
|
|
help
|
|
The ESP32 contains a feature which allows you to trace the execution path the processor
|
|
has taken through the program. This is stored in a chunk of 32K (16K for single-processor)
|
|
of memory that can't be used for general purposes anymore. Disable this if you do not know
|
|
what this is.
|
|
|
|
config ESP32_TRAX_TWOBANKS
|
|
bool "Reserve memory for tracing both pro as well as app cpu execution"
|
|
default "n"
|
|
depends on ESP32_TRAX && !FREERTOS_UNICORE
|
|
select MEMMAP_TRACEMEM_TWOBANKS
|
|
help
|
|
The ESP32 contains a feature which allows you to trace the execution path the processor
|
|
has taken through the program. This is stored in a chunk of 32K (16K for single-processor)
|
|
of memory that can't be used for general purposes anymore. Disable this if you do not know
|
|
what this is.
|
|
|
|
# Memory to reverse for trace, used in linker script
|
|
config TRACEMEM_RESERVE_DRAM
|
|
hex
|
|
default 0x8000 if MEMMAP_TRACEMEM && MEMMAP_TRACEMEM_TWOBANKS
|
|
default 0x4000 if MEMMAP_TRACEMEM && !MEMMAP_TRACEMEM_TWOBANKS
|
|
default 0x0
|
|
|
|
choice ESP32_COREDUMP_TO_FLASH_OR_UART
|
|
prompt "Core dump destination"
|
|
default ESP32_ENABLE_COREDUMP_TO_NONE
|
|
help
|
|
Select place to store core dump: flash, uart or none (to disable core dumps generation).
|
|
|
|
If core dump is configured to be stored in flash and custom partition table is used add
|
|
corresponding entry to your CSV. For examples, please see predefined partition table CSV descriptions
|
|
in the components/partition_table directory.
|
|
|
|
config ESP32_ENABLE_COREDUMP_TO_FLASH
|
|
bool "Flash"
|
|
select ESP32_ENABLE_COREDUMP
|
|
config ESP32_ENABLE_COREDUMP_TO_UART
|
|
bool "UART"
|
|
select ESP32_ENABLE_COREDUMP
|
|
config ESP32_ENABLE_COREDUMP_TO_NONE
|
|
bool "None"
|
|
endchoice
|
|
|
|
config ESP32_ENABLE_COREDUMP
|
|
bool
|
|
default F
|
|
help
|
|
Enables/disable core dump module.
|
|
|
|
config ESP32_CORE_DUMP_UART_DELAY
|
|
int "Core dump print to UART delay"
|
|
depends on ESP32_ENABLE_COREDUMP_TO_UART
|
|
default 0
|
|
help
|
|
Config delay (in ms) before printing core dump to UART.
|
|
Delay can be interrupted by pressing Enter key.
|
|
|
|
config ESP32_CORE_DUMP_LOG_LEVEL
|
|
int "Core dump module logging level"
|
|
depends on ESP32_ENABLE_COREDUMP
|
|
default 1
|
|
help
|
|
Config core dump module logging level (0-5).
|
|
|
|
choice NUMBER_OF_UNIVERSAL_MAC_ADDRESS
|
|
bool "Number of universally administered (by IEEE) MAC address"
|
|
default FOUR_UNIVERSAL_MAC_ADDRESS
|
|
help
|
|
Configure the number of universally administered (by IEEE) MAC addresses.
|
|
During initialisation, MAC addresses for each network interface are generated or derived from a
|
|
single base MAC address.
|
|
If the number of universal MAC addresses is four, all four interfaces (WiFi station, WiFi softap,
|
|
Bluetooth and Ethernet) receive a universally administered MAC address. These are generated
|
|
sequentially by adding 0, 1, 2 and 3 (respectively) to the final octet of the base MAC address.
|
|
If the number of universal MAC addresses is two, only two interfaces (WiFi station and Bluetooth)
|
|
receive a universally administered MAC address. These are generated sequentially by adding 0
|
|
and 1 (respectively) to the base MAC address. The remaining two interfaces (WiFi softap and Ethernet)
|
|
receive local MAC addresses. These are derived from the universal WiFi station and Bluetooth MAC
|
|
addresses, respectively.
|
|
When using the default (Espressif-assigned) base MAC address, either setting can be used. When using
|
|
a custom universal MAC address range, the correct setting will depend on the allocation of MAC
|
|
addresses in this range (either 2 or 4 per device.)
|
|
|
|
config TWO_UNIVERSAL_MAC_ADDRESS
|
|
bool "Two"
|
|
config FOUR_UNIVERSAL_MAC_ADDRESS
|
|
bool "Four"
|
|
endchoice
|
|
|
|
config NUMBER_OF_UNIVERSAL_MAC_ADDRESS
|
|
int
|
|
default 2 if TWO_UNIVERSAL_MAC_ADDRESS
|
|
default 4 if FOUR_UNIVERSAL_MAC_ADDRESS
|
|
|
|
config SYSTEM_EVENT_QUEUE_SIZE
|
|
int "System event queue size"
|
|
default 32
|
|
help
|
|
Config system event queue size in different application.
|
|
|
|
config SYSTEM_EVENT_TASK_STACK_SIZE
|
|
int "Event loop task stack size"
|
|
default 2304
|
|
help
|
|
Config system event task stack size in different application.
|
|
|
|
config MAIN_TASK_STACK_SIZE
|
|
int "Main task stack size"
|
|
default 3584
|
|
help
|
|
Configure the "main task" stack size. This is the stack of the task
|
|
which calls app_main(). If app_main() returns then this task is deleted
|
|
and its stack memory is freed.
|
|
|
|
config IPC_TASK_STACK_SIZE
|
|
int "Inter-Processor Call (IPC) task stack size"
|
|
default 1024
|
|
range 512 65536 if !ESP32_APPTRACE_ENABLE
|
|
range 2048 65536 if ESP32_APPTRACE_ENABLE
|
|
help
|
|
Configure the IPC tasks stack size. One IPC task runs on each core
|
|
(in dual core mode), and allows for cross-core function calls.
|
|
|
|
See IPC documentation for more details.
|
|
|
|
The default stack size should be enough for most common use cases.
|
|
It can be shrunk if you are sure that you do not use any custom
|
|
IPC functionality.
|
|
|
|
config TIMER_TASK_STACK_SIZE
|
|
int "High-resolution timer task stack size"
|
|
default 3584
|
|
range 2048 65536
|
|
help
|
|
Configure the stack size of esp_timer/ets_timer task. This task is used
|
|
to dispatch callbacks of timers created using ets_timer and esp_timer
|
|
APIs. If you are seing stack overflow errors in timer task, increase
|
|
this value.
|
|
|
|
Note that this is not the same as FreeRTOS timer task. To configure
|
|
FreeRTOS timer task size, see "FreeRTOS timer task stack size" option
|
|
in "FreeRTOS" menu.
|
|
|
|
choice NEWLIB_STDOUT_LINE_ENDING
|
|
prompt "Line ending for UART output"
|
|
default NEWLIB_STDOUT_LINE_ENDING_CRLF
|
|
help
|
|
This option allows configuring the desired line endings sent to UART
|
|
when a newline ('\n', LF) appears on stdout.
|
|
Three options are possible:
|
|
|
|
CRLF: whenever LF is encountered, prepend it with CR
|
|
|
|
LF: no modification is applied, stdout is sent as is
|
|
|
|
CR: each occurence of LF is replaced with CR
|
|
|
|
This option doesn't affect behavior of the UART driver (drivers/uart.h).
|
|
|
|
config NEWLIB_STDOUT_LINE_ENDING_CRLF
|
|
bool "CRLF"
|
|
config NEWLIB_STDOUT_LINE_ENDING_LF
|
|
bool "LF"
|
|
config NEWLIB_STDOUT_LINE_ENDING_CR
|
|
bool "CR"
|
|
endchoice
|
|
|
|
choice NEWLIB_STDIN_LINE_ENDING
|
|
prompt "Line ending for UART input"
|
|
default NEWLIB_STDIN_LINE_ENDING_CR
|
|
help
|
|
This option allows configuring which input sequence on UART produces
|
|
a newline ('\n', LF) on stdin.
|
|
Three options are possible:
|
|
|
|
CRLF: CRLF is converted to LF
|
|
|
|
LF: no modification is applied, input is sent to stdin as is
|
|
|
|
CR: each occurence of CR is replaced with LF
|
|
|
|
This option doesn't affect behavior of the UART driver (drivers/uart.h).
|
|
|
|
config NEWLIB_STDIN_LINE_ENDING_CRLF
|
|
bool "CRLF"
|
|
config NEWLIB_STDIN_LINE_ENDING_LF
|
|
bool "LF"
|
|
config NEWLIB_STDIN_LINE_ENDING_CR
|
|
bool "CR"
|
|
endchoice
|
|
|
|
config NEWLIB_NANO_FORMAT
|
|
bool "Enable 'nano' formatting options for printf/scanf family"
|
|
default n
|
|
help
|
|
ESP32 ROM contains parts of newlib C library, including printf/scanf family
|
|
of functions. These functions have been compiled with so-called "nano"
|
|
formatting option. This option doesn't support 64-bit integer formats and C99
|
|
features, such as positional arguments.
|
|
|
|
For more details about "nano" formatting option, please see newlib readme file,
|
|
search for '--enable-newlib-nano-formatted-io':
|
|
https://sourceware.org/newlib/README
|
|
|
|
If this option is enabled, build system will use functions available in
|
|
ROM, reducing the application binary size. Functions available in ROM run
|
|
faster than functions which run from flash. Functions available in ROM can
|
|
also run when flash instruction cache is disabled.
|
|
|
|
If you need 64-bit integer formatting support or C99 features, keep this
|
|
option disabled.
|
|
|
|
choice CONSOLE_UART
|
|
prompt "UART for console output"
|
|
default CONSOLE_UART_DEFAULT
|
|
help
|
|
Select whether to use UART for console output (through stdout and stderr).
|
|
|
|
- Default is to use UART0 on pins GPIO1(TX) and GPIO3(RX).
|
|
- If "Custom" is selected, UART0 or UART1 can be chosen,
|
|
and any pins can be selected.
|
|
- If "None" is selected, there will be no console output on any UART, except
|
|
for initial output from ROM bootloader. This output can be further suppressed by
|
|
bootstrapping GPIO13 pin to low logic level.
|
|
|
|
config CONSOLE_UART_DEFAULT
|
|
bool "Default: UART0, TX=GPIO1, RX=GPIO3"
|
|
config CONSOLE_UART_CUSTOM
|
|
bool "Custom"
|
|
config CONSOLE_UART_NONE
|
|
bool "None"
|
|
endchoice
|
|
|
|
choice CONSOLE_UART_NUM
|
|
prompt "UART peripheral to use for console output (0-1)"
|
|
depends on CONSOLE_UART_CUSTOM
|
|
default CONSOLE_UART_CUSTOM_NUM_0
|
|
help
|
|
Due of a ROM bug, UART2 is not supported for console output
|
|
via ets_printf.
|
|
|
|
config CONSOLE_UART_CUSTOM_NUM_0
|
|
bool "UART0"
|
|
config CONSOLE_UART_CUSTOM_NUM_1
|
|
bool "UART1"
|
|
endchoice
|
|
|
|
config CONSOLE_UART_NUM
|
|
int
|
|
default 0 if CONSOLE_UART_DEFAULT || CONSOLE_UART_NONE
|
|
default 0 if CONSOLE_UART_CUSTOM_NUM_0
|
|
default 1 if CONSOLE_UART_CUSTOM_NUM_1
|
|
|
|
config CONSOLE_UART_TX_GPIO
|
|
int "UART TX on GPIO#"
|
|
depends on CONSOLE_UART_CUSTOM
|
|
range 0 33
|
|
default 19
|
|
|
|
config CONSOLE_UART_RX_GPIO
|
|
int "UART RX on GPIO#"
|
|
depends on CONSOLE_UART_CUSTOM
|
|
range 0 39
|
|
default 21
|
|
|
|
config CONSOLE_UART_BAUDRATE
|
|
int "UART console baud rate"
|
|
depends on !CONSOLE_UART_NONE
|
|
default 115200
|
|
range 1200 4000000
|
|
|
|
config ULP_COPROC_ENABLED
|
|
bool "Enable Ultra Low Power (ULP) Coprocessor"
|
|
default "n"
|
|
help
|
|
Set to 'y' if you plan to load a firmware for the coprocessor.
|
|
|
|
If this option is enabled, further coprocessor configuration will appear in the Components menu.
|
|
|
|
config ULP_COPROC_RESERVE_MEM
|
|
int
|
|
prompt "RTC slow memory reserved for coprocessor" if ULP_COPROC_ENABLED
|
|
default 512 if ULP_COPROC_ENABLED
|
|
range 32 8192 if ULP_COPROC_ENABLED
|
|
default 0 if !ULP_COPROC_ENABLED
|
|
range 0 0 if !ULP_COPROC_ENABLED
|
|
help
|
|
Bytes of memory to reserve for ULP coprocessor firmware & data.
|
|
|
|
Data is reserved at the beginning of RTC slow memory.
|
|
|
|
choice ESP32_PANIC
|
|
prompt "Panic handler behaviour"
|
|
default ESP32_PANIC_PRINT_REBOOT
|
|
help
|
|
If FreeRTOS detects unexpected behaviour or an unhandled exception, the panic handler is
|
|
invoked. Configure the panic handlers action here.
|
|
|
|
config ESP32_PANIC_PRINT_HALT
|
|
bool "Print registers and halt"
|
|
help
|
|
Outputs the relevant registers over the serial port and halt the
|
|
processor. Needs a manual reset to restart.
|
|
|
|
config ESP32_PANIC_PRINT_REBOOT
|
|
bool "Print registers and reboot"
|
|
help
|
|
Outputs the relevant registers over the serial port and immediately
|
|
reset the processor.
|
|
|
|
config ESP32_PANIC_SILENT_REBOOT
|
|
bool "Silent reboot"
|
|
help
|
|
Just resets the processor without outputting anything
|
|
|
|
config ESP32_PANIC_GDBSTUB
|
|
bool "Invoke GDBStub"
|
|
help
|
|
Invoke gdbstub on the serial port, allowing for gdb to attach to it to do a postmortem
|
|
of the crash.
|
|
endchoice
|
|
|
|
config ESP32_DEBUG_OCDAWARE
|
|
bool "Make exception and panic handlers JTAG/OCD aware"
|
|
default y
|
|
help
|
|
The FreeRTOS panic and unhandled exception handers can detect a JTAG OCD debugger and
|
|
instead of panicking, have the debugger stop on the offending instruction.
|
|
|
|
config ESP32_DEBUG_STUBS_ENABLE
|
|
bool "OpenOCD debug stubs"
|
|
default OPTIMIZATION_LEVEL_DEBUG
|
|
depends on !ESP32_TRAX
|
|
help
|
|
Debug stubs are used by OpenOCD to execute pre-compiled onboard code which does some useful debugging,
|
|
e.g. GCOV data dump.
|
|
|
|
config INT_WDT
|
|
bool "Interrupt watchdog"
|
|
default y
|
|
help
|
|
This watchdog timer can detect if the FreeRTOS tick interrupt has not been called for a certain time,
|
|
either because a task turned off interrupts and did not turn them on for a long time, or because an
|
|
interrupt handler did not return. It will try to invoke the panic handler first and failing that
|
|
reset the SoC.
|
|
|
|
config INT_WDT_TIMEOUT_MS
|
|
int "Interrupt watchdog timeout (ms)"
|
|
depends on INT_WDT
|
|
default 300 if !SPIRAM_SUPPORT
|
|
default 800 if SPIRAM_SUPPORT
|
|
range 10 10000
|
|
help
|
|
The timeout of the watchdog, in miliseconds. Make this higher than the FreeRTOS tick rate.
|
|
|
|
config INT_WDT_CHECK_CPU1
|
|
bool "Also watch CPU1 tick interrupt"
|
|
depends on INT_WDT && !FREERTOS_UNICORE
|
|
default y
|
|
help
|
|
Also detect if interrupts on CPU 1 are disabled for too long.
|
|
|
|
config TASK_WDT
|
|
bool "Initialize Task Watchdog Timer on startup"
|
|
default y
|
|
help
|
|
The Task Watchdog Timer can be used to make sure individual tasks are still
|
|
running. Enabling this option will cause the Task Watchdog Timer to be
|
|
initialized automatically at startup. The Task Watchdog timer can be
|
|
initialized after startup as well (see Task Watchdog Timer API Reference)
|
|
|
|
config TASK_WDT_PANIC
|
|
bool "Invoke panic handler on Task Watchdog timeout"
|
|
depends on TASK_WDT
|
|
default n
|
|
help
|
|
If this option is enabled, the Task Watchdog Timer will be configured to
|
|
trigger the panic handler when it times out. This can also be configured
|
|
at run time (see Task Watchdog Timer API Reference)
|
|
|
|
config TASK_WDT_TIMEOUT_S
|
|
int "Task Watchdog timeout period (seconds)"
|
|
depends on TASK_WDT
|
|
range 1 60
|
|
default 5
|
|
help
|
|
Timeout period configuration for the Task Watchdog Timer in seconds.
|
|
This is also configurable at run time (see Task Watchdog Timer API Reference)
|
|
|
|
config TASK_WDT_CHECK_IDLE_TASK_CPU0
|
|
bool "Watch CPU0 Idle Task"
|
|
depends on TASK_WDT
|
|
default y
|
|
help
|
|
If this option is enabled, the Task Watchdog Timer will watch the CPU0
|
|
Idle Task. Having the Task Watchdog watch the Idle Task allows for detection
|
|
of CPU starvation as the Idle Task not being called is usually a symptom of
|
|
CPU starvation. Starvation of the Idle Task is detrimental as FreeRTOS household
|
|
tasks depend on the Idle Task getting some runtime every now and then.
|
|
|
|
config TASK_WDT_CHECK_IDLE_TASK_CPU1
|
|
bool "Watch CPU1 Idle Task"
|
|
depends on TASK_WDT && !FREERTOS_UNICORE
|
|
default y
|
|
help
|
|
If this option is enabled, the Task Wtachdog Timer will wach the CPU1
|
|
Idle Task.
|
|
|
|
#The brownout detector code is disabled (by making it depend on a nonexisting symbol) because the current revision of ESP32
|
|
#silicon has a bug in the brown-out detector, rendering it unusable for resetting the CPU.
|
|
config BROWNOUT_DET
|
|
bool "Hardware brownout detect & reset"
|
|
default y
|
|
help
|
|
The ESP32 has a built-in brownout detector which can detect if the voltage is lower than
|
|
a specific value. If this happens, it will reset the chip in order to prevent unintended
|
|
behaviour.
|
|
|
|
choice BROWNOUT_DET_LVL_SEL
|
|
prompt "Brownout voltage level"
|
|
depends on BROWNOUT_DET
|
|
default BROWNOUT_DET_LVL_SEL_25
|
|
help
|
|
The brownout detector will reset the chip when the supply voltage is approximately
|
|
below this level. Note that there may be some variation of brownout voltage level
|
|
between each ESP32 chip.
|
|
|
|
#The voltage levels here are estimates, more work needs to be done to figure out the exact voltages
|
|
#of the brownout threshold levels.
|
|
config BROWNOUT_DET_LVL_SEL_0
|
|
bool "2.43V +/- 0.05"
|
|
config BROWNOUT_DET_LVL_SEL_1
|
|
bool "2.48V +/- 0.05"
|
|
config BROWNOUT_DET_LVL_SEL_2
|
|
bool "2.58V +/- 0.05"
|
|
config BROWNOUT_DET_LVL_SEL_3
|
|
bool "2.62V +/- 0.05"
|
|
config BROWNOUT_DET_LVL_SEL_4
|
|
bool "2.67V +/- 0.05"
|
|
config BROWNOUT_DET_LVL_SEL_5
|
|
bool "2.70V +/- 0.05"
|
|
config BROWNOUT_DET_LVL_SEL_6
|
|
bool "2.77V +/- 0.05"
|
|
config BROWNOUT_DET_LVL_SEL_7
|
|
bool "2.80V +/- 0.05"
|
|
endchoice
|
|
|
|
config BROWNOUT_DET_LVL
|
|
int
|
|
default 0 if BROWNOUT_DET_LVL_SEL_0
|
|
default 1 if BROWNOUT_DET_LVL_SEL_1
|
|
default 2 if BROWNOUT_DET_LVL_SEL_2
|
|
default 3 if BROWNOUT_DET_LVL_SEL_3
|
|
default 4 if BROWNOUT_DET_LVL_SEL_4
|
|
default 5 if BROWNOUT_DET_LVL_SEL_5
|
|
default 6 if BROWNOUT_DET_LVL_SEL_6
|
|
default 7 if BROWNOUT_DET_LVL_SEL_7
|
|
|
|
|
|
#Reduce PHY TX power when brownout reset
|
|
config REDUCE_PHY_TX_POWER
|
|
bool "Reduce PHY TX power when brownout reset"
|
|
depends on BROWNOUT_DET
|
|
default y
|
|
help
|
|
When brownout reset occurs, reduce PHY TX power to keep the code running
|
|
|
|
# Note about the use of "FRC1" name: currently FRC1 timer is not used for
|
|
# high resolution timekeeping anymore. Instead the esp_timer API, implemented
|
|
# using FRC2 timer, is used.
|
|
# FRC1 name in the option name is kept for compatibility.
|
|
choice ESP32_TIME_SYSCALL
|
|
prompt "Timers used for gettimeofday function"
|
|
default ESP32_TIME_SYSCALL_USE_RTC_FRC1
|
|
help
|
|
This setting defines which hardware timers are used to
|
|
implement 'gettimeofday' and 'time' functions in C library.
|
|
|
|
- If both high-resolution and RTC timers are used, timekeeping will
|
|
continue in deep sleep. Time will be reported at 1 microsecond
|
|
resolution. This is the default, and the recommended option.
|
|
- If only high-resolution timer is used, gettimeofday will
|
|
provide time at microsecond resolution.
|
|
Time will not be preserved when going into deep sleep mode.
|
|
- If only RTC timer is used, timekeeping will continue in
|
|
deep sleep, but time will be measured at 6.(6) microsecond
|
|
resolution. Also the gettimeofday function itself may take
|
|
longer to run.
|
|
- If no timers are used, gettimeofday and time functions
|
|
return -1 and set errno to ENOSYS.
|
|
- When RTC is used for timekeeping, two RTC_STORE registers are
|
|
used to keep time in deep sleep mode.
|
|
|
|
config ESP32_TIME_SYSCALL_USE_RTC_FRC1
|
|
bool "RTC and high-resolution timer"
|
|
config ESP32_TIME_SYSCALL_USE_RTC
|
|
bool "RTC"
|
|
config ESP32_TIME_SYSCALL_USE_FRC1
|
|
bool "High-resolution timer"
|
|
config ESP32_TIME_SYSCALL_USE_NONE
|
|
bool "None"
|
|
endchoice
|
|
|
|
choice ESP32_RTC_CLOCK_SOURCE
|
|
prompt "RTC clock source"
|
|
default ESP32_RTC_CLOCK_SOURCE_INTERNAL_RC
|
|
help
|
|
Choose which clock is used as RTC clock source.
|
|
|
|
- "Internal 150kHz oscillator" option provides lowest deep sleep current
|
|
consumption, and does not require extra external components. However
|
|
frequency stability with respect to temperature is poor, so time may
|
|
drift in deep/light sleep modes.
|
|
- "External 32kHz crystal" provides better frequency stability, at the
|
|
expense of slightly higher (1uA) deep sleep current consumption.
|
|
- "External 32kHz oscillator" allows using 32kHz clock generated by an
|
|
external circuit. In this case, external clock signal must be connected
|
|
to 32K_XP pin. Amplitude should be <1.2V in case of sine wave signal,
|
|
and <1V in case of square wave signal. Common mode voltage should be
|
|
0.1 < Vcm < 0.5Vamp, where Vamp is the signal amplitude.
|
|
Additionally, 1nF capacitor must be connected between 32K_XN pin and
|
|
ground. 32K_XN pin can not be used as a GPIO in this case.
|
|
- "Internal 8.5MHz oscillator divided by 256" option results in higher
|
|
deep sleep current (by 5uA) but has better frequency stability than
|
|
the internal 150kHz oscillator. It does not require external components.
|
|
|
|
config ESP32_RTC_CLOCK_SOURCE_INTERNAL_RC
|
|
bool "Internal 150kHz RC oscillator"
|
|
config ESP32_RTC_CLOCK_SOURCE_EXTERNAL_CRYSTAL
|
|
bool "External 32kHz crystal"
|
|
config ESP32_RTC_CLOCK_SOURCE_EXTERNAL_OSC
|
|
bool "External 32kHz oscillator at 32K_XP pin"
|
|
config ESP32_RTC_CLOCK_SOURCE_INTERNAL_8MD256
|
|
bool "Internal 8.5MHz oscillator, divided by 256 (~33kHz)"
|
|
endchoice
|
|
|
|
config ESP32_RTC_CLK_CAL_CYCLES
|
|
int "Number of cycles for RTC_SLOW_CLK calibration"
|
|
default 3000 if ESP32_RTC_CLOCK_SOURCE_EXTERNAL_CRYSTAL
|
|
default 1024 if ESP32_RTC_CLOCK_SOURCE_INTERNAL_RC
|
|
range 0 27000 if ESP32_RTC_CLOCK_SOURCE_EXTERNAL_CRYSTAL || ESP32_RTC_CLOCK_SOURCE_EXTERNAL_OSC || ESP32_RTC_CLOCK_SOURCE_INTERNAL_8MD256
|
|
range 0 32766 if ESP32_RTC_CLOCK_SOURCE_INTERNAL_RC
|
|
help
|
|
When the startup code initializes RTC_SLOW_CLK, it can perform
|
|
calibration by comparing the RTC_SLOW_CLK frequency with main XTAL
|
|
frequency. This option sets the number of RTC_SLOW_CLK cycles measured
|
|
by the calibration routine. Higher numbers increase calibration
|
|
precision, which may be important for applications which spend a lot of
|
|
time in deep sleep. Lower numbers reduce startup time.
|
|
|
|
When this option is set to 0, clock calibration will not be performed at
|
|
startup, and approximate clock frequencies will be assumed:
|
|
|
|
- 150000 Hz if internal RC oscillator is used as clock source. For this use value 1024.
|
|
- 32768 Hz if the 32k crystal oscillator is used. For this use value 3000 or more.
|
|
In case more value will help improve the definition of the launch of the crystal.
|
|
If the crystal could not start, it will be switched to internal RC.
|
|
|
|
config ESP32_RTC_XTAL_BOOTSTRAP_CYCLES
|
|
int "Bootstrap cycles for external 32kHz crystal"
|
|
depends on ESP32_RTC_CLOCK_SOURCE_EXTERNAL_CRYSTAL
|
|
default 5
|
|
range 0 32768
|
|
help
|
|
To reduce the startup time of an external RTC crystal,
|
|
we bootstrap it with a 32kHz square wave for a fixed number of cycles.
|
|
Setting 0 will disable bootstrapping (if disabled, the crystal may take
|
|
longer to start up or fail to oscillate under some conditions).
|
|
|
|
If this value is too high, a faulty crystal may initially start and then fail.
|
|
If this value is too low, an otherwise good crystal may not start.
|
|
|
|
To accurately determine if the crystal has started,
|
|
set a larger "Number of cycles for RTC_SLOW_CLK calibration" (about 3000).
|
|
|
|
config ESP32_DEEP_SLEEP_WAKEUP_DELAY
|
|
int "Extra delay in deep sleep wake stub (in us)"
|
|
default 2000
|
|
range 0 5000
|
|
help
|
|
When ESP32 exits deep sleep, the CPU and the flash chip are powered on
|
|
at the same time. CPU will run deep sleep stub first, and then
|
|
proceed to load code from flash. Some flash chips need sufficient
|
|
time to pass between power on and first read operation. By default,
|
|
without any extra delay, this time is approximately 900us, although
|
|
some flash chip types need more than that.
|
|
|
|
By default extra delay is set to 2000us. When optimizing startup time
|
|
for applications which require it, this value may be reduced.
|
|
|
|
If you are seeing "flash read err, 1000" message printed to the
|
|
console after deep sleep reset, try increasing this value.
|
|
|
|
choice ESP32_XTAL_FREQ_SEL
|
|
prompt "Main XTAL frequency"
|
|
default ESP32_XTAL_FREQ_40
|
|
help
|
|
ESP32 currently supports the following XTAL frequencies:
|
|
|
|
- 26 MHz
|
|
- 40 MHz
|
|
|
|
Startup code can automatically estimate XTAL frequency. This feature
|
|
uses the internal 8MHz oscillator as a reference. Because the internal
|
|
oscillator frequency is temperature dependent, it is not recommended
|
|
to use automatic XTAL frequency detection in applications which need
|
|
to work at high ambient temperatures and use high-temperature
|
|
qualified chips and modules.
|
|
config ESP32_XTAL_FREQ_40
|
|
bool "40 MHz"
|
|
config ESP32_XTAL_FREQ_26
|
|
bool "26 MHz"
|
|
config ESP32_XTAL_FREQ_AUTO
|
|
bool "Autodetect"
|
|
endchoice
|
|
|
|
# Keep these values in sync with rtc_xtal_freq_t enum in soc/rtc.h
|
|
config ESP32_XTAL_FREQ
|
|
int
|
|
default 0 if ESP32_XTAL_FREQ_AUTO
|
|
default 40 if ESP32_XTAL_FREQ_40
|
|
default 26 if ESP32_XTAL_FREQ_26
|
|
|
|
config DISABLE_BASIC_ROM_CONSOLE
|
|
bool "Permanently disable BASIC ROM Console"
|
|
default n
|
|
help
|
|
If set, the first time the app boots it will disable the BASIC ROM Console
|
|
permanently (by burning an efuse).
|
|
|
|
Otherwise, the BASIC ROM Console starts on reset if no valid bootloader is
|
|
read from the flash.
|
|
|
|
(Enabling secure boot also disables the BASIC ROM Console by default.)
|
|
|
|
config NO_BLOBS
|
|
bool "No Binary Blobs"
|
|
depends on !BT_ENABLED
|
|
default n
|
|
help
|
|
If enabled, this disables the linking of binary libraries in the application build. Note
|
|
that after enabling this Wi-Fi/Bluetooth will not work.
|
|
|
|
config ESP_TIMER_PROFILING
|
|
bool "Enable esp_timer profiling features"
|
|
default n
|
|
help
|
|
If enabled, esp_timer_dump will dump information such as number of times
|
|
the timer was started, number of times the timer has triggered, and the
|
|
total time it took for the callback to run.
|
|
This option has some effect on timer performance and the amount of memory
|
|
used for timer storage, and should only be used for debugging/testing
|
|
purposes.
|
|
|
|
config COMPATIBLE_PRE_V2_1_BOOTLOADERS
|
|
bool "App compatible with bootloaders before IDF v2.1"
|
|
default n
|
|
help
|
|
Bootloaders before IDF v2.1 did less initialisation of the
|
|
system clock. This setting needs to be enabled to build an app
|
|
which can be booted by these older bootloaders.
|
|
|
|
If this setting is enabled, the app can be booted by any bootloader
|
|
from IDF v1.0 up to the current version.
|
|
|
|
If this setting is disabled, the app can only be booted by bootloaders
|
|
from IDF v2.1 or newer.
|
|
|
|
Enabling this setting adds approximately 1KB to the app's IRAM usage.
|
|
|
|
config ESP_ERR_TO_NAME_LOOKUP
|
|
bool "Enable lookup of error code strings"
|
|
default "y"
|
|
help
|
|
Functions esp_err_to_name() and esp_err_to_name_r() return string
|
|
representations of error codes from a pre-generated lookup table.
|
|
This option can be used to turn off the use of the look-up table in
|
|
order to save memory but this comes at the price of sacrificing
|
|
distinguishable (meaningful) output string representations.
|
|
|
|
config ESP32_RTCDATA_IN_FAST_MEM
|
|
bool "Place RTC_DATA_ATTR and RTC_RODATA_ATTR variables into RTC fast memory segment"
|
|
default n
|
|
depends on FREERTOS_UNICORE
|
|
help
|
|
This option allows to place .rtc_data and .rtc_rodata sections into
|
|
RTC fast memory segment to free the slow memory region for ULP programs.
|
|
This option depends on the CONFIG_FREERTOS_UNICORE option because RTC fast memory
|
|
can be accessed only by PRO_CPU core.
|
|
|
|
endmenu # ESP32-Specific
|
|
|
|
menu Wi-Fi
|
|
|
|
config SW_COEXIST_ENABLE
|
|
bool "Software controls WiFi/Bluetooth coexistence"
|
|
depends on BT_ENABLED
|
|
default y
|
|
help
|
|
If enabled, WiFi & Bluetooth coexistence is controlled by software rather than hardware.
|
|
Recommended for heavy traffic scenarios. Both coexistence configuration options are
|
|
automatically managed, no user intervention is required.
|
|
|
|
choice SW_COEXIST_PREFERENCE
|
|
prompt "WiFi/Bluetooth coexistence performance preference"
|
|
depends on SW_COEXIST_ENABLE
|
|
default SW_COEXIST_PREFERENCE_BALANCE
|
|
help
|
|
Choose Bluetooth/WiFi/Balance for different preference.
|
|
If choose WiFi, it will make WiFi performance better. Such, keep WiFi Audio more fluent.
|
|
If choose Bluetooth, it will make Bluetooth performance better. Such, keep Bluetooth(A2DP) Audio more fluent.
|
|
If choose Balance, the performance of WiFi and bluetooth will be balance. It's default. Normally, just choose balance, the A2DP audio can play fluently, too.
|
|
Except config preference in menuconfig, you can also call esp_coex_preference_set() dynamically.
|
|
|
|
config SW_COEXIST_PREFERENCE_WIFI
|
|
bool "WiFi"
|
|
|
|
config SW_COEXIST_PREFERENCE_BT
|
|
bool "Bluetooth(include BR/EDR and BLE)"
|
|
|
|
config SW_COEXIST_PREFERENCE_BALANCE
|
|
bool "Balance"
|
|
|
|
endchoice
|
|
|
|
config SW_COEXIST_PREFERENCE_VALUE
|
|
int
|
|
depends on SW_COEXIST_ENABLE
|
|
default 0 if SW_COEXIST_PREFERENCE_WIFI
|
|
default 1 if SW_COEXIST_PREFERENCE_BT
|
|
default 2 if SW_COEXIST_PREFERENCE_BALANCE
|
|
|
|
config ESP32_WIFI_STATIC_RX_BUFFER_NUM
|
|
int "Max number of WiFi static RX buffers"
|
|
range 2 25
|
|
default 10
|
|
help
|
|
Set the number of WiFi static RX buffers. Each buffer takes approximately 1.6KB of RAM.
|
|
The static rx buffers are allocated when esp_wifi_init is called, they are not freed
|
|
until esp_wifi_deinit is called.
|
|
|
|
WiFi hardware use these buffers to receive all 802.11 frames.
|
|
A higher number may allow higher throughput but increases memory use.
|
|
|
|
config ESP32_WIFI_DYNAMIC_RX_BUFFER_NUM
|
|
int "Max number of WiFi dynamic RX buffers"
|
|
range 0 128
|
|
default 32
|
|
help
|
|
Set the number of WiFi dynamic RX buffers, 0 means unlimited RX buffers will be allocated
|
|
(provided sufficient free RAM). The size of each dynamic RX buffer depends on the size of
|
|
the received data frame.
|
|
|
|
For each received data frame, the WiFi driver makes a copy to an RX buffer and then delivers
|
|
it to the high layer TCP/IP stack. The dynamic RX buffer is freed after the higher layer has
|
|
successfully received the data frame.
|
|
|
|
For some applications, WiFi data frames may be received faster than the application can
|
|
process them. In these cases we may run out of memory if RX buffer number is unlimited (0).
|
|
|
|
If a dynamic RX buffer limit is set, it should be at least the number of static RX buffers.
|
|
|
|
choice ESP32_WIFI_TX_BUFFER
|
|
prompt "Type of WiFi TX buffers"
|
|
default ESP32_WIFI_DYNAMIC_TX_BUFFER
|
|
help
|
|
Select type of WiFi TX buffers:
|
|
|
|
If "Static" is selected, WiFi TX buffers are allocated when WiFi is initialized and released
|
|
when WiFi is de-initialized. The size of each static TX buffer is fixed to about 1.6KB.
|
|
|
|
If "Dynamic" is selected, each WiFi TX buffer is allocated as needed when a data frame is
|
|
delivered to the Wifi driver from the TCP/IP stack. The buffer is freed after the data frame
|
|
has been sent by the WiFi driver. The size of each dynamic TX buffer depends on the length
|
|
of each data frame sent by the TCP/IP layer.
|
|
|
|
If PSRAM is enabled, "Static" should be selected to guarantee enough WiFi TX buffers.
|
|
If PSRAM is disabled, "Dynamic" should be selected to improve the utilization of RAM.
|
|
|
|
config ESP32_WIFI_STATIC_TX_BUFFER
|
|
bool "Static"
|
|
config ESP32_WIFI_DYNAMIC_TX_BUFFER
|
|
bool "Dynamic"
|
|
depends on !SPIRAM_USE_MALLOC
|
|
endchoice
|
|
|
|
config ESP32_WIFI_TX_BUFFER_TYPE
|
|
int
|
|
default 0 if ESP32_WIFI_STATIC_TX_BUFFER
|
|
default 1 if ESP32_WIFI_DYNAMIC_TX_BUFFER
|
|
|
|
config ESP32_WIFI_STATIC_TX_BUFFER_NUM
|
|
int "Max number of WiFi static TX buffers"
|
|
depends on ESP32_WIFI_STATIC_TX_BUFFER
|
|
range 6 64
|
|
default 16
|
|
help
|
|
Set the number of WiFi static TX buffers. Each buffer takes approximately 1.6KB of RAM.
|
|
The static RX buffers are allocated when esp_wifi_init() is called, they are not released
|
|
until esp_wifi_deinit() is called.
|
|
|
|
For each transmitted data frame from the higher layer TCP/IP stack, the WiFi driver makes a
|
|
copy of it in a TX buffer. For some applications especially UDP applications, the upper
|
|
layer can deliver frames faster than WiFi layer can transmit. In these cases, we may run out
|
|
of TX buffers.
|
|
|
|
config ESP32_WIFI_DYNAMIC_TX_BUFFER_NUM
|
|
int "Max number of WiFi dynamic TX buffers"
|
|
depends on ESP32_WIFI_DYNAMIC_TX_BUFFER
|
|
range 16 128
|
|
default 32
|
|
help
|
|
Set the number of WiFi dynamic TX buffers. The size of each dynamic TX buffer is not fixed,
|
|
it depends on the size of each transmitted data frame.
|
|
|
|
For each transmitted frame from the higher layer TCP/IP stack, the WiFi driver makes a copy
|
|
of it in a TX buffer. For some applications, especially UDP applications, the upper layer
|
|
can deliver frames faster than WiFi layer can transmit. In these cases, we may run out of TX
|
|
buffers.
|
|
|
|
config ESP32_WIFI_CSI_ENABLED
|
|
bool "WiFi CSI(Channel State Information)"
|
|
default n
|
|
help
|
|
Select this option to enable CSI(Channel State Information) feature. CSI takes about
|
|
CONFIG_ESP32_WIFI_STATIC_RX_BUFFER_NUM KB of RAM. If CSI is not used, it is better to disable
|
|
this feature in order to save memory.
|
|
|
|
config ESP32_WIFI_AMPDU_TX_ENABLED
|
|
bool "WiFi AMPDU TX"
|
|
default y
|
|
help
|
|
Select this option to enable AMPDU TX feature
|
|
|
|
|
|
config ESP32_WIFI_TX_BA_WIN
|
|
int "WiFi AMPDU TX BA window size"
|
|
depends on ESP32_WIFI_AMPDU_TX_ENABLED
|
|
range 2 32
|
|
default 6
|
|
help
|
|
Set the size of WiFi Block Ack TX window. Generally a bigger value means higher throughput but
|
|
more memory. Most of time we should NOT change the default value unless special reason, e.g.
|
|
test the maximum UDP TX throughput with iperf etc. For iperf test in shieldbox, the recommended
|
|
value is 9~12.
|
|
|
|
config ESP32_WIFI_AMPDU_RX_ENABLED
|
|
bool "WiFi AMPDU RX"
|
|
default y
|
|
help
|
|
Select this option to enable AMPDU RX feature
|
|
|
|
config ESP32_WIFI_RX_BA_WIN
|
|
int "WiFi AMPDU RX BA window size"
|
|
depends on ESP32_WIFI_AMPDU_RX_ENABLED
|
|
range 2 32
|
|
default 6
|
|
help
|
|
Set the size of WiFi Block Ack RX window. Generally a bigger value means higher throughput but
|
|
more memory. Most of time we should NOT change the default value unless special reason, e.g.
|
|
test the maximum UDP RX throughput with iperf etc. For iperf test in shieldbox, the recommended
|
|
value is 9~12.
|
|
|
|
config ESP32_WIFI_NVS_ENABLED
|
|
bool "WiFi NVS flash"
|
|
default y
|
|
help
|
|
Select this option to enable WiFi NVS flash
|
|
|
|
choice ESP32_WIFI_TASK_CORE_ID
|
|
depends on !FREERTOS_UNICORE
|
|
prompt "WiFi Task Core ID"
|
|
default ESP32_WIFI_TASK_PINNED_TO_CORE_0
|
|
help
|
|
Pinned WiFi task to core 0 or core 1.
|
|
|
|
config ESP32_WIFI_TASK_PINNED_TO_CORE_0
|
|
bool "Core 0"
|
|
config ESP32_WIFI_TASK_PINNED_TO_CORE_1
|
|
bool "Core 1"
|
|
endchoice
|
|
|
|
config ESP32_WIFI_SOFTAP_BEACON_MAX_LEN
|
|
int "Max length of WiFi SoftAP Beacon"
|
|
range 752 1256
|
|
default 752
|
|
help
|
|
ESP-MESH utilizes beacon frames to detect and resolve root node conflicts (see documentation). However the default
|
|
length of a beacon frame can simultaneously hold only five root node identifier structures, meaning that a root node
|
|
conflict of up to five nodes can be detected at one time. In the occurence of more root nodes conflict involving more
|
|
than five root nodes, the conflict resolution process will detect five of the root nodes, resolve the conflict, and
|
|
re-detect more root nodes. This process will repeat until all root node conflicts are resolved. However this process
|
|
can generally take a very long time.
|
|
|
|
To counter this situation, the beacon frame length can be increased such that more root nodes can be detected simultaneously.
|
|
Each additional root node will require 36 bytes and should be added ontop of the default beacon frame length of
|
|
752 bytes. For example, if you want to detect 10 root nodes simultaneously, you need to set the beacon frame length as
|
|
932 (752+36*5).
|
|
|
|
Setting a longer beacon length also assists with debugging as the conflicting root nodes can be identified more quickly.
|
|
|
|
endmenu # Wi-Fi
|
|
|
|
menu PHY
|
|
|
|
config ESP32_PHY_CALIBRATION_AND_DATA_STORAGE
|
|
bool "Store phy calibration data in NVS"
|
|
default y
|
|
help
|
|
If this option is enabled, NVS will be initialized and calibration data will be loaded from there.
|
|
PHY calibration will be skipped on deep sleep wakeup. If calibration data is not found, full calibration
|
|
will be performed and stored in NVS. Normally, only partial calibration will be performed.
|
|
If this option is disabled, full calibration will be performed.
|
|
|
|
If it's easy that your board calibrate bad data, choose 'n'.
|
|
Two cases for example, you should choose 'n':
|
|
1.If your board is easy to be booted up with antenna disconnected.
|
|
2.Because of your board design, each time when you do calibration, the result are too unstable.
|
|
If unsure, choose 'y'.
|
|
|
|
config ESP32_PHY_INIT_DATA_IN_PARTITION
|
|
bool "Use a partition to store PHY init data"
|
|
default n
|
|
help
|
|
If enabled, PHY init data will be loaded from a partition.
|
|
When using a custom partition table, make sure that PHY data
|
|
partition is included (type: 'data', subtype: 'phy').
|
|
With default partition tables, this is done automatically.
|
|
If PHY init data is stored in a partition, it has to be flashed there,
|
|
otherwise runtime error will occur.
|
|
|
|
If this option is not enabled, PHY init data will be embedded
|
|
into the application binary.
|
|
|
|
If unsure, choose 'n'.
|
|
|
|
config ESP32_PHY_MAX_WIFI_TX_POWER
|
|
int "Max WiFi TX power (dBm)"
|
|
range 0 20
|
|
default 20
|
|
help
|
|
Set maximum transmit power for WiFi radio. Actual transmit power for high
|
|
data rates may be lower than this setting.
|
|
|
|
config ESP32_PHY_MAX_TX_POWER
|
|
int
|
|
default ESP32_PHY_MAX_WIFI_TX_POWER
|
|
|
|
endmenu # PHY
|
|
|
|
|
|
menu "Power Management"
|
|
|
|
config PM_ENABLE
|
|
bool "Support for power management"
|
|
default n
|
|
help
|
|
If enabled, application is compiled with support for power management.
|
|
This option has run-time overhead (increased interrupt latency,
|
|
longer time to enter idle state), and it also reduces accuracy of
|
|
RTOS ticks and timers used for timekeeping.
|
|
Enable this option if application uses power management APIs.
|
|
|
|
config PM_DFS_INIT_AUTO
|
|
bool "Enable dynamic frequency scaling (DFS) at startup"
|
|
depends on PM_ENABLE
|
|
default n
|
|
help
|
|
If enabled, startup code configures dynamic frequency scaling.
|
|
Max CPU frequency is set to CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ setting,
|
|
min frequency is set to XTAL frequency.
|
|
If disabled, DFS will not be active until the application
|
|
configures it using esp_pm_configure function.
|
|
|
|
config PM_USE_RTC_TIMER_REF
|
|
bool "Use RTC timer to prevent time drift (EXPERIMENTAL)"
|
|
depends on PM_ENABLE && (ESP32_TIME_SYSCALL_USE_RTC || ESP32_TIME_SYSCALL_USE_RTC_FRC1)
|
|
default n
|
|
help
|
|
When APB clock frequency changes, high-resolution timer (esp_timer)
|
|
scale and base value need to be adjusted. Each adjustment may cause
|
|
small error, and over time such small errors may cause time drift.
|
|
If this option is enabled, RTC timer will be used as a reference to
|
|
compensate for the drift.
|
|
It is recommended that this option is only used if 32k XTAL is selected
|
|
as RTC clock source.
|
|
|
|
config PM_PROFILING
|
|
bool "Enable profiling counters for PM locks"
|
|
depends on PM_ENABLE
|
|
default n
|
|
help
|
|
If enabled, esp_pm_* functions will keep track of the amount of time
|
|
each of the power management locks has been held, and esp_pm_dump_locks
|
|
function will print this information.
|
|
This feature can be used to analyze which locks are preventing the chip
|
|
from going into a lower power state, and see what time the chip spends
|
|
in each power saving mode. This feature does incur some run-time
|
|
overhead, so should typically be disabled in production builds.
|
|
|
|
config PM_TRACE
|
|
bool "Enable debug tracing of PM using GPIOs"
|
|
depends on PM_ENABLE
|
|
default n
|
|
help
|
|
If enabled, some GPIOs will be used to signal events such as RTOS ticks,
|
|
frequency switching, entry/exit from idle state. Refer to pm_trace.c
|
|
file for the list of GPIOs.
|
|
This feature is intended to be used when analyzing/debugging behavior
|
|
of power management implementation, and should be kept disabled in
|
|
applications.
|
|
|
|
|
|
endmenu # "Power Management"
|