esp-idf/components/esp_hw_support/port/esp32s2/spiram.c
2021-08-05 15:01:26 +02:00

382 lines
15 KiB
C

/*
Abstraction layer for spi-ram. For now, it's no more than a stub for the spiram_psram functions, but if
we add more types of external RAM memory, this can be made into a more intelligent dispatcher.
*/
/*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include <string.h>
#include <sys/param.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "esp_err.h"
#include "esp32s2/spiram.h"
#include "spiram_psram.h"
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "freertos/xtensa_api.h"
#include "soc/soc.h"
#include "esp_heap_caps_init.h"
#include "soc/soc_memory_layout.h"
#include "soc/dport_reg.h"
#include "esp32s2/rom/cache.h"
#include "soc/cache_memory.h"
#include "soc/extmem_reg.h"
#define PSRAM_MODE PSRAM_VADDR_MODE_NORMAL
#if CONFIG_SPIRAM
static const char* TAG = "spiram";
#if CONFIG_SPIRAM_SPEED_40M
#define PSRAM_SPEED PSRAM_CACHE_S40M
#elif CONFIG_SPIRAM_SPEED_80M
#define PSRAM_SPEED PSRAM_CACHE_S80M
#else
#define PSRAM_SPEED PSRAM_CACHE_S20M
#endif
static bool spiram_inited=false;
/*
Simple RAM test. Writes a word every 32 bytes. Takes about a second to complete for 4MiB. Returns
true when RAM seems OK, false when test fails. WARNING: Do not run this before the 2nd cpu has been
initialized (in a two-core system) or after the heap allocator has taken ownership of the memory.
*/
bool esp_spiram_test(void)
{
size_t spiram_size = esp_spiram_get_size();
volatile int *spiram=(volatile int*)(SOC_EXTRAM_DATA_HIGH - spiram_size);
size_t p;
size_t s = spiram_size;
int errct=0;
int initial_err=-1;
if (SOC_EXTRAM_DATA_SIZE < spiram_size) {
ESP_EARLY_LOGW(TAG, "Only test spiram from %08x to %08x\n", SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_HIGH);
spiram=(volatile int*)SOC_EXTRAM_DATA_LOW;
s = SOC_EXTRAM_DATA_SIZE;
}
for (p=0; p<(s/sizeof(int)); p+=8) {
spiram[p]=p^0xAAAAAAAA;
}
for (p=0; p<(s/sizeof(int)); p+=8) {
if (spiram[p]!=(p^0xAAAAAAAA)) {
errct++;
if (errct==1) initial_err=p*4;
if (errct < 4) {
ESP_EARLY_LOGE(TAG, "SPI SRAM error@%08x:%08x/%08x \n", &spiram[p], spiram[p], p^0xAAAAAAAA);
}
}
}
if (errct) {
ESP_EARLY_LOGE(TAG, "SPI SRAM memory test fail. %d/%d writes failed, first @ %X\n", errct, s/32, initial_err+SOC_EXTRAM_DATA_LOW);
return false;
} else {
ESP_EARLY_LOGI(TAG, "SPI SRAM memory test OK");
return true;
}
}
#define DRAM0_ONLY_CACHE_SIZE BUS_IRAM0_CACHE_SIZE
#define DRAM0_DRAM1_CACHE_SIZE (BUS_IRAM0_CACHE_SIZE + BUS_IRAM1_CACHE_SIZE)
#define DRAM0_DRAM1_DPORT_CACHE_SIZE (BUS_IRAM0_CACHE_SIZE + BUS_IRAM1_CACHE_SIZE + BUS_DPORT_CACHE_SIZE)
#define DBUS3_ONLY_CACHE_SIZE BUS_AHB_DBUS3_CACHE_SIZE
#define DRAM0_DRAM1_DPORT_DBUS3_CACHE_SIZE (DRAM0_DRAM1_DPORT_CACHE_SIZE + DBUS3_ONLY_CACHE_SIZE)
#define SPIRAM_SIZE_EXC_DRAM0_DRAM1_DPORT (spiram_size - DRAM0_DRAM1_DPORT_CACHE_SIZE)
#define SPIRAM_SIZE_EXC_DATA_CACHE (spiram_size - DRAM0_DRAM1_DPORT_DBUS3_CACHE_SIZE)
#define SPIRAM_SMALL_SIZE_MAP_VADDR (DRAM0_CACHE_ADDRESS_HIGH - spiram_size)
#define SPIRAM_SMALL_SIZE_MAP_PADDR 0
#define SPIRAM_SMALL_SIZE_MAP_SIZE spiram_size
#define SPIRAM_MID_SIZE_MAP_VADDR (AHB_DBUS3_ADDRESS_HIGH - SPIRAM_SIZE_EXC_DRAM0_DRAM1_DPORT)
#define SPIRAM_MID_SIZE_MAP_PADDR 0
#define SPIRAM_MID_SIZE_MAP_SIZE (SPIRAM_SIZE_EXC_DRAM0_DRAM1_DPORT)
#define SPIRAM_BIG_SIZE_MAP_VADDR AHB_DBUS3_ADDRESS_LOW
#define SPIRAM_BIG_SIZE_MAP_PADDR (AHB_DBUS3_ADDRESS_HIGH - DRAM0_DRAM1_DPORT_DBUS3_CACHE_SIZE)
#define SPIRAM_BIG_SIZE_MAP_SIZE DBUS3_ONLY_CACHE_SIZE
#define SPIRAM_MID_BIG_SIZE_MAP_VADDR DPORT_CACHE_ADDRESS_LOW
#define SPIRAM_MID_BIG_SIZE_MAP_PADDR SPIRAM_SIZE_EXC_DRAM0_DRAM1_DPORT
#define SPIRAM_MID_BIG_SIZE_MAP_SIZE DRAM0_DRAM1_DPORT_DBUS3_CACHE_SIZE
void IRAM_ATTR esp_spiram_init_cache(void)
{
size_t spiram_size = esp_spiram_get_size();
Cache_Suspend_DCache();
/* map the address from SPIRAM end to the start, map the address in order: DRAM1, DRAM1, DPORT, DBUS3 */
if (spiram_size <= DRAM0_ONLY_CACHE_SIZE) {
/* cache size <= 3MB + 512 KB, only map DRAM0 bus */
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SPIRAM_SMALL_SIZE_MAP_VADDR, SPIRAM_SMALL_SIZE_MAP_PADDR, 64, SPIRAM_SMALL_SIZE_MAP_SIZE >> 16, 0);
REG_CLR_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, EXTMEM_PRO_DCACHE_MASK_DRAM0);
} else if (spiram_size <= DRAM0_DRAM1_CACHE_SIZE) {
/* cache size <= 7MB + 512KB, only map DRAM0 and DRAM1 bus */
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SPIRAM_SMALL_SIZE_MAP_VADDR, SPIRAM_SMALL_SIZE_MAP_PADDR, 64, SPIRAM_SMALL_SIZE_MAP_SIZE >> 16, 0);
REG_CLR_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, EXTMEM_PRO_DCACHE_MASK_DRAM1 | EXTMEM_PRO_DCACHE_MASK_DRAM0);
} else if (spiram_size <= DRAM0_DRAM1_DPORT_CACHE_SIZE) {
/* cache size <= 10MB + 512KB, map DRAM0, DRAM1, DPORT bus */
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SPIRAM_SMALL_SIZE_MAP_VADDR, SPIRAM_SMALL_SIZE_MAP_PADDR, 64, SPIRAM_SMALL_SIZE_MAP_SIZE >> 16, 0);
REG_CLR_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, EXTMEM_PRO_DCACHE_MASK_DRAM1 | EXTMEM_PRO_DCACHE_MASK_DRAM0 | EXTMEM_PRO_DCACHE_MASK_DPORT);
} else {
/* cache size > 10MB + 512KB, map DRAM0, DRAM1, DPORT bus , only remap 0x3f500000 ~ 0x3ff90000*/
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, DPORT_CACHE_ADDRESS_LOW, SPIRAM_SMALL_SIZE_MAP_PADDR, 64, DRAM0_DRAM1_DPORT_CACHE_SIZE >> 16, 0);
REG_CLR_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, EXTMEM_PRO_DCACHE_MASK_DRAM1 | EXTMEM_PRO_DCACHE_MASK_DRAM0 | EXTMEM_PRO_DCACHE_MASK_DPORT);
}
Cache_Resume_DCache(0);
}
static uint32_t pages_for_flash = 0;
static uint32_t instrcution_in_spiram = 0;
static uint32_t rodata_in_spiram = 0;
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
static int instr_flash2spiram_offs = 0;
static uint32_t instr_start_page = 0;
static uint32_t instr_end_page = 0;
#endif
#if CONFIG_SPIRAM_RODATA
static int rodata_flash2spiram_offs = 0;
static uint32_t rodata_start_page = 0;
static uint32_t rodata_end_page = 0;
#endif
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
static uint32_t page0_mapped = 0;
static uint32_t page0_page = INVALID_PHY_PAGE;
#endif
uint32_t esp_spiram_instruction_access_enabled(void)
{
return instrcution_in_spiram;
}
uint32_t esp_spiram_rodata_access_enabled(void)
{
return rodata_in_spiram;
}
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
esp_err_t esp_spiram_enable_instruction_access(void)
{
size_t spiram_size = esp_spiram_get_size();
uint32_t pages_in_flash = 0;
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS0, &page0_mapped);
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS1, &page0_mapped);
if ((pages_in_flash + pages_for_flash) > (spiram_size >> 16)) {
ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the instructions, has %d pages, need %d pages.", (spiram_size >> 16), (pages_in_flash + pages_for_flash));
return ESP_FAIL;
}
ESP_EARLY_LOGI(TAG, "Instructions copied and mapped to SPIRAM");
uint32_t instr_mmu_offset = ((uint32_t)&_instruction_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE;
uint32_t mmu_value = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS0_MMU_START + instr_mmu_offset*sizeof(uint32_t));
mmu_value &= MMU_ADDRESS_MASK;
instr_flash2spiram_offs = mmu_value - pages_for_flash;
ESP_EARLY_LOGV(TAG, "Instructions from flash page%d copy to SPIRAM page%d, Offset: %d", mmu_value, pages_for_flash, instr_flash2spiram_offs);
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS0, IRAM0_ADDRESS_LOW, pages_for_flash, &page0_page);
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS1, IRAM1_ADDRESS_LOW, pages_for_flash, &page0_page);
instrcution_in_spiram = 1;
return ESP_OK;
}
#endif
#if CONFIG_SPIRAM_RODATA
esp_err_t esp_spiram_enable_rodata_access(void)
{
uint32_t pages_in_flash = 0;
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS2, &page0_mapped);
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS0, &page0_mapped);
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS1, &page0_mapped);
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS2, &page0_mapped);
if ((pages_in_flash + pages_for_flash) > (esp_spiram_get_size() >> 16)) {
ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the read only data.");
return ESP_FAIL;
}
ESP_EARLY_LOGI(TAG, "Read only data copied and mapped to SPIRAM");
uint32_t rodata_mmu_offset = ((uint32_t)&_rodata_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE;
uint32_t mmu_value = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS2_MMU_START + rodata_mmu_offset*sizeof(uint32_t));
mmu_value &= MMU_ADDRESS_MASK;
rodata_flash2spiram_offs = mmu_value - pages_for_flash;
ESP_EARLY_LOGV(TAG, "Rodata from flash page%d copy to SPIRAM page%d, Offset: %d", mmu_value, pages_for_flash, rodata_flash2spiram_offs);
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS2, DROM0_ADDRESS_LOW, pages_for_flash, &page0_page);
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS0, DRAM0_ADDRESS_LOW, pages_for_flash, &page0_page);
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS1, DRAM1_ADDRESS_LOW, pages_for_flash, &page0_page);
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS2, DPORT_ADDRESS_LOW, pages_for_flash, &page0_page);
rodata_in_spiram = 1;
return ESP_OK;
}
#endif
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
void instruction_flash_page_info_init(void)
{
uint32_t instr_page_cnt = ((uint32_t)&_instruction_reserved_end - SOC_IROM_LOW + MMU_PAGE_SIZE - 1)/MMU_PAGE_SIZE;
uint32_t instr_mmu_offset = ((uint32_t)&_instruction_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE;
instr_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS0_MMU_START + instr_mmu_offset*sizeof(uint32_t));
instr_start_page &= MMU_ADDRESS_MASK;
instr_end_page = instr_start_page + instr_page_cnt - 1;
}
uint32_t IRAM_ATTR instruction_flash_start_page_get(void)
{
return instr_start_page;
}
uint32_t IRAM_ATTR instruction_flash_end_page_get(void)
{
return instr_end_page;
}
int IRAM_ATTR instruction_flash2spiram_offset(void)
{
return instr_flash2spiram_offs;
}
#endif
#if CONFIG_SPIRAM_RODATA
void rodata_flash_page_info_init(void)
{
uint32_t rodata_page_cnt = ((uint32_t)&_rodata_reserved_end - SOC_DROM_LOW + MMU_PAGE_SIZE - 1)/MMU_PAGE_SIZE;
uint32_t rodata_mmu_offset = ((uint32_t)&_rodata_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE;
rodata_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS2_MMU_START + rodata_mmu_offset*sizeof(uint32_t));
rodata_start_page &= MMU_ADDRESS_MASK;
rodata_end_page = rodata_start_page + rodata_page_cnt - 1;
}
uint32_t IRAM_ATTR rodata_flash_start_page_get(void)
{
return rodata_start_page;
}
uint32_t IRAM_ATTR rodata_flash_end_page_get(void)
{
return rodata_end_page;
}
int IRAM_ATTR rodata_flash2spiram_offset(void)
{
return rodata_flash2spiram_offs;
}
#endif
esp_err_t esp_spiram_init(void)
{
esp_err_t r;
r = psram_enable(PSRAM_SPEED, PSRAM_MODE);
if (r != ESP_OK) {
#if CONFIG_SPIRAM_IGNORE_NOTFOUND
ESP_EARLY_LOGE(TAG, "SPI RAM enabled but initialization failed. Bailing out.");
#endif
return r;
}
spiram_inited = true;
size_t spiram_size = esp_spiram_get_size();
#if (CONFIG_SPIRAM_SIZE != -1)
if (spiram_size != CONFIG_SPIRAM_SIZE) {
ESP_EARLY_LOGE(TAG, "Expected %dKiB chip but found %dKiB chip. Bailing out..", CONFIG_SPIRAM_SIZE/1024, spiram_size/1024);
return ESP_ERR_INVALID_SIZE;
}
#endif
ESP_EARLY_LOGI(TAG, "Found %dMBit SPI RAM device",
(spiram_size*8)/(1024*1024));
ESP_EARLY_LOGI(TAG, "SPI RAM mode: %s", PSRAM_SPEED == PSRAM_CACHE_S40M ? "sram 40m" : \
PSRAM_SPEED == PSRAM_CACHE_S80M ? "sram 80m" : "sram 20m");
ESP_EARLY_LOGI(TAG, "PSRAM initialized, cache is in %s mode.", \
(PSRAM_MODE==PSRAM_VADDR_MODE_EVENODD)?"even/odd (2-core)": \
(PSRAM_MODE==PSRAM_VADDR_MODE_LOWHIGH)?"low/high (2-core)": \
(PSRAM_MODE==PSRAM_VADDR_MODE_NORMAL)?"normal (1-core)":"ERROR");
return ESP_OK;
}
esp_err_t esp_spiram_add_to_heapalloc(void)
{
size_t spiram_size = esp_spiram_get_size();
uint32_t size_for_flash = (pages_for_flash << 16);
intptr_t vaddr;
ESP_EARLY_LOGI(TAG, "Adding pool of %dK of external SPI memory to heap allocator", (spiram_size - (pages_for_flash << 16))/1024);
//Add entire external RAM region to heap allocator. Heap allocator knows the capabilities of this type of memory, so there's
//no need to explicitly specify them.
if (spiram_size <= DRAM0_DRAM1_DPORT_CACHE_SIZE) {
/* cache size <= 10MB + 512KB, map DRAM0, DRAM1, DPORT bus */
vaddr = SPIRAM_SMALL_SIZE_MAP_VADDR;
return heap_caps_add_region(vaddr + size_for_flash, vaddr + spiram_size - 1);
}
vaddr = DPORT_CACHE_ADDRESS_LOW;
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, vaddr, SPIRAM_SMALL_SIZE_MAP_PADDR, 64, DRAM0_DRAM1_DPORT_CACHE_SIZE >> 16, 0);
if (size_for_flash <= SPIRAM_SIZE_EXC_DRAM0_DRAM1_DPORT) {
return heap_caps_add_region(vaddr, vaddr + DRAM0_DRAM1_DPORT_CACHE_SIZE - 1);
}
// Largest size
return heap_caps_add_region(vaddr + size_for_flash, vaddr + DRAM0_DRAM1_DPORT_CACHE_SIZE -1);
}
static uint8_t *dma_heap;
esp_err_t esp_spiram_reserve_dma_pool(size_t size) {
if (size==0) return ESP_OK; //no-op
ESP_EARLY_LOGI(TAG, "Reserving pool of %dK of internal memory for DMA/internal allocations", size/1024);
dma_heap=heap_caps_malloc(size, MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
if (!dma_heap) return ESP_ERR_NO_MEM;
uint32_t caps[]={MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_8BIT|MALLOC_CAP_32BIT};
return heap_caps_add_region_with_caps(caps, (intptr_t) dma_heap, (intptr_t) dma_heap+size-1);
}
size_t esp_spiram_get_size(void)
{
if (!spiram_inited) {
ESP_EARLY_LOGE(TAG, "SPI RAM not initialized");
abort();
}
psram_size_t size=psram_get_size();
if (size==PSRAM_SIZE_16MBITS) return 2*1024*1024;
if (size==PSRAM_SIZE_32MBITS) return 4*1024*1024;
if (size==PSRAM_SIZE_64MBITS) return 8*1024*1024;
return CONFIG_SPIRAM_SIZE;
}
/*
Before flushing the cache, if psram is enabled as a memory-mapped thing, we need to write back the data in the cache to the psram first,
otherwise it will get lost. For now, we just read 64/128K of random PSRAM memory to do this.
*/
void IRAM_ATTR esp_spiram_writeback_cache(void)
{
extern void Cache_WriteBack_All(void);
Cache_WriteBack_All();
}
/**
* @brief If SPI RAM(PSRAM) has been initialized
*
* @return true SPI RAM has been initialized successfully
* @return false SPI RAM hasn't been initialized or initialized failed
*/
bool esp_spiram_is_initialized(void)
{
return spiram_inited;
}
#endif